1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Enterotoxic Clostridia: Enteric Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Archana Shrestha1, Francisco A. Uzal2, Bruce A. McClane3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Julian I. Rood8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; 2: California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408; 3: Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
  • Received 24 April 2018 Accepted 25 April 2018 Published 20 September 2018
  • Bruce McClane, [email protected]
image of Enterotoxic Clostridia: <span class="jp-italic">Clostridium perfringens</span> Enteric Diseases
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Enterotoxic Clostridia: Enteric Diseases, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0003-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/5/GPP3-0003-2017-2.gif
  • Abstract:

    In humans and livestock, is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of . This article primarily focuses on the type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when sporulates in the intestines. Beyond type F strains, type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.

  • Citation: Shrestha A, Uzal F, McClane B. 2018. Enterotoxic Clostridia: Enteric Diseases. Microbiol Spectrum 6(5):GPP3-0003-2017. doi:10.1128/microbiolspec.GPP3-0003-2017.

References

1. McClane BA, Robertson SL, Li J. 2013. Clostridium perfringens, p 465–489. In Doyle MP, Buchanan RL (ed), Food Microbiology: Fundamentals and Frontiers, 4th ed. ASM Press, Washington, DC.
2. McClane BA, Uzal FA, Miyakawa MF, Lyerly D, Wilkins TD. 2006. The Enterotoxic clostridia, p 688–752. In Dworkin M, Falkow S, Rosenburg E, Schleifer H, Stackebrandt E (ed), The Prokaryotes, 3rd ed. Springer, New York, NY.
3. Li J, Sayeed S, McClane BA. 2007. Prevalence of enterotoxigenic Clostridium perfringens isolates in Pittsburgh (Pennsylvania) area soils and home kitchens. Appl Environ Microbiol 73:7218–7224 http://dx.doi.org/10.1128/AEM.01075-07. [PubMed]
4. Carman RJ, Sayeed S, Li J, Genheimer CW, Hiltonsmith MF, Wilkins TD, McClane BA. 2008. Clostridium perfringens toxin genotypes in the feces of healthy North Americans. Anaerobe 14:102–108 http://dx.doi.org/10.1016/j.anaerobe.2008.01.003. [PubMed]
5. Rood JI. 2007. Clostridium perfringens and histotoxic disease, p 753–770. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (ed), The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed, vol 4. Springer, New York, NY.
6. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA. 2014. Toward an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377 http://dx.doi.org/10.2217/fmb.13.168. [PubMed]
7. Yonogi S, Matsuda S, Kawai T, Yoda T, Harada T, Kumeda Y, Gotoh K, Hiyoshi H, Nakamura S, Kodama T, Iida T. 2014. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks. Infect Immun 82:2390–2399 http://dx.doi.org/10.1128/IAI.01759-14. [PubMed]
8. Irikura D, Monma C, Suzuki Y, Nakama A, Kai A, Fukui-Miyazaki A, Horiguchi Y, Yoshinari T, Sugita-Konishi Y, Kamata Y. 2015. Identification and characterization of a new enterotoxin produced by Clostridium perfringens isolated from food poisoning outbreaks. PLoS One 10:e0138183 http://dx.doi.org/10.1371/journal.pone.0138183. [PubMed]
9. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, Di Rubbo A, Rood JI, Moore RJ. 2008. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog 4:e26 http://dx.doi.org/10.1371/journal.ppat.0040026. [PubMed]
10. Mehdizadeh Gohari I, Parreira VR, Timoney JF, Fallon L, Slovis N, Prescott JF. 2016. NetF-positive Clostridium perfringens in neonatal foal necrotising enteritis in Kentucky. Vet Rec 178:216 http://dx.doi.org/10.1136/vr.103606. [PubMed]
11. Rood JI, Adams V, Lacy J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker M, Songer JG, Uzal FA, Van Immerseel F. 2018. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe. Epub ahead of print. doi:10.1016/j.anaerobe.2018.04.011.
12. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United States: major pathogens. Emerg Infect Dis 17:7–15 http://dx.doi.org/10.3201/eid1701.P11101. [PubMed]
13. Centers for Disease Control and Prevention. 2017. Clostridium perfringens. https://www.cdc.gov/foodsafety/diseases/clostridium-perfringens.html.
