1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Immunology of Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Authors: Jonathan Kevin Sia1, Jyothi Rengarajan2
  • Editors: Vincent A. Fischetti3, Richard P. Novick4, Joseph J. Ferretti5, Daniel A. Portnoy6, Miriam Braunstein7, Julian I. Rood8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30329; 2: Department of Medicine, Division of Infectious Diseases and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30329; 3: The Rockefeller University, New York, NY; 4: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 5: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 6: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 7: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 8: Australian Bacterial Pathogen Program, Department of Microbiology, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0022-2018
  • Received 30 April 2018 Accepted 10 May 2018 Published 12 July 2019
  • Jyothi Rengarajan, [email protected]
image of Immunology of <span class="jp-italic">Mycobacterium tuberculosis</span> Infections
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Immunology of Infections, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0022-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0022-2018-2.gif
  • Abstract:

    Tuberculosis (TB) is a serious global public health challenge that results in significant morbidity and mortality worldwide. TB is caused by infection with the bacilli (), which has evolved a wide variety of strategies in order to thrive within its host. Understanding the complex interactions between and host immunity can inform the rational design of better TB vaccines and therapeutics. This chapter covers innate and adaptive immunity against infection, including insights on bacterial immune evasion and subversion garnered from animal models of infection and human studies. In addition, this chapter discusses the immunology of the TB granuloma, TB diagnostics, and TB comorbidities. Finally, this chapter provides a broad overview of the current TB vaccine pipeline.

  • Citation: Sia J, Rengarajan J. 2019. Immunology of Infections. Microbiol Spectrum 7(4):GPP3-0022-2018. doi:10.1128/microbiolspec.GPP3-0022-2018.

References

1. WHO. 2017. Global Tuberculosis Report. World Health Organization, Geneva, Switzerland. [PubMed]
2. Abubakar I, Pimpin L, Ariti C, Beynon R, Mangtani P, Sterne JA, Fine PE, Smith PG, Lipman M, Elliman D, Watson JM, Drumright LN, Whiting PF, Vynnycky E, Rodrigues LC. 2013. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guérin vaccination against tuberculosis. Health Technol Assess 17:1–372, v–vi http://dx.doi.org/10.3310/hta17370.
3. Roy A, Eisenhut M, Harris RJ, Rodrigues LC, Sridhar S, Habermann S, Snell L, Mangtani P, Adetifa I, Lalvani A, Abubakar I. 2014. Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ 349:g4643 http://dx.doi.org/10.1136/bmj.g4643. [PubMed]
4. Mangtani P, Abubakar I, Ariti C, Beynon R, Pimpin L, Fine PE, Rodrigues LC, Smith PG, Lipman M, Whiting PF, Sterne JA. 2014. Protection by BCG vaccine against tuberculosis: a systematic review of randomized controlled trials. Clin Infect Dis 58:470–480 http://dx.doi.org/10.1093/cid/cit790. [PubMed]
5. Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinsohn DM, Gandhi NR, Fennelly KP. 2017. Tuberculosis infectiousness and host susceptibility. J Infect Dis 216(Suppl 6) :S636–S643 http://dx.doi.org/10.1093/infdis/jix361. [PubMed]
6. Churchyard G, Kim P, Shah NS, Rustomjee R, Gandhi N, Mathema B, Dowdy D, Kasmar A, Cardenas V. 2017. What we know about tuberculosis transmission: an overview. J Infect Dis 216(Suppl 6) :S629–S635 http://dx.doi.org/10.1093/infdis/jix362. [PubMed]
7. Mathema B, Andrews JR, Cohen T, Borgdorff MW, Behr M, Glynn JR, Rustomjee R, Silk BJ, Wood R. 2017. Drivers of tuberculosis transmission. J Infect Dis 216(Suppl 6) :S644–S653 http://dx.doi.org/10.1093/infdis/jix354. [PubMed]
8. Barry CE III, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855 http://dx.doi.org/10.1038/nrmicro2236. [PubMed]
9. Dheda K, Gumbo T, Maartens G, Dooley KE, McNerney R, Murray M, Furin J, Nardell EA, London L, Lessem E, Theron G, van Helden P, Niemann S, Merker M, Dowdy D, Van Rie A, Siu GK, Pasipanodya JG, Rodrigues C, Clark TG, Sirgel FA, Esmail A, Lin HH, Atre SR, Schaaf HS, Chang KC, Lange C, Nahid P, Udwadia ZF, Horsburgh CR Jr, Churchyard GJ, Menzies D, Hesseling AC, Nuermberger E, McIlleron H, Fennelly KP, Goemaere E, Jaramillo E, Low M, Jara CM, Padayatchi N, Warren RM. 2017. The epidemiology, pathogenesis, transmission, diagnosis, and management of multidrug-resistant, extensively drug-resistant, and incurable tuberculosis. Lancet Respir Med 5:291–360.
