1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

: cell biology of invasion and intracellular growth

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Javier Pizarro-Cerdá1, Pascale Cossart4
  • Editors: Vincent A. Fischetti7, Richard P. Novick8, Joseph J. Ferretti9, Daniel A. Portnoy10, Miriam Braunstein11, Julian I. Rood12
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Unité Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, FRANCE; 2: INSERM U604, Paris F-75015, FRANCE; 3: INRA USC2020, Paris F-75015, FRANCE; 4: Unité Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, FRANCE; 5: INSERM U604, Paris F-75015, FRANCE; 6: INRA USC2020, Paris F-75015, FRANCE; 7: The Rockefeller University, New York, NY; 8: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 9: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 10: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 11: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 12: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0013-2018
  • Received 19 January 2018 Accepted 19 September 2018 Published 07 December 2018
  • Javier Pizarro-Cerdá, [email protected]
image of <span class="jp-italic">Listeria monocytogenes</span>: cell biology of invasion and intracellular growth
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    : cell biology of invasion and intracellular growth, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0013-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/6/GPP3-0013-2018-2.gif
  • Abstract:

    The Gram-positive pathogen is able to promote its entry into a diverse range of mammalian host cells by triggering plasma membrane remodeling, leading to bacterial engulfment. Upon cell invasion, disrupts its internalization vacuole and translocates to the cytoplasm, where bacterial replication takes place. Subsequently, uses an actin-based motility system that allows bacterial cytoplasmic movement and cell-to-cell spread. therefore subverts host cell receptors, organelles and the cytoskeleton at different infection steps, manipulating diverse cellular functions that include ion transport, membrane trafficking, post-translational modifications, phosphoinositide production, innate immune responses as well as gene expression and DNA stability.

  • Citation: Pizarro-Cerdá J, Cossart P. 2018. : cell biology of invasion and intracellular growth. Microbiol Spectrum 6(6):GPP3-0013-2018. doi:10.1128/microbiolspec.GPP3-0013-2018.

References

1. Murray E, Webb RA, Swan M. 1926. A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n.sp.). J Pathological Biol 29:407–439 http://dx.doi.org/10.1002/path.1700290409. [PubMed]
2. Mackaness GB. 1962. Cellular resistance to infection. J Exp Med 116:381–406 http://dx.doi.org/10.1084/jem.116.3.381. [PubMed]
3. Mengaud J, Chenevert J, Geoffroy C, Gaillard JL, Cossart P. 1987. Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun 55:3225–3227.
4. Sun AN, Camilli A, Portnoy DA. 1990. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58:3770–3778. [PubMed]
5. Domann E, Leimeister-Wächter M, Goebel W, Chakraborty T. 1991. Molecular cloning, sequencing, and identification of a metalloprotease gene from Listeria monocytogenes that is species specific and physically linked to the listeriolysin gene. Infect Immun 59:65–72. [PubMed]
6. Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci. Cell 65:1127–1141 http://dx.doi.org/10.1016/0092-8674(91)90009-N.
7. Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531 http://dx.doi.org/10.1016/0092-8674(92)90188-I.
8. Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ. 1990. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 58:1048–1058. [PubMed]
9. Tilney LG, Portnoy DA. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608 http://dx.doi.org/10.1083/jcb.109.4.1597.
10. Cossart P. 2011. Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci U S A 108:19484–19491 http://dx.doi.org/10.1073/pnas.1112371108.
11. Rolhion N, Cossart P. 2017. How the study of Listeria monocytogenes has led to new concepts in biology. Future Microbiol 12:621–638 http://dx.doi.org/10.2217/fmb-2016-0221. [PubMed]
12. Radoshevich L, Cossart P. 2017. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Micro 16:32–46. [PubMed]
13. Bierne H, Sabet C, Personnic N, Cossart P. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect 9:1156–1166 http://dx.doi.org/10.1016/j.micinf.2007.05.003. [PubMed]
14. Rajabian T, Gavicherla B, Heisig M, Müller-Altrock S, Goebel W, Gray-Owen SD, Ireton K. 2009. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 11:1212–1218 http://dx.doi.org/10.1038/ncb1964. [PubMed]
15. Gouin E, Adib-Conquy M, Balestrino D, Nahori M-A, Villiers V, Colland F, Dramsi S, Dussurget O, Cossart P. 2010. The Listeria monocytogenes InlC protein interferes with innate immune responses by targeting the IkappaB kinase subunit IKKalpha. Proc Natl Acad Sci U S A 107:17333–17338 http://dx.doi.org/10.1073/pnas.1007765107. [PubMed]
16. Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori M-A, Wiemer EAC, Dussurget O, Cossart P. 2011. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 7:e1002168 http://dx.doi.org/10.1371/journal.ppat.1002168. [PubMed]
17. Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932 http://dx.doi.org/10.1016/S0092-8674(00)81070-3.
18. Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319. [PubMed]
19. Lecuit M, Vandormael-Pournin S, Lefort J, Huerre M, Gounon P, Dupuy C, Babinet C, Cossart P. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725 http://dx.doi.org/10.1126/science.1059852. [PubMed]
20. Lecuit M, Nelson DM, Smith SD, Khun H, Huerre M, Vacher-Lavenu M-C, Gordon JI, Cossart P. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci U S A 101:6152–6157 http://dx.doi.org/10.1073/pnas.0401434101. [PubMed]
21. Nikitas G, Deschamps C, Disson O, Niault T, Cossart P, Lecuit M. 2011. Transcytosis of Listeria monocytogenes across the intestinal barrier upon specific targeting of goblet cell accessible E-cadherin. J Exp Med 208:2263–2277 http://dx.doi.org/10.1084/jem.20110560. [PubMed]
22. Pentecost M, Otto G, Theriot JA, Amieva MR. 2006. Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion. PLoS Pathog 2:e3 http://dx.doi.org/10.1371/journal.ppat.0020003. [PubMed]
23. Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18:3956–3963 http://dx.doi.org/10.1093/emboj/18.14.3956. [PubMed]
24. Seveau S, Bierne H, Giroux S, Prévost MC, Cossart P. 2004. Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753 http://dx.doi.org/10.1083/jcb.200406078. [PubMed]
25. Bonazzi M, Veiga E, Pizarro-Cerdá J, Cossart P. 2008. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell Microbiol 10:2208–2222 http://dx.doi.org/10.1111/j.1462-5822.2008.01200.x. [PubMed]
26. Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A, Prevost MC, Roberts A, Taner SB, Wilbur JD, Brodsky FM, Cossart P. 2011. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J Cell Biol 195:525–536 http://dx.doi.org/10.1083/jcb.201105152. [PubMed]
27. Sousa S, Cabanes D, El-Amraoui A, Petit C, Lecuit M, Cossart P. 2004. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J Cell Sci 117:2121–2130 http://dx.doi.org/10.1242/jcs.01066. [PubMed]
28. Almeida MT, Mesquita FS, Cruz R, Osório H, Custódio R, Brito C, Vingadassalom D, Martins M, Leong JM, Holden DW, Cabanes D, Sousa S. 2015. Src-dependent tyrosine phosphorylation of non-muscle myosin heavy chain-IIA restricts Listeria monocytogenes cellular infection. J Biol Chem 290:8383–8395 http://dx.doi.org/10.1074/jbc.M114.591313. [PubMed]
29. Lecuit M, Hurme R, Pizarro-Cerdá J, Ohayon H, Geiger B, Cossart P. 2000. A role for alpha-and beta-catenins in bacterial uptake. Proc Natl Acad Sci U S A 97:10008–10013 http://dx.doi.org/10.1073/pnas.97.18.10008. [PubMed]
30. Sousa S, Cabanes D, Archambaud C, Colland F, Lemichez E, Popoff M, Boisson-Dupuis S, Gouin E, Lecuit M, Legrain P, Cossart P. 2005. ARHGAP10 is necessary for alpha-catenin recruitment at adherens junctions and for Listeria invasion. Nat Cell Biol 7:954–960 http://dx.doi.org/10.1038/ncb1308. [PubMed]
31. Sousa S, Cabanes D, Bougnères L, Lecuit M, Sansonetti P, Tran-Van-Nhieu G, Cossart P. 2007. Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cell Microbiol 9:2629–2643 http://dx.doi.org/10.1111/j.1462-5822.2007.00984.x. [PubMed]
32. Bonazzi M, Kühbacher A, Toledo-Arana A, Mallet A, Vasudevan L, Pizarro-Cerdá J, Brodsky FM, Cossart P. 2012. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 13:1653–1666 http://dx.doi.org/10.1111/tra.12009. [PubMed]
33. Pizarro-Cerdá J, Bonazzi M, Cossart P. 2010. Clathrin-mediated endocytosis: what works for small, also works for big. BioEssays 32:496–504 http://dx.doi.org/10.1002/bies.200900172. [PubMed]
34. Gessain G, Tsai YH, Travier L, Bonazzi M, Grayo S, Cossart P, Charlier C, Disson O, Lecuit M. 2015. PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. J Exp Med 212:165–183 http://dx.doi.org/10.1084/jem.20141406. [PubMed]
35. Disson O, Grayo S, Huillet E, Nikitas G, Langa-Vives F, Dussurget O, Ragon M, Le Monnier A, Babinet C, Cossart P, Lecuit M. 2008. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118 http://dx.doi.org/10.1038/nature07303. [PubMed]
36. Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P. 1995. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261 http://dx.doi.org/10.1111/j.1365-2958.1995.tb02297.x. [PubMed]
37. Lingnau A, Domann E, Hudel M, Bock M, Nichterlein T, Wehland J, Chakraborty T. 1995. Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. Infect Immun 63:3896–3903. [PubMed]
38. Quereda JJ, Rodríguez-Gómez IM, Meza-Torres J, Gomez-Laguna J, Nahori MA, Dussurget O, Carrasco L, Cossart P, Pizarro-Cerdá J. 2018. Reassessing the role of Internalin B in Listeria monocytogenes virulence using the epidemic strain F2365. Clin Microbiol Infect. Epub ahead of print. doi:10.1016/j.cmi.2018.08.022.
39. Braun L, Dramsi S, Dehoux P, Bierne H, Lindahl G, Cossart P. 1997. InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association. Mol Microbiol 25:285–294 http://dx.doi.org/10.1046/j.1365-2958.1997.4621825.x. [PubMed]
40. Jonquières R, Bierne H, Fiedler F, Gounon P, Cossart P. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34:902–914 http://dx.doi.org/10.1046/j.1365-2958.1999.01652.x. [PubMed]
41. Carvalho F, Sousa S, Cabanes D. 2018. l-Rhamnosylation of wall teichoic acids promotes efficient surface association of Listeria monocytogenes virulence factors InlB and Ami through interaction with GW domains. Environ Microbiol 43:1.
42. Braun L, Ghebrehiwet B, Cossart P. 2000. gC1q-R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J 19:1458–1466 http://dx.doi.org/10.1093/emboj/19.7.1458. [PubMed]
43. Jonquières R, Pizarro-Cerdá J, Cossart P. 2001. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol 42:955–965 http://dx.doi.org/10.1046/j.1365-2958.2001.02704.x. [PubMed]
44. Braun L, Ohayon H, Cossart P. 1998. The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol 27:1077–1087 http://dx.doi.org/10.1046/j.1365-2958.1998.00750.x. [PubMed]
45. Braun L, Nato F, Payrastre B, Mazié JC, Cossart P. 1999. The 213-amino-acid leucine-rich repeat region of the Listeria monocytogenes InlB protein is sufficient for entry into mammalian cells, stimulation of PI 3-kinase and membrane ruffling. Mol Microbiol 34:10–23 http://dx.doi.org/10.1046/j.1365-2958.1999.01560.x. [PubMed]
46. Shen Y, Naujokas M, Park M, Ireton K. 2000. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510 http://dx.doi.org/10.1016/S0092-8674(00)00141-0.