14. Hoffmann S, Batz MB, Morris JG Jr. 2012. Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75:1292–1302 http://dx.doi.org/10.4315/0362-028X.JFP-11-417. [PubMed]
15. Yibar A, Cetin E, Ata Z, Erkose E, Tayar M. 2018. Clostridium perfringens contamination in retail meat and meat based products in Bursa, Turkey. Foodborne Pathog Dis 15:239–245 http://dx.doi.org/10.1089/fpd.2017.2350. [PubMed]
16. Wen Q, McClane BA. 2004. Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl Environ Microbiol 70:2685–2691 http://dx.doi.org/10.1128/AEM.70.5.2685-2691.2004. [PubMed]
17. Sarker MR, Shivers RP, Sparks SG, Juneja VK, McClane BA. 2000. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl Environ Microbiol 66:3234–3240 http://dx.doi.org/10.1128/AEM.66.8.3234-3240.2000. [PubMed]
18. Wrigley DM, Hanwella HD, Thon BL. 1995. Acid exposure enhances sporulation of certain strains of Clostridium perfringens. Anaerobe 1:263–267 http://dx.doi.org/10.1006/anae.1995.1025. [PubMed]
19. Philippe VA, Méndez MB, Huang IH, Orsaria LM, Sarker MR, Grau RR. 2006. Inorganic phosphate induces spore morphogenesis and enterotoxin production in the intestinal pathogen Clostridium perfringens. Infect Immun 74:3651–3656 http://dx.doi.org/10.1128/IAI.02090-05. [PubMed]
20. Yasugi M, Okuzaki D, Kuwana R, Takamatsu H, Fujita M, Sarker MR, Miyake M. 2016. Transcriptional profile during deoxycholate-induced sporulation in a Clostridium perfringens isolate causing foodborne illness. Appl Environ Microbiol 82:2929–2942 http://dx.doi.org/10.1128/AEM.00252-16. [PubMed]
21. Sarker MR, Carman RJ, McClane BA. 1999. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 33:946–958 http://dx.doi.org/10.1046/j.1365-2958.1999.01534.x. [PubMed]
22. Duncan CL, Strong DH. 1969. Ileal loop fluid accumulation and production of diarrhea in rabbits by cell-free products of Clostridium perfringens. J Bacteriol 100:86–94. [PubMed]
23. Hauschild AH, Niilo L, Dorward WJ. 1970. Enteropathogenic factors of food-poisoning Clostridium perfringens type A. Can J Microbiol 16:331–338 http://dx.doi.org/10.1139/m70-059. [PubMed]
24. Duncan CL. 1973. Time of enterotoxin formation and release during sporulation of Clostridium perfringens type A. J Bacteriol 113:932–936. [PubMed]
25. Smedley JG III, Saputo J, Parker JC, Fernandez-Miyakawa ME, Robertson SL, McClane BA, Uzal FA. 2008. Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun 76:3793–3800 http://dx.doi.org/10.1128/IAI.00460-08. [PubMed]
26. Sherman S, Klein E, McClane BA. 1994. Clostridium perfringens type A enterotoxin induces concurrent development of tissue damage and fluid accumulation in the rabbit ileum. J Diarrhoeal Dis Res 12:200–207. [PubMed]
27. McDonel JL, Duncan CL. 1977. Regional localization of activity of Clostridium perfringens type A enterotoxin in the rabbit ileum, jejunum, and duodenum. J Infect Dis 136:661–666 http://dx.doi.org/10.1093/infdis/136.5.661. [PubMed]
28. Freedman JC, Shrestha A, McClane BA. 2016. Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins (Basel) 8:E73 http://dx.doi.org/10.3390/toxins8030073. [PubMed]
29. McDonel JL. 1986. Toxins of Clostridium perfringens types A, B, C, D, and E, p 477–517. In Dorner F, Drews H (ed), Pharmacology of Bacterial Toxins. Pergamon Press, Oxford, UK.
30. Shrestha A, Hendricks MR, Bomberger JM, McClane BA. 2016. Bystander host cell killing of Clostridium perfringens enterotoxin. MBio 7:e02015-16 http://dx.doi.org/10.1128/mBio.02015-16. [PubMed]
31. McDonel JL, Demers GW. 1982. In vivo effects of enterotoxin from Clostridium perfringens type A in the rabbit colon: binding vs. biologic activity. J Infect Dis 145:490–494 http://dx.doi.org/10.1093/infdis/145.4.490. [PubMed]
32. Garcia JP, Li J, Shrestha A, Freedman JC, Beingesser J, McClane BA, Uzal FA. 2014. Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect Immun 82:2211–2218 http://dx.doi.org/10.1128/IAI.01659-14. [PubMed]
33. Fernández Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibarra C. 2005. Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun 73:8407–8410 http://dx.doi.org/10.1128/IAI.73.12.8407-8410.2005. [PubMed]
34. Bos J, Smithee L, McClane B, Distefano RF, Uzal F, Songer JG, Mallonee S, Crutcher JM. 2005. Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 40:e78–e83 http://dx.doi.org/10.1086/429829. [PubMed]
35. Eichner M, Augustin C, Fromm A, Piontek A, Walther W, Bücker R, Fromm M, Krause G, Schulzke JD, Günzel D, Piontek J. 2017. In colon epithelia, Clostridium perfringens enterotoxin causes focal leaks by targeting claudin which are apically accessible due to tight junction derangement. J Infect Dis 217:147–157 http://dx.doi.org/10.1093/infdis/jix485. [PubMed]
36. Centers for Disease Control and Prevention. 2010. Fatal foodborne Clostridium perfringens illness at a state psychiatric hospital: Louisiana, 2010. MMWR Morb Mortal Wkly Rep 61:605–608.