10. Jones BE, Young SM, Antoniskis D, Davidson PT, Kramer F, Barnes PF. 1993. Relationship of the manifestations of tuberculosis to CD4 cell counts in patients with human immunodeficiency virus infection. Am Rev Respir Dis 148:1292–1297 http://dx.doi.org/10.1164/ajrccm/148.5.1292. [PubMed]
11. Leroy V, Salmi LR, Dupon M, Sentilhes A, Texier-Maugein J, Dequae L, Dabis F, Salamon R. 1997. Progression of human immunodeficiency virus infection in patients with tuberculosis disease. A cohort study in Bordeaux, France, 1988-1994. The Groupe d’Epidémiologie Clinique du Sida en Aquitaine (GECSA). Am J Epidemiol 145:293–300 http://dx.doi.org/10.1093/oxfordjournals.aje.a009105. [PubMed]
12. Havlir DV, Barnes PF. 1999. Tuberculosis in patients with human immunodeficiency virus infection. N Engl J Med 340:367–373 http://dx.doi.org/10.1056/NEJM199902043400507. [PubMed]
13. Toossi Z. 2003. Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. J Infect Dis 188:1146–1155 http://dx.doi.org/10.1086/378676. [PubMed]
14. Sonnenberg P, Glynn JR, Fielding K, Murray J, Godfrey-Faussett P, Shearer S. 2005. How soon after infection with HIV does the risk of tuberculosis start to increase? A retrospective cohort study in South African gold miners. J Infect Dis 191:150–158 http://dx.doi.org/10.1086/426827. [PubMed]
15. Geldmacher C, Schuetz A, Ngwenyama N, Casazza JP, Sanga E, Saathoff E, Boehme C, Geis S, Maboko L, Singh M, Minja F, Meyerhans A, Koup RA, Hoelscher M. 2008. Early depletion of Mycobacterium tuberculosis-specific T helper 1 cell responses after HIV-1 infection. J Infect Dis 198:1590–1598 http://dx.doi.org/10.1086/593017. [PubMed]
16. Geldmacher C, Ngwenyama N, Schuetz A, Petrovas C, Reither K, Heeregrave EJ, Casazza JP, Ambrozak DR, Louder M, Ampofo W, Pollakis G, Hill B, Sanga E, Saathoff E, Maboko L, Roederer M, Paxton WA, Hoelscher M, Koup RA. 2010. Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. J Exp Med 207:2869–2881 http://dx.doi.org/10.1084/jem.20100090. [PubMed]
17. Kalsdorf B, Scriba TJ, Wood K, Day CL, Dheda K, Dawson R, Hanekom WA, Lange C, Wilkinson RJ. 2009. HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. Am J Respir Crit Care Med 180:1262–1270 http://dx.doi.org/10.1164/rccm.200907-1011OC. [PubMed]
18. Bunjun R, Riou C, Soares AP, Thawer N, Müller TL, Kiravu A, Ginbot Z, Oni T, Goliath R, Kalsdorf B, von Groote-Bidlingmaier F, Hanekom W, Walzl G, Wilkinson RJ, Burgers WA. 2017. Effect of HIV on the frequency and number of Mycobacterium tuberculosis-specific CD4+ T cells in blood and airways during latent M. tuberculosis infection. J Infect Dis 216:1550–1560 http://dx.doi.org/10.1093/infdis/jix529. [PubMed]
19. Rosas-Taraco AG, Arce-Mendoza AY, Caballero-Olín G, Salinas-Carmona MC. 2006. Mycobacterium tuberculosis upregulates coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Res Hum Retroviruses 22:45–51 http://dx.doi.org/10.1089/aid.2006.22.45. [PubMed]
20. Juffermans NP, Speelman P, Verbon A, Veenstra J, Jie C, van Deventer SJ, van Der Poll T. 2001. Patients with active tuberculosis have increased expression of HIV coreceptors CXCR4 and CCR5 on CD4(+) T cells. Clin Infect Dis 32:650–652 http://dx.doi.org/10.1086/318701. [PubMed]