47. Khelef N, Lecuit M, Bierne H, Cossart P. 2006. Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470 http://dx.doi.org/10.1111/j.1462-5822.2005.00634.x. [PubMed]
48. Cruz R, Pereira-Castro I, Almeida MT, Moreira A, Cabanes D, Sousa S. 2018. Epithelial keratins modulate cMet expression and signaling and promote InlB-mediated Listeria monocytogenes infection of HeLa cells. Front Cell Infect Microbiol 8:146 http://dx.doi.org/10.3389/fcimb.2018.00146. [PubMed]
49. Ireton K, Payrastre B, Cossart P. 1999. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J Biol Chem 274:17025–17032 http://dx.doi.org/10.1074/jbc.274.24.17025. [PubMed]
50. Sun H, Shen Y, Dokainish H, Holgado-Madruga M, Wong A, Ireton K. 2005. Host adaptor proteins Gab1 and CrkII promote InlB-dependent entry of Listeria monocytogenes. Cell Microbiol 7:443–457 http://dx.doi.org/10.1111/j.1462-5822.2004.00475.x. [PubMed]
51. Basar T, Shen Y, Ireton K. 2005. Redundant roles for Met docking site tyrosines and the Gab1 pleckstrin homology domain in InlB-mediated entry of Listeria monocytogenes. Infect Immun 73:2061–2074 http://dx.doi.org/10.1128/IAI.73.4.2061-2074.2005. [PubMed]
52. Ireton K, Payrastre B, Chap H, Ogawa W, Sakaue H, Kasuga M, Cossart P. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780–782 http://dx.doi.org/10.1126/science.274.5288.780. [PubMed]
53. Dokainish H, Gavicherla B, Shen Y, Ireton K. 2007. The carboxyl-terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3-kinase. Cell Microbiol 9:2497–2516 http://dx.doi.org/10.1111/j.1462-5822.2007.00976.x. [PubMed]
54. Jiwani S, Wang Y, Dowd GC, Gianfelice A, Pichestapong P, Gavicherla B, Vanbennekom N, Ireton K. 2012. Identification of components of the host type IA phosphoinositide 3-kinase pathway that promote internalization of Listeria monocytogenes. Infect Immun 80:1252–1266 http://dx.doi.org/10.1128/IAI.06082-11. [PubMed]
55. Seveau S, Tham TN, Payrastre B, Hoppe AD, Swanson JA, Cossart P. 2007. A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol 9:790–803 http://dx.doi.org/10.1111/j.1462-5822.2006.00832.x. [PubMed]
56. Bierne H, Gouin E, Roux P, Caroni P, Yin HL, Cossart P. 2001. A role for cofilin and LIM kinase in Listeria-induced phagocytosis. J Cell Biol 155:101–112 http://dx.doi.org/10.1083/jcb.200104037. [PubMed]
57. Bierne H, Miki H, Innocenti M, Scita G, Gertler FB, Takenawa T, Cossart P. 2005. WASP-related proteins, Abi1 and Ena/VASP are required for Listeria invasion induced by the Met receptor. J Cell Sci 118:1537–1547 http://dx.doi.org/10.1242/jcs.02285. [PubMed]
58. Bhalla M, Law D, Dowd GC, Ireton K. 2017. Host serine/threonine kinases mTOR and protein kinase C-α promote InlB-mediated entry of Listeria monocytogenes. Infect Immun 85:85 http://dx.doi.org/10.1128/IAI.00087-17. [PubMed]
59. Kühbacher A, Dambournet D, Echard A, Cossart P, Pizarro-Cerdá J. 2012. Phosphatidylinositol 5-phosphatase oculocerebrorenal syndrome of Lowe protein (OCRL) controls actin dynamics during early steps of Listeria monocytogenes infection. J Biol Chem 287:13128–13136 http://dx.doi.org/10.1074/jbc.M111.315788. [PubMed]
60. Pizarro-Cerdá J, Payrastre B, Wang Y-J, Veiga E, Yin HL, Cossart P. 2007. Type II phosphatidylinositol 4-kinases promote Listeria monocytogenes entry into target cells. Cell Microbiol 9:2381–2390 http://dx.doi.org/10.1111/j.1462-5822.2007.00967.x. [PubMed]
61. Tham TN, Gouin E, Rubinstein E, Boucheix C, Cossart P, Pizarro-Cerdá J. 2010. Tetraspanin CD81 is required for Listeria monocytogenes invasion. Infect Immun 78:204–209 http://dx.doi.org/10.1128/IAI.00661-09. [PubMed]
62. Veiga E, Cossart P. 2005. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat Cell Biol 7:894–900 http://dx.doi.org/10.1038/ncb1292. [PubMed]
63. Veiga E, Guttman JA, Bonazzi M, Boucrot E, Toledo-Arana A, Lin AE, Enninga J, Pizarro-Cerdá J, Finlay BB, Kirchhausen T, Cossart P. 2007. Invasive and adherent bacterial pathogens co-Opt host clathrin for infection. Cell Host Microbe 2:340–351 http://dx.doi.org/10.1016/j.chom.2007.10.001. [PubMed]
64. Pizarro-Cerdá J, Cossart P. 2009. Listeria monocytogenes membrane trafficking and lifestyle: the exception or the rule? Annu Rev Cell Dev Biol 25:649–670 http://dx.doi.org/10.1146/annurev.cellbio.042308.113331. [PubMed]
65. Van Ngo H, Bhalla M, Chen D-Y, Ireton K. 2017. A role for host cell exocytosis in InlB-mediated internalisation of Listeria monocytogenes. Cell Microbiol 19:e12768 http://dx.doi.org/10.1111/cmi.12768. [PubMed]
66. Pizarro-Cerdá J, Jonquières R, Gouin E, Vandekerckhove J, Garin J, Cossart P. 2002. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cell Microbiol 4:101–115 http://dx.doi.org/10.1046/j.1462-5822.2002.00169.x. [PubMed]
67. Mostowy S, Nam Tham T, Danckaert A, Guadagnini S, Boisson-Dupuis S, Pizarro-Cerdá J, Cossart P. 2009. Septins regulate bacterial entry into host cells. PLoS One 4:e4196 http://dx.doi.org/10.1371/journal.pone.0004196. [PubMed]
68. Mostowy S, Danckaert A, Tham TN, Machu C, Guadagnini S, Pizarro-Cerdá J, Cossart P. 2009. Septin 11 restricts InlB-mediated invasion by Listeria. J Biol Chem 284:11613–11621 http://dx.doi.org/10.1074/jbc.M900231200. [PubMed]
69. Mostowy S, Janel S, Forestier C, Roduit C, Kasas S, Pizarro-Cerdá J, Cossart P, Lafont F. 2011. A role for septins in the interaction between the Listeria monocytogenes INVASION PROTEIN InlB and the Met receptor. Biophys J 100:1949–1959 http://dx.doi.org/10.1016/j.bpj.2011.02.040. [PubMed]
70. Bergmann B, Raffelsbauer D, Kuhn M, Goetz M, Hom S, Goebel W. 2002. InlA- but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalins. Mol Microbiol 43:557–570 http://dx.doi.org/10.1046/j.1365-2958.2002.02767.x. [PubMed]
71. Sabet C, Lecuit M, Cabanes D, Cossart P, Bierne H. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect Immun 73:6912–6922 http://dx.doi.org/10.1128/IAI.73.10.6912-6922.2005. [PubMed]
72. Sabet C, Toledo-Arana A, Personnic N, Lecuit M, Dubrac S, Poupel O, Gouin E, Nahori M-A, Cossart P, Bierne H. 2008. The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378 http://dx.doi.org/10.1128/IAI.01519-07. [PubMed]
73. Dramsi S, Dehoux P, Lebrun M, Goossens PL, Cossart P. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect Immun 65:1615–1625. [PubMed]