37. Caserta JA, Robertson SL, Saputo J, Shrestha A, McClane BA, Uzal FA. 2011. Development and application of a mouse intestinal loop model to study the in vivo action of Clostridium perfringens enterotoxin. Infect Immun 79:3020–3027 http://dx.doi.org/10.1128/IAI.01342-10. [PubMed]
38. Czeczulin JR, Hanna PC, McClane BA. 1993. Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect Immun 61:3429–3439. [PubMed]
39. Melville SB, Collie RE, McClane BA. 1997. Regulation of enterotoxin production in Clostridium perfringens, p 471–487. In Rood JI, McClane BA, Songer JG, Titball R (ed), The Clostridia: Molecular Genetics and Pathogenesis. Academic Press, San Diego, CA. http://dx.doi.org/10.1016/B978-012595020-6/50029-2
40. Van Itallie CM, Betts L, Smedley JG III, McClane BA, Anderson JM. 2008. Structure of the claudin-binding domain of Clostridium perfringens enterotoxin. J Biol Chem 283:268–274 http://dx.doi.org/10.1074/jbc.M708066200. [PubMed]
41. Takahashi A, Komiya E, Kakutani H, Yoshida T, Fujii M, Horiguchi Y, Mizuguchi H, Tsutsumi Y, Tsunoda S, Koizumi N, Isoda K, Yagi K, Watanabe Y, Kondoh M. 2008. Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochem Pharmacol 75:1639–1648 http://dx.doi.org/10.1016/j.bcp.2007.12.016. [PubMed]
42. Briggs DC, Naylor CE, Smedley JG III, Lukoyanova N, Robertson S, Moss DS, McClane BA, Basak AK. 2011. Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol 413:138–149 http://dx.doi.org/10.1016/j.jmb.2011.07.066. [PubMed]
43. Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, Horiguchi Y. 2011. Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 286:19549–19555 http://dx.doi.org/10.1074/jbc.M111.228478. [PubMed]
44. Hanna PC, Wnek AP, McClane BA. 1989. Molecular cloning of the 3′ half of the Clostridium perfringens enterotoxin gene and demonstration that this region encodes receptor-binding activity. J Bacteriol 171:6815–6820 http://dx.doi.org/10.1128/jb.171.12.6815-6820.1989. [PubMed]
45. Horiguchi Y, Akai T, Sakaguchi G. 1987. Isolation and function of a Clostridium perfringens enterotoxin fragment. Infect Immun 55:2912–2915. [PubMed]
46. Hanna PC, Mietzner TA, Schoolnik GK, McClane BA. 1991. Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. J Biol Chem 266:11037–11043. [PubMed]
47. Kokai-Kun JF, McClane BA. 1997. Deletion analysis of the Clostridium perfringens enterotoxin. Infect Immun 65:1014–1022. [PubMed]
48. Hanna PC, Wieckowski EU, Mietzner TA, McClane BA. 1992. Mapping of functional regions of Clostridium perfringens type A enterotoxin. Infect Immun 60:2110–2114. [PubMed]
49. Granum PE, Whitaker JR, Skjelkvåle R. 1981. Trypsin activation of enterotoxin from Clostridium perfringens type A: fragmentation and some physicochemical properties. Biochim Biophys Acta 668:325–332 http://dx.doi.org/10.1016/0005-2795(81)90165-3.
50. Kokai-Kun JF, Benton K, Wieckowski EU, McClane BA. 1999. Identification of a Clostridium perfringens enterotoxin region required for large complex formation and cytotoxicity by random mutagenesis. Infect Immun 67:5634–5641. [PubMed]
51. Smedley JG III, McClane BA. 2004. Fine mapping of the N-terminal cytotoxicity region of Clostridium perfringens enterotoxin by site-directed mutagenesis. Infect Immun 72:6914–6923 http://dx.doi.org/10.1128/IAI.72.12.6914-6923.2004. [PubMed]
52. Chen J, Theoret JR, Shrestha A, Smedley JG III, McClane BA. 2012. Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 80:4078–4088 http://dx.doi.org/10.1128/IAI.00069-12. [PubMed]
53. Smedley JG III, Uzal FA, McClane BA. 2007. Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect Immun 75:2381–2390 http://dx.doi.org/10.1128/IAI.01737-06. [PubMed]
54. Shrestha A, Uzal FA, McClane BA. 2016. The interaction of Clostridium perfringens enterotoxin with receptor claudins. Anaerobe 41:18–26 http://dx.doi.org/10.1016/j.anaerobe.2016.04.011. [PubMed]
55. Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. 1997. Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272:26652–26658 http://dx.doi.org/10.1074/jbc.272.42.26652. [PubMed]
56. Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N. 1997. Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136:1239–1247 http://dx.doi.org/10.1083/jcb.136.6.1239. [PubMed]
57. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y. 2015. Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347:775–778 http://dx.doi.org/10.1126/science.1261833. [PubMed]
58. Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S. 2000. Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476:258–261 http://dx.doi.org/10.1016/S0014-5793(00)01744-0.
