1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Pathogenicity Factors in Group C and G Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Claire E. Turner1, Laura Bubba2, Androulla Efstratiou4
  • Editors: Vincent A. Fischetti5, Richard P. Novick6, Joseph J. Ferretti7, Daniel A. Portnoy8, Miriam Braunstein9, Julian I. Rood10
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Biology & Biotechnology, The Florey Institute, University of Sheffield, Sheffield, UK; 2: Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom; 3: European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden; 4: Reference Microbiology Division, National Infection Service, Public Health England, London, United Kingdom; 5: The Rockefeller University, New York, NY; 6: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 7: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 8: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 9: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 10: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0020-2018
  • Received 02 February 2018 Accepted 15 November 2018 Published 17 May 2019
  • Androulla Efstratiou, [email protected]
image of Pathogenicity Factors in Group C and G Streptococci
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Pathogenicity Factors in Group C and G Streptococci, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0020-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/3/GPP3-0020-2018-2.gif
  • Abstract:

    Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.

  • Citation: Turner C, Bubba L, Efstratiou A. 2019. Pathogenicity Factors in Group C and G Streptococci. Microbiol Spectrum 7(3):GPP3-0020-2018. doi:10.1128/microbiolspec.GPP3-0020-2018.

References

1. Facklam R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630 http://dx.doi.org/10.1128/CMR.15.4.613-630.2002. [PubMed]
2. Chanter N, Collin N, Holmes N, Binns M, Mumford J. 1997. Characterization of the Lancefield group C Streptococcus 16S-23S RNA gene intergenic spacer and its potential for identification and sub-specific typing. Epidemiol Infect 118:125–135 http://dx.doi.org/10.1017/S0950268896007285. [PubMed]
3. Vossen A, Abdulmawjood A, Lämmler C, Weiss R, Siebert U. 2004. Identification and molecular characterization of beta-hemolytic streptococci isolated from harbor seals ( Phoca vitulina) and grey seals ( Halichoerus grypus) of the German North and Baltic Seas. J Clin Microbiol 42:469–473 http://dx.doi.org/10.1128/JCM.42.1.469-473.2004. [PubMed]
4. Skaar I, Gaustad P, Tønjum T, Holm B, Stenwig H. 1994. Streptococcus phocae sp. nov., a new species isolated from clinical specimens from seals. Int J Syst Bacteriol 44:646–650 http://dx.doi.org/10.1099/00207713-44-4-646. [PubMed]
5. Gunnarsson RK, Holm SE, Söderström M. 1997. The prevalence of beta-haemolytic streptococci in throat specimens from healthy children and adults. Implications for the clinical value of throat cultures. Scand J Prim Health Care 15:149–155 http://dx.doi.org/10.3109/02813439709018506. [PubMed]
6. Siljander T, Karppelin M, Vähäkuopus S, Syrjänen J, Toropainen M, Kere J, Vuento R, Jussila T, Vuopio-Varkila J. 2008. Acute bacterial, nonnecrotizing cellulitis in Finland: microbiological findings. Clin Infect Dis 46:855–861 http://dx.doi.org/10.1086/527388. [PubMed]
7. Bélard S, Toepfner N, Arnold B, Alabi AS, Berner R. 2015. β-Hemolytic streptococcal throat carriage and tonsillopharyngitis: a cross-sectional prevalence study in Gabon, Central Africa. Infection 43:177–183 http://dx.doi.org/10.1007/s15010-014-0709-y. [PubMed]
8. Broyles LN, Van Beneden C, Beall B, Facklam R, Shewmaker PL, Malpiedi P, Daily P, Reingold A, Farley MM. 2009. Population-based study of invasive disease due to beta-hemolytic streptococci of groups other than A and B. Clin Infect Dis 48:706–712 http://dx.doi.org/10.1086/597035. [PubMed]
9. Rantala S, Vuopio-Varkila J, Vuento R, Huhtala H, Syrjänen J. 2009. Clinical presentations and epidemiology of beta-haemolytic streptococcal bacteraemia: a population-based study. Clin Microbiol Infect 15:286–288 http://dx.doi.org/10.1111/j.1469-0691.2008.02672.x. [PubMed]
10. Ekelund K, Skinhøj P, Madsen J, Konradsen HB. 2005. Invasive group A, B, C and G streptococcal infections in Denmark 1999-2002: epidemiological and clinical aspects. Clin Microbiol Infect 11:569–576 http://dx.doi.org/10.1111/j.1469-0691.2005.01169.x. [PubMed]
11. Bradley SF, Gordon JJ, Baumgartner DD, Marasco WA, Kauffman CA. 1991. Group C streptococcal bacteremia: analysis of 88 cases. Rev Infect Dis 13:270–280 http://dx.doi.org/10.1093/clinids/13.2.270.
12. Brandt CM, Spellerberg B. 2009. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis 49:766–772 http://dx.doi.org/10.1086/605085. [PubMed]
13. Bruun T, Oppegaard O, Kittang BR, Mylvaganam H, Langeland N, Skrede S. 2015. Etiology of cellulitis and clinical prediction of streptococcal disease: a prospective study. Open Forum Infect Dis 3:ofv181 http://dx.doi.org/10.1093/ofid/ofv181. [PubMed]
14. Carmeli Y, Ruoff KL. 1995. Report of cases of and taxonomic considerations for large-colony-forming Lancefield group C streptococcal bacteremia. J Clin Microbiol 33:2114–2117.
15. Dubost JJ, Soubrier M, De Champs C, Ristori JM, Sauvezie B. 2004. Streptococcal septic arthritis in adults. A study of 55 cases with a literature review. Joint Bone Spine 71:303–311 http://dx.doi.org/10.1016/S1297-319X(03)00122-2.
16. Freitas DM. 2017. Group G Streptococcus dysgalactiae subspecies equisimilis, the clinical significance of a rare infection: endocarditis, polyarteritis, septic bursitis and pneumonia with complicated parapneumonic effusion. BMJ Case Rep 2017:2017. [PubMed]
17. González Terán B, Roiz MP, Ruiz Jimeno T, Rosas J, Calvo-Alén J. 2001. Acute bacterial arthritis caused by group C streptococci. Semin Arthritis Rheum 31:43–51 http://dx.doi.org/10.1053/sarh.2001.21405.