74. Kirchner M, Higgins DE. 2008. Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes. Mol Microbiol 68:749–767 http://dx.doi.org/10.1111/j.1365-2958.2008.06188.x. [PubMed]
75. Milohanic E, Pron B, Berche P, Gaillard JL, European Listeria Genome Consortium. 2000. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. Microbiology 146:731–739 http://dx.doi.org/10.1099/00221287-146-3-731. [PubMed]
76. Milohanic E, Jonquières R, Cossart P, Berche P, Gaillard JL. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 39:1212–1224 http://dx.doi.org/10.1111/j.1365-2958.2001.02208.x. [PubMed]
77. Cabanes D, Dussurget O, Dehoux P, Cossart P. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol Microbiol 51:1601–1614 http://dx.doi.org/10.1111/j.1365-2958.2003.03945.x. [PubMed]
78. Wang L, Lin M. 2008. A novel cell wall-anchored peptidoglycan hydrolase(autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. Microbiology 154:1900–1913 http://dx.doi.org/10.1099/mic.0.2007/015172-0. [PubMed]
79. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S. 1999. Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol 181:418–425. [PubMed]
80. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. 2002. Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43:1–14 http://dx.doi.org/10.1046/j.1365-2958.2002.02723.x. [PubMed]
81. Réglier-Poupet H, Pellegrini E, Charbit A, Berche P. 2003. Identification of LpeA, a PsaA-like membrane protein that promotes cell entry by Listeria monocytogenes. Infect Immun 71:474–482 http://dx.doi.org/10.1128/IAI.71.1.474-482.2003. [PubMed]
82. Machata S, Tchatalbachev S, Mohamed W, Jänsch L, Hain T, Chakraborty T. 2008. Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol 181:2028–2035 http://dx.doi.org/10.4049/jimmunol.181.3.2028. [PubMed]
83. Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L. 2006. The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol 62:1325–1339 http://dx.doi.org/10.1111/j.1365-2958.2006.05452.x. [PubMed]
84. Suárez M, González-Zorn B, Vega Y, Chico-Calero I, Vázquez-Boland JA. 2001. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell Microbiol 3:853–864 http://dx.doi.org/10.1046/j.1462-5822.2001.00160.x. [PubMed]
85. Alvarez-Domínguez C, Vázquez-Boland JA, Carrasco-Marín E, López-Mato P, Leyva-Cobián F. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun 65:78–88. [PubMed]
86. Cabanes D, Sousa S, Cebriá A, Lecuit M, García-del Portillo F, Cossart P. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J 24:2827–2838 http://dx.doi.org/10.1038/sj.emboj.7600750. [PubMed]
87. Martins M, Custódio R, Camejo A, Almeida MT, Cabanes D, Sousa S. 2012. Listeria monocytogenes triggers the cell surface expression of Gp96 protein and interacts with its N terminus to support cellular infection. J Biol Chem 287:43083–43093 http://dx.doi.org/10.1074/jbc.M112.422568. [PubMed]
88. Jagadeesan B, Fleishman Littlejohn AE, Amalaradjou MAR, Singh AK, Mishra KK, La D, Kihara D, Bhunia AK. 2011. N-terminal Gly(224)-Gly(411) domain in Listeria adhesion protein interacts with host receptor Hsp60. PLoS One 6:e20694 http://dx.doi.org/10.1371/journal.pone.0020694. [PubMed]
89. Reis O, Sousa S, Camejo A, Villiers V, Gouin E, Cossart P, Cabanes D. 2010. LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. J Infect Dis 202:551–562 http://dx.doi.org/10.1086/654880. [PubMed]
90. Dramsi S, Bourdichon F, Cabanes D, Lecuit M, Fsihi H, Cossart P. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649 http://dx.doi.org/10.1111/j.1365-2958.2004.04138.x. [PubMed]
91. Dramsi S, Cossart P. 2003. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 71:3614–3618 http://dx.doi.org/10.1128/IAI.71.6.3614-3618.2003. [PubMed]
92. Stavru F, Cossart P. 2011. Listeria infection modulates mitochondrial dynamics. Commun Integr Biol 4:364–366 http://dx.doi.org/10.4161/cib.4.3.15506. [PubMed]
93. Vadia S, Arnett E, Haghighat A-C, Wilson-Kubalek EM, Tweten RK, Seveau S. 2011. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathog 7:e1002356 http://dx.doi.org/10.1371/journal.ppat.1002356. [PubMed]
94. Vadia S, Seveau S. 2014. Fluxes of Ca2+ and K+ are required for the listeriolysin O-dependent internalization pathway of Listeria monocytogenes. Infect Immun 82:1084–1091 http://dx.doi.org/10.1128/IAI.01067-13. [PubMed]
95. Wadsworth SJ, Goldfine H. 1999. Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. Infect Immun 67:1770–1778. [PubMed]
96. Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH. 2008. Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354 http://dx.doi.org/10.1038/nature06479. [PubMed]
97. Kortebi M, Milohanic E, Mitchell G, Péchoux C, Prévost M-C, Cossart P, Bierne H. 2017. Listeria monocytogenes switches from dissemination to persistence by adopting a vacuolar lifestyle in epithelial cells. PLoS Pathog 13:e1006734 http://dx.doi.org/10.1371/journal.ppat.1006734. [PubMed]
98. Seastone CV. 1935. Pathogenic organisms of the genus Listerella. J Exp Med 62:203–212 http://dx.doi.org/10.1084/jem.62.2.203. [PubMed]
99. Mengaud J, Dramsi S, Gouin E, Vázquez-Boland JA, Milon G, Cossart P. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283 http://dx.doi.org/10.1111/j.1365-2958.1991.tb02158.x. [PubMed]
100. Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti P. 1987. In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829. [PubMed]
101. Dal Peraro M, van der Goot FG. 2016. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 14:77–92 http://dx.doi.org/10.1038/nrmicro.2015.3. [PubMed]
102. Soltani CE, Hotze EM, Johnson AE, Tweten RK. 2007. Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Natl Acad Sci U S A 104:20226–20231 http://dx.doi.org/10.1073/pnas.0708104105. [PubMed]
103. Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK. 2010. Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci U S A 107:4341–4346 http://dx.doi.org/10.1073/pnas.0911581107. [PubMed]
104. Shepard LA, Shatursky O, Johnson AE, Tweten RK. 2000. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane β-hairpins. Biochemistry 39:10284–10293 http://dx.doi.org/10.1021/bi000436r. [PubMed]
105. Schuerch DW, Wilson-Kubalek EM, Tweten RK. 2005. Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci U S A 102:12537–12542 http://dx.doi.org/10.1073/pnas.0500558102. [PubMed]