59. Winkler L, Gehring C, Wenzel A, Müller SL, Piehl C, Krause G, Blasig IE, Piontek J. 2009. Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3. J Biol Chem 284:18863–18872 http://dx.doi.org/10.1074/jbc.M109.008623. [PubMed]
60. Shrestha A, McClane BA. 2013. Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. MBio 4:e00594-12 http://dx.doi.org/10.1128/mBio.00594-12. [PubMed]
61. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. 1999. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204 http://dx.doi.org/10.1083/jcb.147.1.195. [PubMed]
62. Robertson SL, Smedley JG III, McClane BA. 2010. Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Infect Immun 78:505–517 http://dx.doi.org/10.1128/IAI.00778-09. [PubMed]
63. Piontek J, Winkler L, Wolburg H, Müller SL, Zuleger N, Piehl C, Wiesner B, Krause G, Blasig IE. 2008. Formation of tight junction: determinants of homophilic interaction between classic claudins. FASEB J 22:146–158 http://dx.doi.org/10.1096/fj.07-8319com. [PubMed]
64. Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J. 2010. On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2:1336–1356 http://dx.doi.org/10.3390/toxins2061336. [PubMed]
65. Yelland TS, Naylor CE, Bagoban T, Savva CG, Moss DS, McClane BA, Blasig IE, Popoff M, Basak AK. 2014. Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2. J Mol Biol 426:3134–3147 http://dx.doi.org/10.1016/j.jmb.2014.07.001. [PubMed]
66. Shinoda T, Shinya N, Ito K, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Yokoyama S, Shirouzu M. 2016. Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep 6:33632 http://dx.doi.org/10.1038/srep33632. [PubMed]
67. Wieckowski EU, Wnek AP, McClane BA. 1994. Evidence that an approximately 50-kDa mammalian plasma membrane protein with receptor-like properties mediates the amphiphilicity of specifically bound Clostridium perfringens enterotoxin. J Biol Chem 269:10838–10848. [PubMed]
68. Robertson SL, Smedley JG III, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA. 2007. Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 9:2734–2755 http://dx.doi.org/10.1111/j.1462-5822.2007.00994.x. [PubMed]
69. McClane BA. 1984. Osmotic stabilizers differentially inhibit permeability alterations induced in Vero cells by Clostridium perfringens enterotoxin. Biochim Biophys Acta 777:99–106 http://dx.doi.org/10.1016/0005-2736(84)90501-7.
70. Chakrabarti G, McClane BA. 2005. The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 7:129–146 http://dx.doi.org/10.1111/j.1462-5822.2004.00442.x. [PubMed]
71. Matsuda M, Sugimoto N. 1979. Calcium-independent and calcium-dependent steps in action of Clostridium perfringens enterotoxin. Biochem Biophys Res Commun 91:629–636 http://dx.doi.org/10.1016/0006-291X(79)91568-7.
72. Sugimoto N, Ozutsumi K, Matsuda M. 1985. Morphological alterations and changes in cellular cations induced by Clostridium perfringens type A enterotoxin in tissue culture cells. Eur J Epidemiol 1:264–273 http://dx.doi.org/10.1007/BF00237101. [PubMed]
73. Chakrabarti G, Zhou X, McClane BA. 2003. Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun 71:4260–4270 http://dx.doi.org/10.1128/IAI.71.8.4260-4270.2003. [PubMed]
74. McClane BA, McDonel JL. 1979. The effects of Clostridium perfringens enterotoxin on morphology, viability, and macromolecular synthesis in Vero cells. J Cell Physiol 99:191–200 http://dx.doi.org/10.1002/jcp.1040990205. [PubMed]
75. Singh U, Mitic LL, Wieckowski EU, Anderson JM, McClane BA. 2001. Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells. J Biol Chem 276:33402–33412 http://dx.doi.org/10.1074/jbc.M104200200. [PubMed]
76. Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA. 2000. CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 275:18407–18417 http://dx.doi.org/10.1074/jbc.M001530200. [PubMed]
77. Kokai-Kun JF, Songer JG, Czeczulin JR, Chen F, McClane BA. 1994. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J Clin Microbiol 32:2533–2539. [PubMed]
78. Sayeed S, Li J, McClane BA. 2007. Virulence plasmid diversity in Clostridium perfringens type D isolates. Infect Immun 75:2391–2398 http://dx.doi.org/10.1128/IAI.02014-06. [PubMed]
79. Gurjar A, Li J, McClane BA. 2010. Characterization of toxin plasmids in Clostridium perfringens type C isolates. Infect Immun 78:4860–4869 http://dx.doi.org/10.1128/IAI.00715-10. [PubMed]
80. Ma M, Li J, McClane BA. 2012. Genotypic and phenotypic characterization of Clostridium perfringens isolates from Darmbrand cases in post-World War II Germany. Infect Immun 80:4354–4363 http://dx.doi.org/10.1128/IAI.00818-12. [PubMed]