21. Mayanja-Kizza H, Wajja A, Wu M, Peters P, Nalugwa G, Mubiru F, Aung H, Vanham G, Hirsch C, Whalen C, Ellner J, Toossi Z. 2001. Activation of beta-chemokines and CCR5 in persons infected with human immunodeficiency virus type 1 and tuberculosis. J Infect Dis 183:1801–1804 http://dx.doi.org/10.1086/320724. [PubMed]
22. Morris L, Cilliers T, Bredell H, Phoswa M, Martin DJ. 2001. CCR5 is the major coreceptor used by HIV-1 subtype C isolates from patients with active tuberculosis. AIDS Res Hum Retroviruses 17:697–701 http://dx.doi.org/10.1089/088922201750236979. [PubMed]
23. Santucci MB, Bocchino M, Garg SK, Marruchella A, Colizzi V, Saltini C, Fraziano M. 2004. Expansion of CCR5+ CD4+ T-lymphocytes in the course of active pulmonary tuberculosis. Eur Respir J 24:638–643 http://dx.doi.org/10.1183/09031936.04.000105403. [PubMed]
24. Wolday D, Tegbaru B, Kassu A, Messele T, Coutinho R, van Baarle D, Miedema F. 2005. Expression of chemokine receptors CCR5 and CXCR4 on CD4+ T cells and plasma chemokine levels during treatment of active tuberculosis in HIV-1-coinfected patients. J Acquir Immune Defic Syndr 39:265–271 http://dx.doi.org/10.1097/01.qai.0000163027.47147.2e. [PubMed]
25. Day CL, Mkhwanazi N, Reddy S, Mncube Z, van der Stok M, Klenerman P, Walker BD. 2008. Detection of polyfunctional Mycobacterium tuberculosis-specific T cells and association with viral load in HIV-1-infected persons. J Infect Dis 197:990–999 http://dx.doi.org/10.1086/529048. [PubMed]
26. Riou C, Bunjun R, Müller TL, Kiravu A, Ginbot Z, Oni T, Goliath R, Wilkinson RJ, Burgers WA. 2016. Selective reduction of IFN-γ single positive mycobacteria-specific CD4+ T cells in HIV-1 infected individuals with latent tuberculosis infection. Tuberculosis (Edinb) 101:25–30 http://dx.doi.org/10.1016/j.tube.2016.07.018. [PubMed]
27. Strickland N, Müller TL, Berkowitz N, Goliath R, Carrington MN, Wilkinson RJ, Burgers WA, Riou C. 2017. Characterization of Mycobacterium tuberculosis-specific cells using MHC class II tetramers reveals phenotypic differences related to HIV infection and tuberculosis disease. J Immunol 199:2440–2450. [PubMed]
28. Day CL, Abrahams DA, Harris LD, van Rooyen M, Stone L, de Kock M, Hanekom WA. 2017. HIV-1 infection is associated with depletion and functional impairment of Mycobacterium tuberculosis-specific CD4 T cells in individuals with latent tuberculosis infection. J Immunol 199:2069–2080 http://dx.doi.org/10.4049/jimmunol.1700558. [PubMed]
29. Kalokhe AS, Adekambi T, Ibegbu CC, Ray SM, Day CL, Rengarajan J. 2015. Impaired degranulation and proliferative capacity of Mycobacterium tuberculosis-specific CD8+ T cells in HIV-infected individuals with latent tuberculosis. J Infect Dis 211:635–640 http://dx.doi.org/10.1093/infdis/jiu505. [PubMed]
30. Fox GJ, Menzies D. 2013. Epidemiology of tuberculosis immunology. Adv Exp Med Biol 783:1–32 http://dx.doi.org/10.1007/978-1-4614-6111-1_1. [PubMed]
31. Marais BJ, Lönnroth K, Lawn SD, Migliori GB, Mwaba P, Glaziou P, Bates M, Colagiuri R, Zijenah L, Swaminathan S, Memish ZA, Pletschette M, Hoelscher M, Abubakar I, Hasan R, Zafar A, Pantaleo G, Craig G, Kim P, Maeurer M, Schito M, Zumla A. 2013. Tuberculosis comorbidity with communicable and non-communicable diseases: integrating health services and control efforts. Lancet Infect Dis 13:436–448 http://dx.doi.org/10.1016/S1473-3099(13)70015-X.