106. Ruan Y, Rezelj S, Bedina Zavec A, Anderluh G, Scheuring S. 2016. Listeriolysin O membrane damaging activity involves arc formation and lineaction: implication for Listeria monocytogenes escape from phagocytic vacuole. PLoS Pathog 12:e1005597 http://dx.doi.org/10.1371/journal.ppat.1005597. [PubMed]
107. Henry R, Shaughnessy L, Loessner MJ, Alberti-Segui C, Higgins DE, Swanson JA. 2006. Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8:107–119 http://dx.doi.org/10.1111/j.1462-5822.2005.00604.x. [PubMed]
108. Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA. 2006. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8:781–792 http://dx.doi.org/10.1111/j.1462-5822.2005.00665.x. [PubMed]
109. Chen C, Nguyen BN, Mitchell G, Margolis SR, Ma D, Portnoy DA. 2018. The Listeriolysin O PEST-like sequence co-opts AP-2-mediated endocytosis to prevent plasma membrane damage during Listeria infection. Cell Host Microbe 23:786–795.e5 http://dx.doi.org/10.1016/j.chom.2018.05.006. [PubMed]
110. Beauregard KE, Lee KD, Collier RJ, Swanson JA. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 186:1159–1163 http://dx.doi.org/10.1084/jem.186.7.1159. [PubMed]
111. Glomski IJ, Gedde MM, Tsang AW, Swanson JA, Portnoy DA. 2002. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156:1029–1038 http://dx.doi.org/10.1083/jcb.200201081. [PubMed]
112. Glomski IJ, Decatur AL, Portnoy DA. 2003. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71:6754–6765 http://dx.doi.org/10.1128/IAI.71.12.6754-6765.2003. [PubMed]
113. Schnupf P, Hofmann J, Norseen J, Glomski IJ, Schwartzstein H, Decatur AL. 2006. Regulated translation of listeriolysin O controls virulence of Listeria monocytogenes. Mol Microbiol 61:999–1012 http://dx.doi.org/10.1111/j.1365-2958.2006.05286.x. [PubMed]
114. Schnupf P, Zhou J, Varshavsky A, Portnoy DA. 2007. Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect Immun 75:5135–5147 http://dx.doi.org/10.1128/IAI.00164-07. [PubMed]
115. Geoffroy C, Gaillard JL, Alouf JE, Berche P. 1987. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 55:1641–1646. [PubMed]
116. Singh R, Jamieson A, Cresswell P. 2008. GILT is a critical host factor for Listeria monocytogenes infection. Nature 455:1244–1247 http://dx.doi.org/10.1038/nature07344. [PubMed]
117. Radtke AL, Anderson KL, Davis MJ, DiMagno MJ, Swanson JA, O’Riordan MX. 2011. Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome. Proc Natl Acad Sci U S A 108:1633–1638 http://dx.doi.org/10.1073/pnas.1013262108. [PubMed]
118. Shaughnessy LM, Lipp P, Lee K-D, Swanson JA. 2007. Localization of protein kinase C epsilon to macrophage vacuoles perforated by Listeria monocytogenes cytolysin. Cell Microbiol 9:1695–1704 http://dx.doi.org/10.1111/j.1462-5822.2007.00903.x. [PubMed]
119. Mengaud J, Braun-Breton C, Cossart P. 1991. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol 5:367–372 http://dx.doi.org/10.1111/j.1365-2958.1991.tb02118.x. [PubMed]
120. Geoffroy C, Raveneau J, Beretti JL, Lecroisey A, Vázquez-Boland JA, Alouf JE, Berche P. 1991. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect Immun 59:2382–2388. [PubMed]
121. Vázquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P. 1992. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230. [PubMed]
122. Mengaud J, Geoffroy C, Cossart P. 1991. Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases. Infect Immun 59:1043–1049. [PubMed]
123. Poyart C, Abachin E, Razafimanantsoa I, Berche P. 1993. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun 61:1576–1580. [PubMed]
124. Bitar AP, Cao M, Marquis H. 2008. The metalloprotease of Listeria monocytogenes is activated by intramolecular autocatalysis. J Bacteriol 190:107–111 http://dx.doi.org/10.1128/JB.00852-07. [PubMed]
125. Camilli A, Tilney LG, Portnoy DA. 1993. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157 http://dx.doi.org/10.1111/j.1365-2958.1993.tb01211.x. [PubMed]
126. Marquis H, Doshi V, Portnoy DA. 1995. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63:4531–4534. [PubMed]
127. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237. [PubMed]
128. Gründling A, Gonzalez MD, Higgins DE. 2003. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol 185:6295–6307 http://dx.doi.org/10.1128/JB.185.21.6295-6307.2003. [PubMed]
129. Moser J, Gerstel B, Meyer JE, Chakraborty T, Wehland J, Heinz DW. 1997. Crystal structure of the phosphatidylinositol-specific phospholipase C from the human pathogen Listeria monocytogenes. J Mol Biol 273:269–282 http://dx.doi.org/10.1006/jmbi.1997.1290. [PubMed]
130. Wei Z, Zenewicz LA, Goldfine H. 2005. Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors. Proc Natl Acad Sci U S A 102:12927–12931 http://dx.doi.org/10.1073/pnas.0501725102. [PubMed]
131. Sibelius U, Chakraborty T, Krögel B, Wolf J, Rose F, Schmidt R, Wehland J, Seeger W, Grimminger F. 1996. The listerial exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C synergize to elicit endothelial cell phosphoinositide metabolism. J Immunol 157:4055–4060. [PubMed]
132. Goldfine H, Wadsworth SJ, Johnston NC. 2000. Activation of host phospholipases C and D in macrophages after infection with Listeria monocytogenes. Infect Immun 68:5735–5741 http://dx.doi.org/10.1128/IAI.68.10.5735-5741.2000. [PubMed]
133. Poussin MA, Goldfine H. 2005. Involvement of Listeria monocytogenes phosphatidylinositol-specific phospholipase C and host protein kinase C in permeabilization of the macrophage phagosome. Infect Immun 73:4410–4413 http://dx.doi.org/10.1128/IAI.73.7.4410-4413.2005. [PubMed]
134. Wadsworth SJ, Goldfine H. 2002. Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun 70:4650–4660 http://dx.doi.org/10.1128/IAI.70.8.4650-4660.2002. [PubMed]
135. Marquis H, Goldfine H, Portnoy DA. 1997. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol 137:1381–1392 http://dx.doi.org/10.1083/jcb.137.6.1381. [PubMed]
136. Marquis H, Hager EJ. 2000. pH-regulated activation and release of a bacteria-associated phospholipase C during intracellular infection by Listeria monocytogenes. Mol Microbiol 35:289–298 http://dx.doi.org/10.1046/j.1365-2958.2000.01708.x. [PubMed]