81. Sayeed S, Li J, McClane BA. 2010. Characterization of virulence plasmid diversity among Clostridium perfringens type B isolates. Infect Immun 78:495–504 http://dx.doi.org/10.1128/IAI.00838-09. [PubMed]
82. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. 2013. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 77:208–233 http://dx.doi.org/10.1128/MMBR.00062-12. [PubMed]
83. Cornillot E, Saint-Joanis B, Daube G, Katayama S, Granum PE, Canard B, Cole ST. 1995. The enterotoxin gene (cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol Microbiol 15:639–647 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02373.x. [PubMed]
84. Collie RE, Kokai-Kun JF, McClane BA. 1998. Phenotypic characterization of enterotoxigenic Clostridium perfringens isolates from non-foodborne human gastrointestinal diseases. Anaerobe 4:69–79 http://dx.doi.org/10.1006/anae.1998.0152. [PubMed]
85. Miyamoto K, Yumine N, Mimura K, Nagahama M, Li J, McClane BA, Akimoto S. 2011. Identification of novel Clostridium perfringens type E strains that carry an iota toxin plasmid with a functional enterotoxin gene. PLoS One 6:e20376 http://dx.doi.org/10.1371/journal.pone.0020376. [PubMed]
86. Li J, Miyamoto K, Sayeed S, McClane BA. 2010. Organization of the cpe locus in CPE-positive Clostridium perfringens type C and D isolates. PLoS One 5:e10932 http://dx.doi.org/10.1371/journal.pone.0010932. [PubMed]
87. Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA. 1998. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 66:4531–4536. [PubMed]
88. Miyamoto K, Wen Q, McClane BA. 2004. Multiplex PCR genotyping assay that distinguishes between isolates of Clostridium perfringens type A carrying a chromosomal enterotoxin gene (cpe) locus, a plasmid cpe locus with an IS1470-like sequence, or a plasmid cpe locus with an IS1151 sequence. J Clin Microbiol 42:1552–1558 http://dx.doi.org/10.1128/JCM.42.4.1552-1558.2004. [PubMed]
89. Collie RE, McClane BA. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 36:30–36. [PubMed]
90. Lindstorm M, Heikinheimo A, Lahti P, Korkeala H. 2011. Novel insight into the epidemiology of Clostridium perfringens type A food poisoning. Food Microbiol 12:192–198 http://dx.doi.org/10.1016/j.fm.2010.03.020. [PubMed]
91. Grant KA, Kenyon S, Nwafor I, Plowman J, Ohai C, Halford-Maw R, Peck MW, McLauchlin J. 2008. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance. Foodborne Pathog Dis 5:629–639 http://dx.doi.org/10.1089/fpd.2007.0066. [PubMed]
92. Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM, Brinkac LM, Daugherty SC, Haft DH, Dodson RJ, Madupu R, Nelson WC, Rosovitz MJ, Sullivan SA, Khouri H, Dimitrov GI, Watkins KL, Mulligan S, Benton J, Radune D, Fisher DJ, Atkins HS, Hiscox T, Jost BH, Billington SJ, Songer JG, McClane BA, Titball RW, Rood JI, Melville SB, Paulsen IT. 2006. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16:1031–1040 http://dx.doi.org/10.1101/gr.5238106. [PubMed]
93. Wen Q, Miyamoto K, McClane BA. 2003. Development of a duplex PCR genotyping assay for distinguishing Clostridium perfringens type A isolates carrying chromosomal enterotoxin (cpe) genes from those carrying plasmid-borne enterotoxin (cpe) genes. J Clin Microbiol 41:1494–1498 http://dx.doi.org/10.1128/JCM.41.4.1494-1498.2003. [PubMed]
94. Miyamoto K, Wen Q, McClane BA. 2004. Multiplex PCR genotyping assay that distinguishes between isolates of Clostridium perfringens type A carrying a chromosomal enterotoxin gene (cpe) locus, a plasmid cpe locus with an IS1470-like sequence, or a plasmid cpe locus with an IS1151 sequence. J Clin Microbiol 42:1552–1558 http://dx.doi.org/10.1128/JCM.42.4.1552-1558.2004. [PubMed]
95. Brynestad S, Granum PE. 1999. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol Lett 170:281–286 http://dx.doi.org/10.1111/j.1574-6968.1999.tb13385.x. [PubMed]
96. Brynestad S, Synstad B, Granum PE. 1997. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology 143:2109–2115 http://dx.doi.org/10.1099/00221287-143-7-2109. [PubMed]
97. Deguchi A, Miyamoto K, Kuwahara T, Miki Y, Kaneko I, Li J, McClane BA, Akimoto S. 2009. Genetic characterization of type A enterotoxigenic Clostridium perfringens strains. PLoS One 4:e5598 http://dx.doi.org/10.1371/journal.pone.0005598. [PubMed]
98. Miyamoto K, Fisher DJ, Li J, Sayeed S, Akimoto S, McClane BA. 2006. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J Bacteriol 188:1585–1598 http://dx.doi.org/10.1128/JB.188.4.1585-1598.2006. [PubMed]