18. Keiser P, Campbell W. 1992. ‘Toxic strep syndrome’ associated with group C Streptococcus. Arch Intern Med 152:882, 884 http://dx.doi.org/10.1001/archinte.1992.00400160162042. [PubMed]
19. Korman TM, Boers A, Gooding TM, Curtis N, Visvanathan K. 2004. Fatal case of toxic shock-like syndrome due to group C Streptococcus associated with superantigen exotoxin. J Clin Microbiol 42:2866–2869 http://dx.doi.org/10.1128/JCM.42.6.2866-2869.2004. [PubMed]
20. Lother SA, Jassal DS, Lagacé-Wiens P, Keynan Y. 2017. Emerging group C and group G streptococcal endocarditis: a Canadian perspective. Int J Infect Dis 65:128–132 http://dx.doi.org/10.1016/j.ijid.2017.10.018. [PubMed]
21. Naik TB, Nadagir SD, Biradar A. 2016. Prevalence of beta-hemolytic streptococci groups A, C, and G in patients with acute pharyngitis. J Lab Physicians 8:45–49 http://dx.doi.org/10.4103/0974-2727.176235. [PubMed]
22. Shimomura Y, Okumura K, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. 2011. Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 12:17 http://dx.doi.org/10.1186/1471-2164-12-17. [PubMed]
23. Zaoutis T, Attia M, Gross R, Klein J. 2004. The role of group C and group G streptococci in acute pharyngitis in children. Clin Microbiol Infect 10:37–40 http://dx.doi.org/10.1111/j.1469-0691.2004.00732.x. [PubMed]
24. Haidan A, Talay SR, Rohde M, Sriprakash KS, Currie BJ, Chhatwal GS. 2000. Pharyngeal carriage of group C and group G streptococci and acute rheumatic fever in an Aboriginal population. Lancet 356:1167–1169 http://dx.doi.org/10.1016/S0140-6736(00)02765-3.
25. Bramhachari PV, Kaul SY, McMillan DJ, Shaila MS, Karmarkar MG, Sriprakash KS. 2010. Disease burden due to Streptococcus dysgalactiae subsp. equisimilis (group G and C streptococcus) is higher than that due to Streptococcus pyogenes among Mumbai school children. J Med Microbiol 59:220–223 http://dx.doi.org/10.1099/jmm.0.015644-0. [PubMed]
26. Kittang BR, Pettersen VK, Oppegaard O, Skutlaberg DH, Dale H, Wiker HG, Skrede S. 2017. Zoonotic necrotizing myositis caused by Streptococcus equi subsp. zooepidemicus in a farmer. BMC Infect Dis 17:147 http://dx.doi.org/10.1186/s12879-017-2262-7. [PubMed]
27. Pelkonen S, Lindahl SB, Suomala P, Karhukorpi J, Vuorinen S, Koivula I, Väisänen T, Pentikäinen J, Autio T, Tuuminen T. 2013. Transmission of Streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg Infect Dis 19:1041–1048 http://dx.doi.org/10.3201/eid1907.121365. [PubMed]
28. Galpérine T, Cazorla C, Blanchard E, Boineau F, Ragnaud JM, Neau D. 2007. Streptococcus canis infections in humans: retrospective study of 54 patients. J Infect 55:23–26 http://dx.doi.org/10.1016/j.jinf.2006.12.013. [PubMed]
29. Takeda N, Kikuchi K, Asano R, Harada T, Totsuka K, Sumiyoshi T, Uchiyama T, Hosoda S, Norihiko Takeda, Ken Kikuchi, Ryuta. 2001. Recurrent septicemia caused by Streptococcus canis after a dog bite. Scand J Infect Dis 33:927–928 http://dx.doi.org/10.1080/00365540110076903. [PubMed]
30. Lacave G, Coutard A, Troché G, Augusto S, Pons S, Zuber B, Laurent V, Amara M, Couzon B, Bédos JP, Pangon B, Grimaldi D. 2016. Endocarditis caused by Streptococcus canis: an emerging zoonosis? Infection 44:111–114 http://dx.doi.org/10.1007/s15010-015-0809-3. [PubMed]
31. Bordes-Benítez A, Sánchez-Oñoro M, Suárez-Bordón P, García-Rojas AJ, Saéz-Nieto JA, González-García A, Alamo-Antúnez I, Sánchez-Maroto A, Bolaños-Rivero M. 2006. Outbreak of Streptococcus equi subsp. zooepidemicus infections on the island of Gran Canaria associated with the consumption of inadequately pasteurized cheese. Eur J Clin Microbiol Infect Dis 25:242–246 http://dx.doi.org/10.1007/s10096-006-0119-x. [PubMed]
32. Harrington DJ, Sutcliffe IC, Chanter N. 2002. The molecular basis of Streptococcus equi infection and disease. Microbes Infect 4:501–510 http://dx.doi.org/10.1016/S1286-4579(02)01565-4.
33. Yoshikawa H, Yasu T, Ueki H, Oyamada T, Oishi H, Anzai T, Oikawa M, Yoshikawa T. 2003. Pneumonia in horses induced by intrapulmonary inoculation of Streptococcus equi subsp. zooepidemicus. J Vet Med Sci 65:787–792 http://dx.doi.org/10.1292/jvms.65.787. [PubMed]
34. Welsh RD. 1984. The significance of Streptococcus zooepidemicus in the horse. Equine Pract 6:6–16.
35. Patel S, Gupta RS. 2018. Robust demarcation of fourteen different species groups within the genus Streptococcus based on genome-based phylogenies and molecular signatures. Infect Genet Evol 66:130–151 http://dx.doi.org/10.1016/j.meegid.2018.09.020. [PubMed]
36. Claridge JE III, Attorri S, Musher DM, Hebert J, Dunbar S. 2001. Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (“ Streptococcus milleri group”) are of different clinical importance and are not equally associated with abscess. Clin Infect Dis 32:1511–1515 http://dx.doi.org/10.1086/320163. [PubMed]
37. Ruoff KL. 1988. Streptococcus anginosus (“ Streptococcus milleri”): the unrecognized pathogen. Clin Microbiol Rev 1:102–108 http://dx.doi.org/10.1128/CMR.1.1.102. [PubMed]
38. Whiley RA, Hall LM, Hardie JM, Beighton D. 1999. A study of small-colony, beta-haemolytic, Lancefield group C streptococci within the anginosus group: description of Streptococcus constellatus subsp. pharyngis subsp. nov., associated with the human throat and pharyngitis. Int J Syst Bacteriol 49:1443–1449 http://dx.doi.org/10.1099/00207713-49-4-1443. [PubMed]
39. Kitada K, Inoue M, Kitano M. 1997. Infective endocarditis-inducing abilities of “ Streptococcus milleri” group. Adv Exp Med Biol 418:161–163 http://dx.doi.org/10.1007/978-1-4899-1825-3_39. [PubMed]
40. Kitada K, Inoue M, Kitano M. 1997. Experimental endocarditis induction and platelet aggregation by Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius. FEMS Immunol Med Microbiol 19:25–32 http://dx.doi.org/10.1111/j.1574-695X.1997.tb01069.x.