32. Cooper AM. 2014. Mouse model of tuberculosis. Cold Spring Harb Perspect Med 5:a018556 http://dx.doi.org/10.1101/cshperspect.a018556. [PubMed]
33. Fortin A, Abel L, Casanova JL, Gros P. 2007. Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet 8:163–192 http://dx.doi.org/10.1146/annurev.genom.8.080706.092315. [PubMed]
34. Medina E, North RJ. 1998. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and Nramp1 genotype. Immunology 93:270–274 http://dx.doi.org/10.1046/j.1365-2567.1998.00419.x. [PubMed]
35. Sánchez F, Radaeva TV, Nikonenko BV, Persson AS, Sengul S, Schalling M, Schurr E, Apt AS, Lavebratt C. 2003. Multigenic control of disease severity after virulent Mycobacterium tuberculosis infection in mice. Infect Immun 71:126–131 http://dx.doi.org/10.1128/IAI.71.1.126-131.2003. [PubMed]
36. Marquis JF, Lacourse R, Ryan L, North RJ, Gros P. 2009. Genetic and functional characterization of the mouse Trl3 locus in defense against tuberculosis. J Immunol 182:3757–3767 http://dx.doi.org/10.4049/jimmunol.0802094. [PubMed]
37. McCune RM Jr, McDermott W, Tompsett R. 1956. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802 http://dx.doi.org/10.1084/jem.104.5.763. [PubMed]
38. Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL. 1999. Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67:4531–4538.
39. Calderon VE, Valbuena G, Goez Y, Judy BM, Huante MB, Sutjita P, Johnston RK, Estes DM, Hunter RL, Actor JK, Cirillo JD, Endsley JJ. 2013. A humanized mouse model of tuberculosis. PLoS One 8:e63331 http://dx.doi.org/10.1371/journal.pone.0063331. [PubMed]
40. Heuts F, Gavier-Widén D, Carow B, Juarez J, Wigzell H, Rottenberg ME. 2013. CD4+ cell-dependent granuloma formation in humanized mice infected with mycobacteria. Proc Natl Acad Sci USA 110:6482–6487 http://dx.doi.org/10.1073/pnas.1219985110. [PubMed]
41. McMurray DN. 2001. Disease model: pulmonary tuberculosis. Trends Mol Med 7:135–137 http://dx.doi.org/10.1016/S1471-4914(00)01901-8.
42. Allison MJ, Zappasodi P, Lurie MB. 1962. Host-parasite relationships in natively resistant and susceptible rabbits on quantitative inhalation of tubercle bacilli. Their significance for the nature of genetic resistance. Am Rev Respir Dis 85:553–569.
43. Bishai WR, Dannenberg AM Jr, Parrish N, Ruiz R, Chen P, Zook BC, Johnson W, Boles JW, Pitt ML. 1999. Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary tubercle count method. Infect Immun 67:4931–4934.
44. Manabe YC, Dannenberg AM Jr, Tyagi SK, Hatem CL, Yoder M, Woolwine SC, Zook BC, Pitt ML, Bishai WR. 2003. Different strains of Mycobacterium tuberculosis cause various spectrums of disease in the rabbit model of tuberculosis. Infect Immun 71:6004–6011 http://dx.doi.org/10.1128/IAI.71.10.6004-6011.2003. [PubMed]
45. Dorman SE, Hatem CL, Tyagi S, Aird K, Lopez-Molina J, Pitt ML, Zook BC, Dannenberg AM Jr, Bishai WR, Manabe YC. 2004. Susceptibility to tuberculosis: clues from studies with inbred and outbred New Zealand white rabbits. Infect Immun 72:1700–1705 http://dx.doi.org/10.1128/IAI.72.3.1700-1705.2004. [PubMed]
46. Tsenova L, Ellison E, Harbacheuski R, Moreira AL, Kurepina N, Reed MB, Mathema B, Barry CE III, Kaplan G. 2005. Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. J Infect Dis 192:98–106 http://dx.doi.org/10.1086/430614. [PubMed]
47. Sun H, Ma X, Zhang G, Luo Y, Tang K, Lin X, Yu H, Zhang Y, Zhu B. 2012. Effects of immunomodulators on liquefaction and ulceration in the rabbit skin model of tuberculosis. Tuberculosis (Edinb) 92:345–350 http://dx.doi.org/10.1016/j.tube.2012.03.005. [PubMed]
48. Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. 2002. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17:693–702 http://dx.doi.org/10.1016/S1074-7613(02)00475-2.