137. Yeung PSM, Na Y, Kreuder AJ, Marquis H. 2007. Compartmentalization of the broad-range phospholipase C activity to the spreading vacuole is critical for Listeria monocytogenes virulence. Infect Immun 75:44–51 http://dx.doi.org/10.1128/IAI.01001-06. [PubMed]
138. Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH. 2011. Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe 10:627–634 http://dx.doi.org/10.1016/j.chom.2011.11.005. [PubMed]
139. Xayarath B, Alonzo F III, Freitag NE. 2015. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathog 11:e1004707 http://dx.doi.org/10.1371/journal.ppat.1004707. [PubMed]
140. Rabinovich L, Sigal N, Borovok I, Nir-Paz R, Herskovits AA. 2012. Prophage excision activates Listeria competence genes that promote phagosomal escape and virulence. Cell 150:792–802 http://dx.doi.org/10.1016/j.cell.2012.06.036. [PubMed]
141. Alvarez-Dominguez C, Stahl PD. 1999. Increased expression of Rab5a correlates directly with accelerated maturation of Listeria monocytogenes phagosomes. J Biol Chem 274:11459–11462 http://dx.doi.org/10.1074/jbc.274.17.11459. [PubMed]
142. Prada-Delgado A, Carrasco-Marín E, Peña-Macarro C, Del Cerro-Vadillo E, Fresno-Escudero M, Leyva-Cobián F, Alvarez-Dominguez C. 2005. Inhibition of Rab5a exchange activity is a key step for Listeria monocytogenes survival. Traffic 6:252–265 http://dx.doi.org/10.1111/j.1600-0854.2005.00265.x. [PubMed]
143. Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L, Vandekerckhove J, Pareja E, Tobes R, Gomez-Lopez MT, Del Cerro-Vadillo E, Fresno M, Leyva-Cobián F, Carrasco-Marín E. 2008. Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 9:325–337 http://dx.doi.org/10.1111/j.1600-0854.2007.00683.x. [PubMed]
144. Lopez-Castejon G, Corbett D, Goldrick M, Roberts IS, Brough D. 2012. Inhibition of calpain blocks the phagosomal escape of Listeria monocytogenes. PLoS One 7:e35936 http://dx.doi.org/10.1371/journal.pone.0035936. [PubMed]
145. Ripio MT, Brehm K, Lara M, Suárez M, Vázquez-Boland JA. 1997. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J Bacteriol 179:7174–7180 http://dx.doi.org/10.1128/jb.179.22.7174-7180.1997. [PubMed]
146. Chico-Calero I, Suárez M, González-Zorn B, Scortti M, Slaghuis J, Goebel W, Vázquez-Boland JA, European Listeria Genome Consortium. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci U S A 99:431–436 http://dx.doi.org/10.1073/pnas.012363899. [PubMed]
147. O’Riordan M, Moors MA, Portnoy DA. 2003. Listeria intracellular growth and virulence require host-derived lipoic acid. Science 302:462–464 http://dx.doi.org/10.1126/science.1088170. [PubMed]
148. Keeney KM, Stuckey JA, O’Riordan MXD. 2007. LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence. Mol Microbiol 66:758–770 http://dx.doi.org/10.1111/j.1365-2958.2007.05956.x. [PubMed]
149. Chen GY, McDougal CE, D’Antonio MA, Portman JL, Sauer J-D. 2017. A genetic screen reveals that synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), but not full-length menaquinone, is required for Listeria monocytogenes cytosolic survival. MBio 8:e00119-17 http://dx.doi.org/10.1128/mBio.00119-17. [PubMed]
150. Rich KA, Burkett C, Webster P. 2003. Cytoplasmic bacteria can be targets for autophagy. Cell Microbiol 5:455–468 http://dx.doi.org/10.1046/j.1462-5822.2003.00292.x. [PubMed]
151. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH. 2007. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451 http://dx.doi.org/10.4161/auto.4450. [PubMed]
152. Perrin AJ, Jiang X, Birmingham CL, So NSY, Brumell JH. 2004. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr Biol 14:806–811 http://dx.doi.org/10.1016/j.cub.2004.04.033. [PubMed]
153. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M, Kim M, Mimuro H, Nakagawa I, Yanagawa T, Ishii T, Kakizuka A, Sztul E, Chakraborty T, Sasakawa C. 2009. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 11:1233–1240 http://dx.doi.org/10.1038/ncb1967. [PubMed]
154. Py BF, Lipinski MM, Yuan J. 2007. Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125 http://dx.doi.org/10.4161/auto.3618. [PubMed]
155. Mitchell G, Ge L, Huang Q, Chen C, Kianian S, Roberts MF, Schekman R, Portnoy DA. 2015. Avoidance of autophagy mediated by PlcA or ActA is required for Listeria monocytogenes growth in macrophages. Infect Immun 83:2175–2184 http://dx.doi.org/10.1128/IAI.00110-15. [PubMed]
156. Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE. 2013. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J 32:3066–3078 http://dx.doi.org/10.1038/emboj.2013.234. [PubMed]
157. Cemma M, Lam GY, Stöckli M, Higgins DE, Brumell JH. 2015. Strain-specific interactions of Listeria monocytogenes with the autophagy system in host cells. PLoS One 10:e0125856 http://dx.doi.org/10.1371/journal.pone.0125856. [PubMed]
158. Crimmins GT, Herskovits AA, Rehder K, Sivick KE, Lauer P, Dubensky TW Jr, Portnoy DA. 2008. Listeria monocytogenes multidrug resistance transporters activate a cytosolic surveillance pathway of innate immunity. Proc Natl Acad Sci U S A 105:10191–10196 http://dx.doi.org/10.1073/pnas.0804170105. [PubMed]
159. Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–1705 http://dx.doi.org/10.1126/science.1189801. [PubMed]
160. Abdullah Z, Schlee M, Roth S, Mraheil MA, Barchet W, Böttcher J, Hain T, Geiger S, Hayakawa Y, Fritz JH, Civril F, Hopfner KP, Kurts C, Ruland J, Hartmann G, Chakraborty T, Knolle PA. 2012. RIG-I detects infection with live Listeria by sensing secreted bacterial nucleic acids. EMBO J 31:4153–4164 http://dx.doi.org/10.1038/emboj.2012.274. [PubMed]
161. Hagmann CA, Herzner AM, Abdullah Z, Zillinger T, Jakobs C, Schuberth C, Coch C, Higgins PG, Wisplinghoff H, Barchet W, Hornung V, Hartmann G, Schlee M. 2013. RIG-I detects triphosphorylated RNA of Listeria monocytogenes during infection in non-immune cells. PLoS One 8:e62872 http://dx.doi.org/10.1371/journal.pone.0062872. [PubMed]
162. Radoshevich L, Impens F, Ribet D, Quereda JJ, Nam Tham T, Nahori M-A, Bierne H, Dussurget O, Pizarro-Cerdá J, Knobeloch K-P, Cossart P. 2015. ISG15 counteracts Listeria monocytogenes infection. eLife 4:4 http://dx.doi.org/10.7554/eLife.06848. [PubMed]
163. Bierne H, Travier L, Mahlakõiv T, Tailleux L, Subtil A, Lebreton A, Paliwal A, Gicquel B, Staeheli P, Lecuit M, Cossart P. 2012. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS One 7:e39080 http://dx.doi.org/10.1371/journal.pone.0039080. [PubMed]