41. Morita E, Narikiyo M, Yano A, Nishimura E, Igaki H, Sasaki H, Terada M, Hanada N, Kawabe R. 2003. Different frequencies of Streptococcus anginosus infection in oral cancer and esophageal cancer. Cancer Sci 94:492–496 http://dx.doi.org/10.1111/j.1349-7006.2003.tb01471.x. [PubMed]
42. Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, Muto M, Montesano R, Sakamoto H, Nakajima Y, Sasaki H. 2004. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci 95:569–574 http://dx.doi.org/10.1111/j.1349-7006.2004.tb02488.x. [PubMed]
43. Public Health England. 2013. Group C and group G Streptococcus: guidance, data and analysis. https://www.gov.uk/government/collections/group-c-and-group-g-streptococcus-guidance-data-and-analysis#diagnosis-and-treatment.
44. Efstratiou A. 1997. Pyogenic streptococci of Lancefield groups C and G as pathogens in man. Soc Appl Bacteriol Symp Ser 26(S1) :72S–79S http://dx.doi.org/10.1046/j.1365-2672.83.s1.8.x. [PubMed]
45. Schulthess B, Brodner K, Bloemberg GV, Zbinden R, Böttger EC, Hombach M. 2013. Identification of Gram-positive cocci by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry: comparison of different preparation methods and implementation of a practical algorithm for routine diagnostics. J Clin Microbiol 51:1834–1840 http://dx.doi.org/10.1128/JCM.02654-12. [PubMed]
46. Bishop CJ, Aanensen DM, Jordan GE, Kilian M, Hanage WP, Spratt BG. 2009. Assigning strains to bacterial species via the Internet. BMC Biol 7:3 http://dx.doi.org/10.1186/1741-7007-7-3. [PubMed]
47. Lal D, Verma M, Lal R. 2011. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Ann Clin Microbiol Antimicrob 10:28 http://dx.doi.org/10.1186/1476-0711-10-28. [PubMed]
48. Centre disease and control (CDC). 2008. Introduction to emm typing: M protein gene (emm) typing Streptococcus pyogenes. https://www.cdc.gov/streplab/groupa-strep/emm-background.html.
49. Wang X, Zhang X, Zong Z. 2016. Genome sequence and virulence factors of a group G Streptococcus dysgalactiae subsp. equisimilis strain with a new element carrying erm(B). Sci Rep 6:20389 http://dx.doi.org/10.1038/srep20389. [PubMed]
50. Davies MR, McMillan DJ, Beiko RG, Barroso V, Geffers R, Sriprakash KS, Chhatwal GS. 2007. Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals 2 distinct genetic lineages that do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis 44:1442–1454 http://dx.doi.org/10.1086/516780. [PubMed]
51. Joh D, Speziale P, Gurusiddappa S, Manor J, Höök M. 1998. Multiple specificities of the staphylococcal and streptococcal fibronectin-binding microbial surface components recognizing adhesive matrix molecules. Eur J Biochem 258:897–905 http://dx.doi.org/10.1046/j.1432-1327.1998.2580897.x. [PubMed]
52. Patti JM, Allen BL, McGavin MJ, Höök M. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617 http://dx.doi.org/10.1146/annurev.mi.48.100194.003101. [PubMed]
53. Hynes RO, Yamada KM. 1982. Fibronectins: multifunctional modular glycoproteins. J Cell Biol 95:369–377 http://dx.doi.org/10.1083/jcb.95.2.369. [PubMed]
54. Schwarz-Linek U, Höök M, Potts JR. 2004. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641 http://dx.doi.org/10.1111/j.1365-2958.2004.04027.x. [PubMed]
55. Ryan PA, Juncosa B. 2016. Group A streptococcal adherence. In Ferretti JJ, Stevens DL, Fischetti VA (ed), Streptococcus pyogenes : Basic Biology to Clinical Manifestations. University of Oklahoma Health Sciences Center, Oklahoma City, OK.
56. Cue D, Dombek PE, Lam H, Cleary PP. 1998. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect Immun 66:4593–4601.
57. Molinari G, Talay SR, Valentin-Weigand P, Rohde M, Chhatwal GS. 1997. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect Immun 65:1357–1363.
58. Caballero AR, Lottenberg R, Johnston KH. 1999. Cloning, expression, sequence analysis, and characterization of streptokinases secreted by porcine and equine isolates of Streptococcus equisimilis. Infect Immun 67:6478–6486.
59. Lindgren PE, McGavin MJ, Signäs C, Guss B, Gurusiddappa S, Höök M, Lindberg M. 1993. Two different genes coding for fibronectin-binding proteins from Streptococcus dysgalactiae. The complete nucleotide sequences and characterization of the binding domains. Eur J Biochem 214:819–827 http://dx.doi.org/10.1111/j.1432-1033.1993.tb17985.x. [PubMed]
60. Courtney HS, Hasty DL, Li Y, Chiang HC, Thacker JL, Dale JB. 1999. Serum opacity factor is a major fibronectin-binding protein and a virulence determinant of M type 2 Streptococcus pyogenes. Mol Microbiol 32:89–98 http://dx.doi.org/10.1046/j.1365-2958.1999.01328.x. [PubMed]
61. Lindmark H, Jacobsson K, Frykberg L, Guss B. 1996. Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infect Immun 64:3993–3999.
62. Talay SR, Valentin-Weigand P, Jerlström PG, Timmis KN, Chhatwal GS. 1992. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect Immun 60:3837–3844.
63. Sela S, Aviv A, Tovi A, Burstein I, Caparon MG, Hanski E. 1993. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol Microbiol 10:1049–1055 http://dx.doi.org/10.1111/j.1365-2958.1993.tb00975.x. [PubMed]
64. Kline JB, Xu S, Bisno AL, Collins CM. 1996. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect Immun 64:2122–2129.