49. Dee CT, Nagaraju RT, Athanasiadis EI, Gray C, Fernandez Del Ama L, Johnston SA, Secombes CJ, Cvejic A, Hurlstone AF. 2016. CD4-transgenic zebrafish reveal tissue-resident Th2- and regulatory T cell-like populations and diverse mononuclear phagocytes. J Immunol 197:3520–3530 http://dx.doi.org/10.4049/jimmunol.1600959. [PubMed]
50. Kasheta M, Painter CA, Moore FE, Lobbardi R, Bryll A, Freiman E, Stachura D, Rogers AB, Houvras Y, Langenau DM, Ceol CJ. 2017. Identification and characterization of T reg-like cells in zebrafish. J Exp Med 214:3519–3530 http://dx.doi.org/10.1084/jem.20162084. [PubMed]
51. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL. 2014. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 20:75–79 http://dx.doi.org/10.1038/nm.3412. [PubMed]
52. Flynn JL, Gideon HP, Mattila JT, Lin PL. 2015. Immunology studies in non-human primate models of tuberculosis. Immunol Rev 264:60–73 http://dx.doi.org/10.1111/imr.12258. [PubMed]
53. Kaushal D, Mehra S. 2012. Faithful experimental models of human Mycobacterium Tuberculosis infection. Mycobact Dis 2:2 http://dx.doi.org/10.4172/2161-1068.1000e108. [PubMed]
54. Hunter RL, Actor JK, Hwang SA, Khan A, Urbanowski ME, Kaushal D, Jagannath C. 2018. Pathogenesis and animal models of post-primary (bronchogenic) tuberculosis: a review. Pathogens 7:7 http://dx.doi.org/10.3390/pathogens7010019. [PubMed]
55. Mothé BR, Lindestam Arlehamn CS, Dow C, Dillon MBC, Wiseman RW, Bohn P, Karl J, Golden NA, Gilpin T, Foreman TW, Rodgers MA, Mehra S, Scriba TJ, Flynn JL, Kaushal D, O’Connor DH, Sette A. 2015. The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans. Tuberculosis (Edinb) 95:722–735 http://dx.doi.org/10.1016/j.tube.2015.07.005. [PubMed]
56. Lai X, Shen Y, Zhou D, Sehgal P, Shen L, Simon M, Qiu L, Letvin NL, Chen ZW. 2003. Immune biology of macaque lymphocyte populations during mycobacterial infection. Clin Exp Immunol 133:182–192 http://dx.doi.org/10.1046/j.1365-2249.2003.02209.x. [PubMed]
57. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, Shen Y, Halliday L, Fortman J, McAllister M, Estep J, Hunt R, Vasconcelos D, Du G, Porcelli SA, Larsen MH, Jacobs WR Jr, Haynes BF, Letvin NL, Chen ZW. 2009. A critical role for CD8 T cells in a nonhuman primate model of tuberculosis. PLoS Pathog 5:e1000392 http://dx.doi.org/10.1371/journal.ppat.1000392. [PubMed]
58. Kaushal D, Foreman TW, Gautam US, Alvarez X, Adekambi T, Rangel-Moreno J, Golden NA, Johnson AM, Phillips BL, Ahsan MH, Russell-Lodrigue KE, Doyle LA, Roy CJ, Didier PJ, Blanchard JL, Rengarajan J, Lackner AA, Khader SA, Mehra S. 2015. Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nat Commun 6:8533 http://dx.doi.org/10.1038/ncomms9533. [PubMed]
59. Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A, Ottenhoff TH, Heidt PJ, Gilbert SC, Gicquel B, Hill AV, Martin C, McShane H, Thomas AW. 2009. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4:e5264 http://dx.doi.org/10.1371/journal.pone.0005264. [PubMed]