99. Li J, Miyamoto K, McClane BA. 2007. Comparison of virulence plasmids among Clostridium perfringens type E isolates. Infect Immun 75:1811–1819 http://dx.doi.org/10.1128/IAI.01981-06. [PubMed]
100. Bannam TL, Teng WL, Bulach D, Lyras D, Rood JI. 2006. Functional identification of conjugation and replication regions of the tetracycline resistance plasmid pCW3 from Clostridium perfringens. J Bacteriol 188:4942–4951 http://dx.doi.org/10.1128/JB.00298-06. [PubMed]
101. Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI. 2001. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun 69:3483–3487 http://dx.doi.org/10.1128/IAI.69.5.3483-3487.2001. [PubMed]
102. Melville SB, Labbe R, Sonenshein AL. 1994. Expression from the Clostridium perfringenscpe promoter in C. perfringens and Bacillus subtilis. Infect Immun 62:5550–5558. [PubMed]
103. Zhao Y, Melville SB. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene (cpe) of Clostridium perfringens. J Bacteriol 180:136–142. [PubMed]
104. Czeczulin JR, Collie RE, McClane BA. 1996. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens. Infect Immun 64:3301–3309. [PubMed]
105. Fimlaid KA, Shen A. 2015. Diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. Curr Opin Microbiol 24:88–95 http://dx.doi.org/10.1016/j.mib.2015.01.006. [PubMed]
106. Harry KH, Zhou R, Kroos L, Melville SB. 2009. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens. J Bacteriol 191:2728–2742 http://dx.doi.org/10.1128/JB.01839-08. [PubMed]
107. Li J, McClane BA. 2010. Evaluating the involvement of alternative sigma factors SigF and SigG in Clostridium perfringens sporulation and enterotoxin synthesis. Infect Immun 78:4286–4293 http://dx.doi.org/10.1128/IAI.00528-10. [PubMed]
108. Huang IH, Waters M, Grau RR, Sarker MR. 2004. Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233:233–240 http://dx.doi.org/10.1111/j.1574-6968.2004.tb09487.x. [PubMed]
109. Li J, Freedman JC, Evans DR, McClane BA. 2017. CodY promotes sporulation and enterotoxin production by Clostridium perfringens type A strain SM101. Infect Immun 85:e00241–e17 http://dx.doi.org/10.1128/IAI.00855-16.
110. Li J, Chen J, Vidal JE, McClane BA. 2011. The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infect Immun 79:2451–2459 http://dx.doi.org/10.1128/IAI.00169-11. [PubMed]
111. Varga J, Stirewalt VL, Melville SB. 2004. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens. J Bacteriol 186:5221–5229 http://dx.doi.org/10.1128/JB.186.16.5221-5229.2004. [PubMed]
112. Li J, McClane BA. 2006. Comparative effects of osmotic, sodium nitrite-induced, and pH-induced stress on growth and survival of Clostridium perfringens type A isolates carrying chromosomal or plasmid-borne enterotoxin genes. Appl Environ Microbiol 72:7620–7625 http://dx.doi.org/10.1128/AEM.01911-06. [PubMed]
113. Li J, McClane BA. 2006. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene. Appl Environ Microbiol 72:4561–4568 http://dx.doi.org/10.1128/AEM.00177-06. [PubMed]
114. Raju D, Sarker MR. 2007. Production of small, acid-soluble spore proteins in Clostridium perfringens nonfoodborne gastrointestinal disease isolates. Can J Microbiol 53:514–518 http://dx.doi.org/10.1139/W07-016. [PubMed]
115. Li J, McClane BA. 2008. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog 4:e1000056 http://dx.doi.org/10.1371/journal.ppat.1000056. [PubMed]
116. Li J, Paredes-Sabja D, Sarker MR, McClane BA. 2009. Further characterization of Clostridium perfringens small acid soluble protein-4 (Ssp4) properties and expression. PLoS One 4:e6249 http://dx.doi.org/10.1371/journal.pone.0006249. [PubMed]
117. Novak JS, Juneja VK, McClane BA. 2003. An ultrastructural comparison of spores from various strains of Clostridium perfringens and correlations with heat resistance parameters. Int J Food Microbiol 86:239–247 http://dx.doi.org/10.1016/S0168-1605(02)00550-0.
118. Orsburn B, Melville SB, Popham DL. 2008. Factors contributing to heat resistance of Clostridium perfringens endospores. Appl Environ Microbiol 74:3328–3335 http://dx.doi.org/10.1128/AEM.02629-07. [PubMed]
119. Kim Y, Lee K, Ryu S. 1998. A survey of human serum samples for antibody against Clostridium perfringens type A enterotoxin in humans in Korea. Int J Food Microbiol 41:239–241 http://dx.doi.org/10.1016/S0168-1605(98)00053-1.
120. Hobbs BC. 1979. Clostridium perfringens gastroenteritis, p 131–167. In Riemann H, Bryan FL (ed), Food-Borne Infections and Intoxications, 2nd ed. Academic Press, New York, NY.