65. Lindmark H, Nilsson M, Guss B. 2001. Comparison of the fibronectin-binding protein FNE from Streptococcus equi subspecies equi with FNZ from S. equi subspecies zooepidemicus reveals a major and conserved difference. Infect Immun 69:3159–3163 http://dx.doi.org/10.1128/IAI.69.5.3159-3163.2001. [PubMed]
66. Lannergård J, Flock M, Johansson S, Flock JI, Guss B. 2005. Studies of fibronectin-binding proteins of Streptococcus equi. Infect Immun 73:7243–7251 http://dx.doi.org/10.1128/IAI.73.11.7243-7251.2005. [PubMed]
67. Lidén A, van Wieringen T, Lannergård J, Kassner A, Heinegård D, Reed RK, Guss B, Rubin K. 2008. A secreted collagen- and fibronectin-binding streptococcal protein modulates cell-mediated collagen gel contraction and interstitial fluid pressure. J Biol Chem 283:1234–1242 http://dx.doi.org/10.1074/jbc.M704827200. [PubMed]
68. Tiouajni M, Durand D, Blondeau K, Graille M, Urvoas A, Valerio-Lepiniec M, Guellouz A, Aumont-Nicaise M, Minard P, van Tilbeurgh H. 2014. Structural and functional analysis of the fibronectin-binding protein FNE from Streptococcus equi spp. equi. FEBS J 281:5513–5531 http://dx.doi.org/10.1111/febs.13092. [PubMed]
69. Hong K. 2005. Identification and characterization of a novel fibronectin-binding protein gene from Streptococcus equi subspecies zooepidemicus strain VTU211. FEMS Immunol Med Microbiol 45:231–237 http://dx.doi.org/10.1016/j.femsim.2005.04.006. [PubMed]
70. Lindmark H, Guss B. 1999. SFS, a novel fibronectin-binding protein from Streptococcus equi, inhibits the binding between fibronectin and collagen. Infect Immun 67:2383–2388.
71. Ma W, Ma H, Fogerty FJ, Mosher DF. 2015. Bivalent ligation of the collagen-binding modules of fibronectin by SFS, a non-anchored bacterial protein of Streptococcus equi. J Biol Chem 290:4866–4876 http://dx.doi.org/10.1074/jbc.M114.612259. [PubMed]
72. Abbot EL, Smith WD, Siou GP, Chiriboga C, Smith RJ, Wilson JA, Hirst BH, Kehoe MA. 2007. Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9:1822–1833 http://dx.doi.org/10.1111/j.1462-5822.2007.00918.x. [PubMed]
73. Crotty Alexander LE, Maisey HC, Timmer AM, Rooijakkers SH, Gallo RL, von Köckritz-Blickwede M, Nizet V. 2010. M1T1 group A streptococcal pili promote epithelial colonization but diminish systemic virulence through neutrophil extracellular entrapment. J Mol Med (Berl) 88:371–381 http://dx.doi.org/10.1007/s00109-009-0566-9. [PubMed]
74. Manetti AG, Zingaretti C, Falugi F, Capo S, Bombaci M, Bagnoli F, Gambellini G, Bensi G, Mora M, Edwards AM, Musser JM, Graviss EA, Telford JL, Grandi G, Margarit I. 2007. Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64:968–983 http://dx.doi.org/10.1111/j.1365-2958.2007.05704.x. [PubMed]
75. Smith WD, Pointon JA, Abbot E, Kang HJ, Baker EN, Hirst BH, Wilson JA, Banfield MJ, Kehoe MA. 2010. Roles of minor pilin subunits Spy0125 and Spy0130 in the serotype M1 Streptococcus pyogenes strain SF370. J Bacteriol 192:4651–4659 http://dx.doi.org/10.1128/JB.00071-10. [PubMed]
76. Holden MT, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, Jourdan T, Bason NC, Holroyd NE, Mungall K, Quail MA, Sanders M, Simmonds M, Willey D, Brooks K, Aanensen DM, Spratt BG, Jolley KA, Maiden MC, Kehoe M, Chanter N, Bentley SD, Robinson C, Maskell DJ, Parkhill J, Waller AS. 2009. Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 5:e1000346 http://dx.doi.org/10.1371/journal.ppat.1000346. [PubMed]
77. Steward KF, Robinson C, Maskell DJ, Nenci C, Waller AS. 2017. Investigation of the Fim1 putative pilus locus of Streptococcus equi subspecies equi. Microbiology 10.1099/mic.0.000506. [PubMed]
78. Lannergård J, Frykberg L, Guss B. 2003. CNE, a collagen-binding protein of Streptococcus equi. FEMS Microbiol Lett 222:69–74 http://dx.doi.org/10.1016/S0378-1097(03)00222-2.
79. Beres SB, Sesso R, Pinto SW, Hoe NP, Porcella SF, Deleo FR, Musser JM. 2008. Genome sequence of a Lancefield group C Streptococcus zooepidemicus strain causing epidemic nephritis: new information about an old disease. PLoS One 3:e3026 http://dx.doi.org/10.1371/journal.pone.0003026. [PubMed]
80. Oppegaard O, Mylvaganam H, Skrede S, Lindemann PC, Kittang BR. 2017. Emergence of a Streptococcus dysgalactiae subspecies equisimilis stG62647-lineage associated with severe clinical manifestations. Sci Rep 7:7589 http://dx.doi.org/10.1038/s41598-017-08162-z. [PubMed]
81. Allen BL, Höök M. 2002. Isolation of a putative laminin binding protein from Streptococcus anginosus. Microb Pathog 33:23–31 http://dx.doi.org/10.1006/mpat.2002.0510. [PubMed]
82. Müller HP, Rantamäki LK. 1995. Binding of native alpha 2-macroglobulin to human group G streptococci. Infect Immun 63:2833–2839.
83. Dinkla K, Nitsche-Schmitz DP, Barroso V, Reissmann S, Johansson HM, Frick IM, Rohde M, Chhatwal GS. 2007. Identification of a streptococcal octapeptide motif involved in acute rheumatic fever. J Biol Chem 282:18686–18693 http://dx.doi.org/10.1074/jbc.M701047200. [PubMed]
84. Nitsche DP, Johansson HM, Frick IM, Mörgelin M. 2006. Streptococcal protein FOG, a novel matrix adhesin interacting with collagen I in vivo. J Biol Chem 281:1670–1679 http://dx.doi.org/10.1074/jbc.M506776200. [PubMed]
85. Preissner KT. 1991. Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310 http://dx.doi.org/10.1146/annurev.cb.07.110191.001423. [PubMed]
86. Chhatwal GS, Preissner KT, Müller-Berghaus G, Blobel H. 1987. Specific binding of the human S protein (vitronectin) to streptococci, Staphylococcus aureus, and Escherichia coli. Infect Immun 55:1878–1883.
87. Filippsen LF, Valentin-Weigand P, Blobel H, Preissner KT, Chhatwal GS. 1990. Role of complement S protein (vitronectin) in adherence of Streptococcus dysgalactiae to bovine epithelial cells. Am J Vet Res 51:861–865.
88. Valentin-Weigand P, Grulich-Henn J, Chhatwal GS, Müller-Berghaus G, Blobel H, Preissner KT. 1988. Mediation of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect Immun 56:2851–2855.