164. Lam GY, Cemma M, Muise AM, Higgins DE, Brumell JH. 2013. Host and bacterial factors that regulate LC3 recruitment to Listeria monocytogenes during the early stages of macrophage infection. Autophagy 9:985–995 http://dx.doi.org/10.4161/auto.24406. [PubMed]
165. Auerbuch V, Loureiro JJ, Gertler FB, Theriot JA, Portnoy DA. 2003. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol Microbiol 49:1361–1375 http://dx.doi.org/10.1046/j.1365-2958.2003.03639.x. [PubMed]
166. Welch MD, Iwamatsu A, Mitchison TJ. 1997. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–269 http://dx.doi.org/10.1038/385265a0. [PubMed]
167. Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ. 1998. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281:105–108 http://dx.doi.org/10.1126/science.281.5373.105. [PubMed]
168. Pizarro-Cerdá J, Chorev DS, Geiger B, Cossart P. 2017. The diverse family of Arp2/3 complexes. Trends Cell Biol 27:93–100 http://dx.doi.org/10.1016/j.tcb.2016.08.001. [PubMed]
169. Kühbacher A, Emmenlauer M, Rämo P, Kafai N, Dehio C, Cossart P, Pizarro-Cerdá J. 2015. Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. MBio 6:e00598–e15 http://dx.doi.org/10.1128/mBio.00598-15. [PubMed]
170. Van Troys M, Lambrechts A, David V, Demol H, Puype M, Pizarro-Cerdá J, Gevaert K, Cossart P, Vandekerckhove J. 2008. The actin propulsive machinery: the proteome of Listeria monocytogenes tails. Biochem Biophys Res Commun 375:194–199 http://dx.doi.org/10.1016/j.bbrc.2008.07.152. [PubMed]
171. Jasnin M, Asano S, Gouin E, Hegerl R, Plitzko JM, Villa E, Cossart P, Baumeister W. 2013. Three-dimensional architecture of actin filaments in Listeria monocytogenes comet tails. Proc Natl Acad Sci U S A 110:20521–20526 http://dx.doi.org/10.1073/pnas.1320155110. [PubMed]
172. Polle L, Rigano LA, Julian R, Ireton K, Schubert W-D. 2014. Structural details of human tuba recruitment by InlC of Listeria monocytogenes elucidate bacterial cell-cell spreading. Structure 22:304–314 http://dx.doi.org/10.1016/j.str.2013.10.017. [PubMed]
173. Gianfelice A, Le PHB, Rigano LA, Saila S, Dowd GC, McDivitt T, Bhattacharya N, Hong W, Stagg SM, Ireton K. 2015. Host endoplasmic reticulum COPII proteins control cell-to-cell spread of the bacterial pathogen Listeria monocytogenes. Cell Microbiol 17:876–892 http://dx.doi.org/10.1111/cmi.12409. [PubMed]
174. Rigano LA, Dowd GC, Wang Y, Ireton K. 2014. Listeria monocytogenes antagonizes the human GTPase Cdc42 to promote bacterial spread. Cell Microbiol 16:1068–1079 http://dx.doi.org/10.1111/cmi.12260. [PubMed]
175. Pust S, Morrison H, Wehland J, Sechi AS, Herrlich P. 2005. Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO J 24:1287–1300 http://dx.doi.org/10.1038/sj.emboj.7600595. [PubMed]
176. Fattouh R, Kwon H, Czuczman MA, Copeland JW, Pelletier L, Quinlan ME, Muise AM, Higgins DE, Brumell JH. 2015. The diaphanous-related formins promote protrusion formation and cell-to-cell spread of Listeria monocytogenes. J Infect Dis 211:1185–1195 http://dx.doi.org/10.1093/infdis/jiu546. [PubMed]
177. Talman AM, Chong R, Chia J, Svitkina T, Agaisse H. 2014. Actin network disassembly powers dissemination of Listeria monocytogenes. J Cell Sci 127:240–249 http://dx.doi.org/10.1242/jcs.140038. [PubMed]
178. Alvarez DE, Agaisse H. 2016. The metalloprotease Mpl supports Listeria monocytogenes dissemination through resolution of membrane protrusions into vacuoles. Infect Immun 84:1806–1814 http://dx.doi.org/10.1128/IAI.00130-16. [PubMed]
179. Czuczman MA, Fattouh R, van Rijn JM, Canadien V, Osborne S, Muise AM, Kuchroo VK, Higgins DE, Brumell JH. 2014. Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 509:230–234 http://dx.doi.org/10.1038/nature13168. [PubMed]
180. Alberti-Segui C, Goeden KR, Higgins DE. 2007. Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell Microbiol 9:179–195 http://dx.doi.org/10.1111/j.1462-5822.2006.00780.x. [PubMed]
181. Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P. 2013. Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci U S A 110:16003–16008. [PubMed]
182. Pillich H, Loose M, Zimmer K-P, Chakraborty T. 2012. Activation of the unfolded protein response by Listeria monocytogenes. Cell Microbiol 14:949–964 http://dx.doi.org/10.1111/j.1462-5822.2012.01769.x. [PubMed]
183. Malet JK, Cossart P, Ribet D. 2017. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins. Cell Microbiol 19:e12682 http://dx.doi.org/10.1111/cmi.12682. [PubMed]
184. Ribet D, Hamon M, Gouin E, Nahori M-A, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A, Cossart P. 2010. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464:1192–1195 http://dx.doi.org/10.1038/nature08963. [PubMed]
185. Hamon MA, Batsché E, Régnault B, Tham TN, Seveau S, Muchardt C, Cossart P. 2007. Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci U S A 104:13467–13472 http://dx.doi.org/10.1073/pnas.0702729104. [PubMed]
186. Samba-Louaka A, Pereira JM, Nahori M-A, Villiers V, Deriano L, Hamon MA, Cossart P. 2014. Listeria monocytogenes dampens the DNA damage response. PLoS Pathog 10:e1004470 http://dx.doi.org/10.1371/journal.ppat.1004470. [PubMed]
187. Leitão E, Costa AC, Brito C, Costa L, Pombinho R, Cabanes D, Sousa S. 2014. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 13:928–940 http://dx.doi.org/10.4161/cc.27780. [PubMed]
188. Samba-Louaka A, Stavru F, Cossart P. 2012. Role for telomerase in Listeria monocytogenes infection. Infect Immun 80:4257–4263 http://dx.doi.org/10.1128/IAI.00614-12. [PubMed]
189. Lebreton A, Lakisic G, Job V, Fritsch L, Tham TN, Camejo A, Matteï P-J, Régnault B, Nahori M-A, Cabanes D, Gautreau A, Ait-Si-Ali S, Dessen A, Cossart P, Bierne H. 2011. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331:1319–1321 http://dx.doi.org/10.1126/science.1200120. [PubMed]
190. Bierne H, Tham TN, Batsché E, Dumay A, Leguillou M, Kernéis-Golsteyn S, Régnault B, Seeler JS, Muchardt C, Feunteun J, Cossart P. 2009. Human BAHD1 promotes heterochromatic gene silencing. Proc Natl Acad Sci U S A 106:13826–13831 http://dx.doi.org/10.1073/pnas.0901259106. [PubMed]
191. Lebreton A, Job V, Ragon M, Le Monnier A, Dessen A, Cossart P, Bierne H. 2013. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. mBio 5:e00775-13.