121. Freedman JC, Hendricks MR, McClane BA. 2017. The potential therapeutic agent mepacrine protects Caco-2 cells against Clostridium perfringens enterotoxin action. MSphere 2:e00352-17 http://dx.doi.org/10.1128/mSphere.00352-17. [PubMed]
122. Mietzner TA, Kokai-Kun JF, Hanna PC, McClane BA. 1992. A conjugated synthetic peptide corresponding to the C-terminal region of Clostridium perfringens type A enterotoxin elicits an enterotoxin-neutralizing antibody response in mice. Infect Immun 60:3947–3951. [PubMed]
123. Larcombe S, Hutton ML, Lyras D. 2016. Involvement of bacteria other than Clostridium difficile in antibiotic-associated diarrhoea. Trends Microbiol 24:463–476 http://dx.doi.org/10.1016/j.tim.2016.02.001. [PubMed]
124. Carman RJ. 1997. Clostridium perfringens in spontaneous and antibiotic-associated diarrhoea of man and other animals. Rev Med Microbiol 8(Suppl 1):S43–S45 http://dx.doi.org/10.1097/00013542-199712001-00024.
125. Borriello SP. 1985. Newly described clostridial diseases of the gastrointestinal tract: Clostridium perfringens enterotoxin-associated diarrhea and neutropenic enterocolitis due to Clostridium septicum, p 223–228. In Borriello SP (ed), Clostridia in Gastrointestinal Disease. CRC Press, Boca Raton, FL.
126. Borriello SP. 1995. Clostridial disease of the gut. Clin Infect Dis 20(Suppl 2):S242–S250 http://dx.doi.org/10.1093/clinids/20.Supplement_2.S242. [PubMed]
127. Li J, McClane BA. 2014. Contributions of NanI sialidase to Caco-2 cell adherence by Clostridium perfringens type A and C strains causing human intestinal disease. Infect Immun 82:4620–4630 http://dx.doi.org/10.1128/IAI.02322-14. [PubMed]
128. Li J, McClane BA. 2018. NanI sialidase can support the growth and survival of Clostridium perfringens strain F4969 in the presence of sialyated host macromolecules (Mucin) or Caco-2 cells. Infect Immun 86:e00547-17. [PubMed]
129. Theoret JR, Li J, Navarro MA, Garcia JP, Uzal FA, McClane BA. 2017. Native or proteolytically activated NanI sialidase enhance the binding and cytotoxic activity of Clostridium perfringens enterotoxin and Beta toxin. Infect Immun 86:e00730–e17 http://dx.doi.org/10.1128/IAI.00730-17. [PubMed]
130. Li J, Sayeed S, Robertson S, Chen J, McClane BA. 2011. Sialidases affect the host cell adherence and epsilon toxin-induced cytotoxicity of Clostridium perfringens type D strain CN3718. PLoS Pathog 7:e1002429 http://dx.doi.org/10.1371/journal.ppat.1002429. [PubMed]
131. Johnson S, Gerding DN. 1997. Enterotoxemic infections, p 117–140. In Rood JI, McClane BA, Songer JG, Titball RW (ed), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, San Diego, CA. http://dx.doi.org/10.1016/B978-012595020-6/50010-3
132. Lawrence GW, Lehmann D, Anian G, Coakley CA, Saleu G, Barker MJ, Davis MW. 1990. Impact of active immunisation against enteritis necroticans in Papua New Guinea. Lancet 336:1165–1167 http://dx.doi.org/10.1016/0140-6736(90)92776-E.
133. Petrillo TM, Beck-Sagué CM, Songer JG, Abramowsky C, Fortenberry JD, Meacham L, Dean AG, Lee H, Bueschel DM, Nesheim SR. 2000. Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med 342:1250–1253 http://dx.doi.org/10.1056/NEJM200004273421704. [PubMed]
134. Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA. 2008. Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67:15–30 http://dx.doi.org/10.1111/j.1365-2958.2007.06007.x. [PubMed]
135. Ma M, Gurjar A, Theoret JR, Garcia JP, Beingesser J, Freedman JC, Fisher DJ, McClane BA, Uzal FA. 2014. Synergistic effects of Clostridium perfringens enterotoxin and beta toxin in rabbit small intestinal loops. Infect Immun 82:2958–2970 http://dx.doi.org/10.1128/IAI.01848-14. [PubMed]
136. Toniti W, Yoshida T, Tsurumura T, Irikura D, Monma C, Kamata Y, Tsuge H. 2017. Crystal structure and structure-based mutagenesis of actin-specific ADP-ribosylating toxin CPILE-a as novel enterotoxin. PLoS One 12:e0171278 http://dx.doi.org/10.1371/journal.pone.0171278. [PubMed]
137. Kawahara K, Yonogi S, Munetomo R, Oki H, Yoshida T, Kumeda Y, Matsuda S, Kodama T, Ohkubo T, Iida T, Nakamura S. 2016. Crystal structure of the ADP-ribosylating component of BEC, the binary enterotoxin of Clostridium perfringens. Biochem Biophys Res Commun 480:261–267 http://dx.doi.org/10.1016/j.bbrc.2016.10.042. [PubMed]
138. Garcia JP, Adams V, Beingesser J, Hughes ML, Poon R, Lyras D, Hill A, McClane BA, Rood JI, Uzal FA. 2013. Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep, goats, and mice. Infect Immun 81:2405–2414 http://dx.doi.org/10.1128/IAI.00238-13. [PubMed]
139. Cooper KK, Songer JG, Uzal FA. 2013. Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 25:314–327 http://dx.doi.org/10.1177/1040638713483468. [PubMed]
140. Uzal FA, Songer JG. 2008. Diagnosis of Clostridium perfringens intestinal infections in sheep and goats. J Vet Diagn Invest 20:253–265 http://dx.doi.org/10.1177/104063870802000301. [PubMed]
141. Songer JG, Uzal FA. 2005. Clostridial enteric infections in pigs. J Vet Diagn Invest 17:528–536 http://dx.doi.org/10.1177/104063870501700602. [PubMed]
142. Li J, Paredes-Sabja D, Sarker MR, McClane BA. 2016. Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4:TBS-0022–TBS-2015 10.1128/microbiolspec.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0003-2017