89. Fischetti VA. 1991. Streptococcal M protein. Sci Am 264:58–65 http://dx.doi.org/10.1038/scientificamerican0691-58. [PubMed]
90. McNamara C, Zinkernagel AS, Macheboeuf P, Cunningham MW, Nizet V, Ghosh P. 2008. Coiled-coil irregularities and instabilities in group A Streptococcus M1 are required for virulence. Science 319:1405–1408 http://dx.doi.org/10.1126/science.1154470. [PubMed]
91. Collins CM, Kimura A, Bisno AL. 1992. Group G streptococcal M protein exhibits structural features analogous to those of class I M protein of group A streptococci. Infect Immun 60:3689–3696.
92. Campo RE, Schultz DR, Bisno AL. 1995. M proteins of group G streptococci: mechanisms of resistance to phagocytosis. J Infect Dis 171:601–606 http://dx.doi.org/10.1093/infdis/171.3.601. [PubMed]
93. Johansson HM, Mörgelin M, Frick IM. 2004. Protein FOG: a streptococcal inhibitor of neutrophil function. Microbiology 150:4211–4221 http://dx.doi.org/10.1099/mic.0.27269-0. [PubMed]
94. Nitsche-Schmitz DP, Johansson HM, Sastalla I, Reissmann S, Frick IM, Chhatwal GS. 2007. Group G streptococcal IgG binding molecules FOG and protein G have different impacts on opsonization by C1q. J Biol Chem 282:17530–17536 http://dx.doi.org/10.1074/jbc.M702612200. [PubMed]
95. Lewis MJ, Meehan M, Owen P, Woof JM. 2008. A common theme in interaction of bacterial immunoglobulin-binding proteins with immunoglobulins illustrated in the equine system. J Biol Chem 283:17615–17623 http://dx.doi.org/10.1074/jbc.M709844200. [PubMed]
96. Meehan M, Lynagh Y, Woods C, Owen P. 2001. The fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi additionally binds IgG and contributes to virulence in a mouse model. Microbiology 147:3311–3322 http://dx.doi.org/10.1099/00221287-147-12-3311. [PubMed]
97. Meehan M, Muldowney DA, Watkins NJ, Owen P. 2000. Localization and characterization of the ligand-binding domain of the fibrinogen-binding protein (FgBP) of Streptococcus equi subsp. equi. Microbiology 146:1187–1194 http://dx.doi.org/10.1099/00221287-146-5-1187. [PubMed]
98. Timoney JF, Suther P, Velineni S, Artiushin SC. 2014. The antiphagocytic activity of SeM of Streptococcus equi requires capsule. J Equine Sci 25:53–56 http://dx.doi.org/10.1294/jes.25.53. [PubMed]
99. Ijaz M, Velineni S, Timoney JF. 2011. Selective pressure for allelic diversity in SeM of Streptococcus equi does not affect immunoreactive proteins SzPSe or Se18.9. Infect Genet Evol 11:1159–1163 http://dx.doi.org/10.1016/j.meegid.2011.01.011. [PubMed]
100. Tiwari R, Qin A, Artiushin S, Timoney JF. 2007. Se18.9, an anti-phagocytic factor H binding protein of Streptococcus equi. Vet Microbiol 121:105–115 http://dx.doi.org/10.1016/j.vetmic.2006.11.023. [PubMed]
101. Kelly C, Bugg M, Robinson C, Mitchell Z, Davis-Poynter N, Newton JR, Jolley KA, Maiden MC, Waller AS. 2006. Sequence variation of the SeM gene of Streptococcus equi allows discrimination of the source of strangles outbreaks. J Clin Microbiol 44:480–486 http://dx.doi.org/10.1128/JCM.44.2.480-486.2006. [PubMed]
102. Timoney JF, Artiushin SC, Boschwitz JS. 1997. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe. Infect Immun 65:3600–3605.
103. Velineni S, Timoney JF. 2013. Characterization and protective immunogenicity of the SzM protein of Streptococcus zooepidemicus NC78 from a clonal outbreak of equine respiratory disease. Clin Vaccine Immunol 20:1181–1188 http://dx.doi.org/10.1128/CVI.00069-13. [PubMed]
104. Bergmann S, Eichhorn I, Kohler TP, Hammerschmidt S, Goldmann O, Rohde M, Fulde M. 2017. SCM, the M protein of Streptococcus canis binds immunoglobulin G. Front Cell Infect Microbiol 7:80 http://dx.doi.org/10.3389/fcimb.2017.00080. [PubMed]
105. Vasi J, Frykberg L, Carlsson LE, Lindberg M, Guss B. 2000. M-like proteins of Streptococcus dysgalactiae. Infect Immun 68:294–302 http://dx.doi.org/10.1128/IAI.68.1.294-302.2000. [PubMed]
106. Lynskey NN, Reglinski M, Calay D, Siggins MK, Mason JC, Botto M, Sriskandan S. 2017. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLoS Pathog 13:e1006493 http://dx.doi.org/10.1371/journal.ppat.1006493. [PubMed]
107. Franken C, Haase G, Brandt C, Weber-Heynemann J, Martin S, Lämmler C, Podbielski A, Lütticken R, Spellerberg B. 2001. Horizontal gene transfer and host specificity of beta-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb. Mol Microbiol 41:925–935 http://dx.doi.org/10.1046/j.1365-2958.2001.02563.x.
108. Cleary PP, Peterson J, Chen C, Nelson C. 1991. Virulent human strains of group G streptococci express a C5a peptidase enzyme similar to that produced by group A streptococci. Infect Immun 59:2305–2310.
109. Sriprakash KS, Hartas J. 1996. Lateral genetic transfers between group A and G streptococci for M-like genes are ongoing. Microb Pathog 20:275–285 http://dx.doi.org/10.1006/mpat.1996.0026. [PubMed]
110. Kurupati P, Turner CE, Tziona I, Lawrenson RA, Alam FM, Nohadani M, Stamp GW, Zinkernagel AS, Nizet V, Edwards RJ, Sriskandan S. 2010. Chemokine-cleaving Streptococcus pyogenes protease SpyCEP is necessary and sufficient for bacterial dissemination within soft tissues and the respiratory tract. Mol Microbiol 76:1387–1397 http://dx.doi.org/10.1111/j.1365-2958.2010.07065.x. [PubMed]
111. Edwards RJ, Taylor GW, Ferguson M, Murray S, Rendell N, Wrigley A, Bai Z, Boyle J, Finney SJ, Jones A, Russell HH, Turner C, Cohen J, Faulkner L, Sriskandan S. 2005. Specific C-terminal cleavage and inactivation of interleukin-8 by invasive disease isolates of Streptococcus pyogenes. J Infect Dis 192:783–790 http://dx.doi.org/10.1086/432485. [PubMed]
112. Turner CE, Kurupati P, Wiles S, Edwards RJ, Sriskandan S. 2009. Impact of immunization against SpyCEP during invasive disease with two streptococcal species: Streptococcus pyogenes and Streptococcus equi. Vaccine 27:4923–4929 http://dx.doi.org/10.1016/j.vaccine.2009.06.042. [PubMed]
113. Malke H. 2000. Genetics and pathogenicity factors of group C and group G streptococci, p 163–176. In Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI (ed), Gram-Positive Pathogens. ASM Press, Washington, DC.