192. Prokop A, Gouin E, Villiers V, Nahori M-A, Vincentelli R, Duval M, Cossart P, Dussurget O. 2017. OrfX, a nucleomodulin required for Listeria monocytogenes virulence. MBio 8:e01550-17 http://dx.doi.org/10.1128/mBio.01550-17. [PubMed]
193. Ribet D, Lallemand-Breitenbach V, Ferhi O, Nahori M-A, Varet H, de Thé H, Cossart P. 2017. Promyelocytic leukemia protein (PML) controls Listeria monocytogenes infection. MBio 8:e02179-16 http://dx.doi.org/10.1128/mBio.02179-16. [PubMed]
194. Eskandarian HA, Impens F, Nahori MA, Soubigou G, Coppée JY, Cossart P, Hamon MA. 2013. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341:1238858 http://dx.doi.org/10.1126/science.1238858. [PubMed]
195. Mitchell G, Cheng MI, Chen C, Nguyen BN, Whiteley AT, Kianian S, Cox JS, Green DR, McDonald KL, Portnoy DA. 2018. Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci U S A 115:E210–E217 http://dx.doi.org/10.1073/pnas.1716055115. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0013-2018
2018-12-07
2018-12-18

Abstract:

The Gram-positive pathogen is able to promote its entry into a diverse range of mammalian host cells by triggering plasma membrane remodeling, leading to bacterial engulfment. Upon cell invasion, disrupts its internalization vacuole and translocates to the cytoplasm, where bacterial replication takes place. Subsequently, uses an actin-based motility system that allows bacterial cytoplasmic movement and cell-to-cell spread. therefore subverts host cell receptors, organelles and the cytoskeleton at different infection steps, manipulating diverse cellular functions that include ion transport, membrane trafficking, post-translational modifications, phosphoinositide production, innate immune responses as well as gene expression and DNA stability.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cellular receptors for in host cells. The receptor for InlA in nonphagocytic polarized cells (including goblet cells) is the transmembrane molecule E-cadherin. Interaction takes place between the InlA leucine-rich repeats (LRRs) and the first extracellular domain of E-cadherin, leading to phosphorylation and ubiquitylation of the cytoplasmic domain of E-cadherin by the kinase Src and the ubiquitin ligase Hakai, respectively. Clustering of E-cadherin requires the presence of lipid rafts (left panel). Via its C-terminal glycine-tryptophan (GW) repeats, InlB interacts with the receptor for the globular part of the C1q complement component (gC1qR) and glycosaminoglycans, which enable interaction of the N-terminal LRRs of InlB with the tyrosine receptor kinase Met in nonphagocytic cells (including trophoblasts). Met dimerization upon interaction with InlB leads to autophosphorylation and recruitment of the ubiquitin ligase Cbl, which ubiquitylates the cytoplasmic tail of Met (center panel). In fibroblasts and monocytes, a function for the FcγRIA receptor has been described for internalization, via interaction with a still unidentified surface molecule (right panel). Modified from reference 12 .

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0013-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

intracellular stages. is able to induce its entry into nonphagocytic cells mainly via the interaction of InlA and InlB with host cells receptors that promote actin recruitment, remodeling of the plasma membrane, and bacterial engulfment. The surface molecule ActA and the secreted pore-forming toxin LLO have also been implicated in the early entry steps (left cell, upper left). In goblet cells, upon internalization, is localized in a vacuole, and through transcytosis the bacterium is translocated to the lamina propria (left cell, left). In other cells, the combined activity of diverse virulence factors, including the pore-forming LLO, the metalloprotease Mpl, the phospholipases PlcA and PlcB, and the pheromone pPplA, favor disruption of the vacuole and release in the cytosol, where the bacteria takes advantage of host metabolites via the phosphate transporter Hpt and the lipoate protein ligase LplA. The surface protein ActA promotes actin-based motility, and the secreted protein InlC favors reduction of plasma membrane cortical tension, allowing to form protrusions and to invade neighboring cells. LLO and the phospholipases PlcA and PlcB contribute to the disruption of the double-membrane vacuole (right cell). has been observed in large spacious compartments that may arise rapidly after internalization of bacteria or upon decrease of ActA expression in already cytoplasmic bacteria (left cell, upper center). Extracellular LLO is able to modulate different cellular functions, including mitochondrial fission, lysosomal permeabilization, protein SUMOylation, ER stress, DNA damage, and chromatin remodeling. The phospholipases PlcA and PlcB, together with actin polymerization by ActA, have been implicated in the resistance to autophagy ( 195 ). The secreted molecule InlC prevents NF-κB translocation to the nucleus. Modified from reference 12 .

Source: microbiolspec December 2018 vol. 6 no. 6 doi:10.1128/microbiolspec.GPP3-0013-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error