2018-09-20
2018-12-17

Abstract:

In humans and livestock, is an important cause of intestinal infections that manifest as enteritis, enterocolitis, or enterotoxemia. This virulence is largely related to the toxin-producing ability of . This article primarily focuses on the type F strains that cause a very common type of human food poisoning and many cases of nonfoodborne human gastrointestinal diseases. The enteric virulence of type F strains is dependent on their ability to produce enterotoxin (CPE). CPE has a unique amino acid sequence but belongs structurally to the aerolysin pore-forming toxin family. The action of CPE begins with binding of the toxin to claudin receptors, followed by oligomerization of the bound toxin into a prepore on the host membrane surface. Each CPE molecule in the prepore then extends a beta-hairpin to form, collectively, a beta-barrel membrane pore that kills cells by increasing calcium influx. The gene is typically encoded on the chromosome of type F food poisoning strains but is encoded by conjugative plasmids in nonfoodborne human gastrointestinal disease type F strains. During disease, CPE is produced when sporulates in the intestines. Beyond type F strains, type C strains producing beta-toxin and type A strains producing a toxin named CPILE or BEC have been associated with human intestinal infections. is also an important cause of enteritis, enterocolitis, and enterotoxemia in livestock and poultry due to intestinal growth and toxin production.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structure of CPE and the C-terminal CPE structure bound to a claudin-4 receptor. Structure of the CPE monomer, colored from blue at the N-terminus to red at the C-terminus. Note the presence of two distinct domains, including the C-terminal domain (red/yellow) mediating receptor binding and the blue-green N-terminal domain mediating oligomerization, membrane insertion, and pore formation. The alpha helix labeled αA is located at the TM1 region that becomes a beta-hairpin when CPE is assembled in the prepore. Beta-hairpins from the seven CPE molecules in the prepore are thought to then form a beta-barrel that inserts into membranes to form the active pore. Structure of the C-terminal CPE region (C-CPE) bound to the human claudin-4 receptor. The claudin receptor is rainbow-colored and the C-CPE is purple. The membrane orientation of the claudin receptor, including the transmembrane helices, is also shown. Panels A and B are reproduced with permission from references 42 and 66 , respectively.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of the CPE mechanism of action. At the top left, CPE binds to receptors forming a small complex that contains both receptor claudins and nonreceptor claudins, as well as CPE. At 37°C, several small complexes interact to form a prepore on the membrane surface. Portions of CPE in the prepore insert into the membrane to form a pore that allows Ca entry into the cytoplasm. With high CPE doses, there is a massive Ca entry that causes strong calpain activation to trigger oncosis (a form of necrotic cell death). At low CPE doses, there is a more limited Ca entry that causes a mild calpain activation; this results in mitochondrial membrane depolarization, cytochrome C release, and caspase-3 activation to cause death by apoptosis. Dying CPE-treated cells undergo morphologic damage that exposes their basolateral surface to CPE, resulting in formation of a second large complex containing occludin (as well as CPE and claudins), which induces internalization of these molecules. This effect may contribute to paracellular permeability changes, at least in cultured cells. Reproduced with permission from reference 54 .

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Organization of loci in type C, D, E, and F strains of . Organization of plasmid-borne loci in type F, E, C, and D strains. Organization of the type F chromosome locus. Asterisks indicate a region with similarity to sequences present downstream of the gene in F4969, except for the absence of an IS-like gene. Modified with permission from reference 82 .

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Model of sporulation and enterotoxin production. Via the Agr-like quorum sensing system, CcpA and CodY, and unidentified intermediates, a histidine kinase(s) affects spooA expression and/or possibly Spo0A phosphorylation to initiate sporulation. This triggers a sigma factor cascade, where SigF controls production of three other sporulation-associated sigma factors (SigE, SigG, and SigK). SigE and SigK then regulate CPE production during sporulation by enhancing expression. All four sigma factors are needed for sporulation. Reproduced with permission from reference 142 .

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Revised toxin-based typing scheme

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017
Generic image for table
TABLE 2

enteric diseases of livestock and poultry

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.GPP3-0003-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error