114. Navarre WW, Schneewind O. 1999. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229.
115. Sjöbring U, Björck L, Kastern W. 1991. Streptococcal protein G. Gene structure and protein binding properties. J Biol Chem 266:399–405.
116. Guss B, Eliasson M, Olsson A, Uhlén M, Frej AK, Jörnvall H, Flock JI, Lindberg M. 1986. Structure of the IgG-binding regions of streptococcal protein G. EMBO J 5:1567–1575 http://dx.doi.org/10.1002/j.1460-2075.1986.tb04398.x. [PubMed]
117. Byeon IJ, Louis JM, Gronenborn AM. 2003. A protein contortionist: core mutations of GB1 that induce dimerization and domain swapping. J Mol Biol 333:141–152 http://dx.doi.org/10.1016/S0022-2836(03)00928-8.
118. Ding K, Louis JM, Gronenborn AM. 2004. Insights into conformation and dynamics of protein GB1 during folding and unfolding by NMR. J Mol Biol 335:1299–1307 http://dx.doi.org/10.1016/j.jmb.2003.11.042. [PubMed]
119. Gronenborn AM, Filpula DR, Essig NZ, Achari A, Whitlow M, Wingfield PT, Clore GM. 1991. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 253:657–661 http://dx.doi.org/10.1126/science.1871600. [PubMed]
120. Jonsson H, Müller HP. 1994. The type-III Fc receptor from Streptococcus dysgalactiae is also an alpha 2-macroglobulin receptor. Eur J Biochem 220:819–826 http://dx.doi.org/10.1111/j.1432-1033.1994.tb18684.x. [PubMed]
121. Jonsson H, Burtsoff-Asp C, Guss B. 1995. Streptococcal protein MAG: a protein with broad albumin binding specificity. Biochim Biophys Acta 1249:65–71 http://dx.doi.org/10.1016/0167-4838(95)00065-3.
122. Jonsson H, Frykberg L, Rantamäki L, Guss B. 1994. MAG, a novel plasma protein receptor from Streptococcus dysgalactiae. Gene 143:85–89 http://dx.doi.org/10.1016/0378-1119(94)90609-2.
123. Jonsson H, Lindmark H, Guss B. 1995. A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect Immun 63:2968–2975.
124. Song XM, Perez-Casal J, Bolton A, Potter AA. 2001. Surface-expressed Mig protein protects Streptococcus dysgalactiae against phagocytosis by bovine neutrophils. Infect Immun 69:6030–6037 http://dx.doi.org/10.1128/IAI.69.10.6030-6037.2001. [PubMed]
125. Song XM, Perez-Casal J, Fontaine MC, Potter AA. 2002. Bovine immunoglobulin A (IgA)-binding activities of the surface-expressed Mig protein of Streptococcus dysgalactiae. Microbiology 148:2055–2064 http://dx.doi.org/10.1099/00221287-148-7-2055. [PubMed]
126. Song XM, Perez-Casal J, Potter AA. 2004. The Mig protein of Streptococcus dysgalactiae inhibits bacterial internalization into bovine mammary gland epithelial cells. FEMS Microbiol Lett 231:33–38 http://dx.doi.org/10.1016/S0378-1097(03)00923-6.
127. von Pawel-Rammingen U, Johansson BP, Björck L. 2002. IdeS, a novel streptococcal cysteine proteinase with unique specificity for immunoglobulin G. EMBO J 21:1607–1615 http://dx.doi.org/10.1093/emboj/21.7.1607. [PubMed]
128. Collin M, Olsén A. 2001. EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20:3046–3055 http://dx.doi.org/10.1093/emboj/20.12.3046. [PubMed]
129. Lannergård J, Guss B. 2006. IdeE, an IgG-endopeptidase of Streptococcus equi ssp. equi. FEMS Microbiol Lett 262:230–235 http://dx.doi.org/10.1111/j.1574-6968.2006.00404.x. [PubMed]
130. Hulting G, Flock M, Frykberg L, Lannergård J, Flock JI, Guss B. 2009. Two novel IgG endopeptidases of Streptococcus equi. FEMS Microbiol Lett 298:44–50 http://dx.doi.org/10.1111/j.1574-6968.2009.01698.x. [PubMed]
131. Flock M, Frykberg L, Sköld M, Guss B, Flock JI. 2012. Antiphagocytic function of an IgG glycosyl hydrolase from Streptococcus equi subsp. equi and its use as a vaccine component. Infect Immun 80:2914–2919 http://dx.doi.org/10.1128/IAI.06083-11. [PubMed]
132. Shadnezhad A, Naegeli A, Sjögren J, Adamczyk B, Leo F, Allhorn M, Karlsson NG, Jensen A, Collin M. 2016. EndoSd: an IgG glycan hydrolyzing enzyme in Streptococcus dysgalactiae subspecies dysgalactiae. Future Microbiol 11:721–736 http://dx.doi.org/10.2217/fmb.16.14. [PubMed]
133. Rungelrath V, Wohlsein JC, Siebert U, Stott J, Prenger-Berninghoff E, von Pawel-Rammingen U, Valentin-Weigand P, Baums CG, Seele J. 2017. Identification of a novel host-specific IgG protease in Streptococcus phocae subsp. phocae. Vet Microbiol 201:42–48 http://dx.doi.org/10.1016/j.vetmic.2017.01.009. [PubMed]
134. Ben Nasr A, Wistedt A, Ringdahl U, Sjöbring U. 1994. Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur J Biochem 222:267–276 http://dx.doi.org/10.1111/j.1432-1033.1994.tb18865.x. [PubMed]
135. Lottenberg R, Minning-Wenz D, Boyle MD. 1994. Capturing host plasmin(ogen): a common mechanism for invasive pathogens? Trends Microbiol 2:20–24 http://dx.doi.org/10.1016/0966-842X(94)90340-9.
136. Wang H, Lottenberg R, Boyle MD. 1995. A role for fibrinogen in the streptokinase-dependent acquisition of plasmin(ogen) by group A streptococci. J Infect Dis 171:85–92 http://dx.doi.org/10.1093/infdis/171.1.85. [PubMed]
137. Tewodros W, Karlsson I, Kronvall G. 1996. Allelic variation of the streptokinase gene in beta-hemolytic streptococci group C and G isolates of human origin. FEMS Immunol Med Microbiol 13:29–34. [PubMed]
138. McArthur JD, McKay FC, Ramachandran V, Shyam P, Cork AJ, Sanderson-Smith ML, Cole JN, Ringdahl U, Sjöbring U, Ranson M, Walker MJ. 2008. Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. FASEB J 22:3146–3153 http://dx.doi.org/10.1096/fj.08-109348. [PubMed]
139. Keramati M, Roohvand F, Eslaminejad Z, Mirzaie A, Nikbin VS, Aslani MM. 2012. PCR/RFLP-based allelic variants of streptokinase and their plasminogen activation potencies. FEMS Microbiol Lett 335:79–85 http://dx.doi.org/10.1111/j.1574-6968.2012.02640.x. [PubMed]
140. McCoy HE, Broder CC, Lottenberg R. 1991. Streptokinases produced by pathogenic group C streptococci demonstrate species-specific plasminogen activation. J Infect Dis 164:515–521 http://dx.doi.org/10.1093/infdis/164.3.515. [PubMed]
141. Schroeder B, Boyle MD, Sheerin BR, Asbury AC, Lottenberg R. 1999. Species specificity of plasminogen activation and acquisition of surface-associated proteolytic activity by group C streptococci grown in plasma. Infect Immun 67:6487–6495.
142. Andreoni F, Ugolini F, Keller N, Neff A, Nizet V, Hollands A, Marques Maggio E, Zinkernagel AS, Schuepbach RA. 2017. Immunoglobulin attenuates streptokinase-mediated virulence in Streptococcus dysgalactiae subsp. equisimilis necrotizing fasciitis. J Infect Dis 217:270–279. [PubMed]
143. Siemens N, Kittang BR, Chakrakodi B, Oppegaard O, Johansson L, Bruun T, Mylvaganam H, Svensson M, Skrede S, Norrby-Teglund A, INFECT Study Group. 2015. Increased cytotoxicity and streptolysin O activity in group G streptococcal strains causing invasive tissue infections. Sci Rep 5:16945 http://dx.doi.org/10.1038/srep16945. [PubMed]
144. Billington SJ, Jost BH, Songer JG. 2000. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett 182:197–205 http://dx.doi.org/10.1016/S0378-1097(99)00536-4.
145. Okumura K, Hara A, Tanaka T, Nishiguchi I, Minamide W, Igarashi H, Yutsudo T. 1994. Cloning and sequencing the streptolysin O genes of group C and group G streptococci. DNA Seq 4:325–328 http://dx.doi.org/10.3109/10425179409020859. [PubMed]
146. Magassa N, Chandrasekaran S, Caparon MG. 2010. Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. EMBO Rep 11:400–405 http://dx.doi.org/10.1038/embor.2010.37. [PubMed]
147. Barnett TC, Liebl D, Seymour LM, Gillen CM, Lim JY, Larock CN, Davies MR, Schulz BL, Nizet V, Teasdale RD, Walker MJ. 2013. The globally disseminated M1T1 clone of group A Streptococcus evades autophagy for intracellular replication. Cell Host Microbe 14:675–682 http://dx.doi.org/10.1016/j.chom.2013.11.003. [PubMed]
148. O’Neill AM, Thurston TL, Holden DW. 2016. Cytosolic replication of group A Streptococcus in human macrophages. MBio 7:e00020-16. [PubMed]
149. O’Seaghdha M, Wessels MR. 2013. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from xenophagic killing. PLoS Pathog 9:e1003394 http://dx.doi.org/10.1371/journal.ppat.1003394. [PubMed]
150. Sharma O, O’Seaghdha M, Velarde JJ, Wessels MR. 2016. NAD+-glycohydrolase promotes intracellular survival of group A Streptococcus. PLoS Pathog 12:e1005468 http://dx.doi.org/10.1371/journal.ppat.1005468. [PubMed]
151. Uchiyama S, Döhrmann S, Timmer AM, Dixit N, Ghochani M, Bhandari T, Timmer JC, Sprague K, Bubeck-Wardenburg J, Simon SI, Nizet V. 2015. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group A Streptococcus. Front Immunol 6:581 http://dx.doi.org/10.3389/fimmu.2015.00581. [PubMed]
152. Flanagan J, Collin N, Timoney J, Mitchell T, Mumford JA, Chanter N. 1998. Characterization of the haemolytic activity of Streptococcus equi. Microb Pathog 24:211–221 http://dx.doi.org/10.1006/mpat.1997.0190. [PubMed]
153. Nizet V. 2002. Streptococcal beta-hemolysins: genetics and role in disease pathogenesis. Trends Microbiol 10:575–580 http://dx.doi.org/10.1016/S0966-842X(02)02473-3.
154. Humar D, Datta V, Bast DJ, Beall B, De Azavedo JC, Nizet V. 2002. Streptolysin S and necrotising infections produced by group G streptococcus. Lancet 359:124–129 http://dx.doi.org/10.1016/S0140-6736(02)07371-3.
155. Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC. 2000. Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254 http://dx.doi.org/10.1128/IAI.68.7.4245-4254.2000. [PubMed]
156. Steiner K, Malke H. 2002. Dual control of streptokinase and streptolysin S production by the covRS and fasCAX two-component regulators in Streptococcus dysgalactiae subsp. equisimilis. Infect Immun 70:3627–3636 http://dx.doi.org/10.1128/IAI.70.7.3627-3636.2002. [PubMed]
157. Zeppa JJ, Kasper KJ, Mohorovic I, Mazzuca DM, Haeryfar SMM, McCormick JK. 2017. Nasopharyngeal infection by Streptococcus pyogenes requires superantigen-responsive Vβ-specific T cells. Proc Natl Acad Sci U S A 114:10226–10231. [PubMed]
158. Commons RJ, Smeesters PR, Proft T, Fraser JD, Robins-Browne R, Curtis N. 2014. Streptococcal superantigens: categorization and clinical associations. Trends Mol Med 20:48–62 http://dx.doi.org/10.1016/j.molmed.2013.10.004. [PubMed]
159. Sachse S, Seidel P, Gerlach D, Günther E, Rödel J, Straube E, Schmidt KH. 2002. Superantigen-like gene(s) in human pathogenic Streptococcus dysgalactiae, subsp equisimilis: genomic localisation of the gene encoding streptococcal pyrogenic exotoxin G ( speG(dys)). FEMS Immunol Med Microbiol 34:159–167 http://dx.doi.org/10.1111/j.1574-695X.2002.tb00618.x.
160. Brandt CM, Schweizer KG, Holland R, Lütticken R, Freyaldenhoven BS. 2005. Lack of mitogenic activity of speG- and speG(dys)-positive Streptococcus dysgalactiae subspecies equisimilis isolates from patients with invasive infections. Int J Med Microbiol 295:539–546 http://dx.doi.org/10.1016/j.ijmm.2005.07.013. [PubMed]
161. Okumura K, Shimomura Y, Murayama SY, Yagi J, Ubukata K, Kirikae T, Miyoshi-Akiyama T. 2012. Evolutionary paths of streptococcal and staphylococcal superantigens. BMC Genomics 13:404 http://dx.doi.org/10.1186/1471-2164-13-404. [PubMed]
162. Korem M, Hidalgo-Grass C, Michael-Gayego A, Nir-Paz R, Salameh S, Moses AE. 2014. Streptococcal pyrogenic exotoxin G gene in blood and pharyngeal isolates of Streptococcus dysgalactiae subspecies equisimilis has a limited role in pathogenesis. J Microbiol Immunol Infect 47:292–296 http://dx.doi.org/10.1016/j.jmii.2012.12.003. [PubMed]
163. Zhao J, Hayashi T, Saarinen S, Papageorgiou AC, Kato H, Imanishi K, Kirikae T, Abe R, Uchiyama T, Miyoshi-Akiyama T. 2007. Cloning, expression, and characterization of the superantigen streptococcal pyrogenic exotoxin G from Streptococcus dysgalactiae. Infect Immun 75:1721–1729 http://dx.doi.org/10.1128/IAI.01183-06. [PubMed]
164. Kalia A, Bessen DE. 2003. Presence of streptococcal pyrogenic exotoxin A and C genes in human isolates of group G streptococci. FEMS Microbiol Lett 219:291–295 http://dx.doi.org/10.1016/S0378-1097(03)00022-3.
165. Traverso F, Blanco A, Villalón P, Beratz N, Sáez Nieto JA, Lopardo H, National Collaborative Group for the Study of Streptococci and Related Bacteria. 2016. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis. Multicenter study: Argentina 2011-2012. Rev Argent Microbiol 48:279–289 http://dx.doi.org/10.1016/j.ram.2016.07.001. [PubMed]
166. Anand TD, Rajesh T, Rajendhran J, Gunasekaran P. 2012. Superantigen profiles of emm and emm-like typeable and nontypeable pharyngeal streptococcal isolates of South India. Ann Clin Microbiol Antimicrob 11:3 http://dx.doi.org/10.1186/1476-0711-11-3. [PubMed]
167. Artiushin SC, Timoney JF, Sheoran AS, Muthupalani SK. 2002. Characterization and immunogenicity of pyrogenic mitogens SePE-H and SePE-I of Streptococcus equi. Microb Pathog 32:71–85 http://dx.doi.org/10.1006/mpat.2001.0482. [PubMed]
168. Alber J, El-Sayed A, Estoepangestie S, Lämmler C, Zschöck M. 2005. Dissemination of the superantigen encoding genes seeL, seeM, szeL and szeM in Streptococcus equi subsp. equi and Streptococcus equi subsp. zooepidemicus. Vet Microbiol 109:135–141 http://dx.doi.org/10.1016/j.vetmic.2005.05.001. [PubMed]
169. Proft T, Webb PD, Handley V, Fraser JD. 2003. Two novel superantigens found in both group A and group C Streptococcus. Infect Immun 71:1361–1369 http://dx.doi.org/10.1128/IAI.71.3.1361-1369.2003. [PubMed]
170. Paillot R, Darby AC, Robinson C, Wright NL, Steward KF, Anderson E, Webb K, Holden MT, Efstratiou A, Broughton K, Jolley KA, Priestnall SL, Marotti Campi MC, Hughes MA, Radford A, Erles K, Waller AS. 2010. Identification of three novel superantigen-encoding genes in Streptococcus equi subsp. zooepidemicus, szeF, szeN, and szeP. Infect Immun 78:4817–4827 http://dx.doi.org/10.1128/IAI.00751-10. [PubMed]
171. Miyoshi-Akiyama T, Zhao J, Kato H, Kikuchi K, Totsuka K, Kataoka Y, Katsumi M, Uchiyama T. 2003. Streptococcus dysgalactiae-derived mitogen (SDM), a novel bacterial superantigen: characterization of its biological activity and predicted tertiary structure. Mol Microbiol 47:1589–1599 http://dx.doi.org/10.1046/j.1365-2958.2003.03411.x. [PubMed]
172. Lefébure T, Richards VP, Lang P, Pavinski-Bitar P, Stanhope MJ. 2012. Gene repertoire evolution of Streptococcus pyogenes inferred from phylogenomic analysis with Streptococcus canis and Streptococcus dysgalactiae. PLoS One 7:e37607 http://dx.doi.org/10.1371/journal.pone.0037607. [PubMed]
173. Igwe EI, Shewmaker PL, Facklam RR, Farley MM, van Beneden C, Beall B. 2003. Identification of superantigen genes speM, ssa, and smeZ in invasive strains of beta-hemolytic group C and G streptococci recovered from humans. FEMS Microbiol Lett 229:259–264 http://dx.doi.org/10.1016/S0378-1097(03)00842-5.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0020-2018
2019-05-17
2019-06-19

Abstract:

Initially recognized zoonoses, streptococci belonging to Lancefield group C (GCS) and G (GGS) were subsequently recognised as human pathogens causing a diverse range of symptoms, from asymptomatic carriage to life threatening diseases. Their taxonomy has changed during the last decade. Asymptomatic carriage is <4% amongst the human population and invasive infections are often in association with chronic diseases such as diabetes, cardiovascular diseases or chronic skin infections. Other clinical manifestations include acute pharyngitis, pneumonia, endocarditis, bacteraemia and toxic-shock syndrome. Post streptococcal sequalae such as rheumatic fever and acute glomerulonephritis have also been described but mainly in developed countries and amongst specific populations. Putative virulence determinants for these organisms include adhesins, toxins, and other factors that are essential for dissemination in human tissues and for interference with the host immune responses. High nucleotide similarities among virulence genes and their association with mobile genetic elements supports the hypothesis of extensive horizontal gene transfer events between the various pyogenic streptococcal species belonging to Lancefield groups A, C and G. A better understanding of the mechanisms of pathogenesis should be apparent by whole-genome sequencing, and this would result in more effective clinical strategies for the pyogenic group in general.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Pathogenicity factors of group C and G streptococci

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0020-2018
Generic image for table
TABLE 2

Species of Lancefield group C and G streptococci

Source: microbiolspec May 2019 vol. 7 no. 3 doi:10.1128/microbiolspec.GPP3-0020-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error