60. Rahman S, Magalhaes I, Rahman J, Ahmed RK, Sizemore DR, Scanga CA, Weichold F, Verreck F, Kondova I, Sadoff J, Thorstensson R, Spångberg M, Svensson M, Andersson J, Maeurer M, Brighenti S. 2012. Prime-boost vaccination with rBCG/rAd35 enhances CD8 + cytolytic T-cell responses in lesions from Mycobacterium tuberculosis-infected primates. Mol Med 18:647–658 http://dx.doi.org/10.2119/molmed.2011.00222. [PubMed]
61. Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J, Fillmore D, Dartois V, Scanga C, Frye LJ, Janssen C, Klein E, Barry CE III, Flynn JL. 2013. Radiologic responses in cynomolgus macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother 57:4237–4244 http://dx.doi.org/10.1128/AAC.00277-13. [PubMed]
62. White AG, Maiello P, Coleman MT, Tomko JA, Frye LJ, Scanga CA, Lin PL, Flynn JL. 2017. Analysis of 18FDG PET/CT Imaging as a tool for studying Mycobacterium tuberculosis infection and treatment in non-human primates. J Vis Exp (127) :10.3791/56375.
63. Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, Klein E, Barry CE III, Flynn JL. 2012. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A 109:14188–14193 http://dx.doi.org/10.1073/pnas.1121497109. [PubMed]
64. Mehra S, Golden NA, Dutta NK, Midkiff CC, Alvarez X, Doyle LA, Asher M, Russell-Lodrigue K, Monjure C, Roy CJ, Blanchard JL, Didier PJ, Veazey RS, Lackner AA, Kaushal D. 2011. Reactivation of latent tuberculosis in rhesus macaques by coinfection with simian immunodeficiency virus. J Med Primatol 40:233–243 http://dx.doi.org/10.1111/j.1600-0684.2011.00485.x. [PubMed]
65. Foreman TW, Mehra S, LoBato DN, Malek A, Alvarez X, Golden NA, Bucşan AN, Didier PJ, Doyle-Meyers LA, Russell-Lodrigue KE, Roy CJ, Blanchard J, Kuroda MJ, Lackner AA, Chan J, Khader SA, Jacobs WR Jr, Kaushal D. 2016. CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proc Natl Acad Sci U S A 113:E5636–E5644 http://dx.doi.org/10.1073/pnas.1611987113. [PubMed]
66. Gautam US, Foreman TW, Bucsan AN, Veatch AV, Alvarez X, Adekambi T, Golden NA, Gentry KM, Doyle-Meyers LA, Russell-Lodrigue KE, Didier PJ, Blanchard JL, Kousoulas KG, Lackner AA, Kalman D, Rengarajan J, Khader SA, Kaushal D, Mehra S. 2018. In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 115:E62–E71 http://dx.doi.org/10.1073/pnas.1711373114. [PubMed]
67. Diedrich CR, Mattila JT, Klein E, Janssen C, Phuah J, Sturgeon TJ, Montelaro RC, Lin PL, Flynn JL. 2010. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One 5:e9611 http://dx.doi.org/10.1371/journal.pone.0009611. [PubMed]
68. Mattila JT, Diedrich CR, Lin PL, Phuah J, Flynn JL. 2011. Simian immunodeficiency virus-induced changes in T cell cytokine responses in cynomolgus macaques with latent Mycobacterium tuberculosis infection are associated with timing of reactivation. J Immunol 186:3527–3537 http://dx.doi.org/10.4049/jimmunol.1003773. [PubMed]
69. Lin PL, Rutledge T, Green AM, Bigbee M, Fuhrman C, Klein E, Flynn JL. 2012. CD4 T cell depletion exacerbates acute Mycobacterium tuberculosis while reactivation of latent infection is dependent on severity of tissue depletion in cynomolgus macaques. AIDS Res Hum Retroviruses 28:1693–1702 http://dx.doi.org/10.1089/aid.2012.0028. [PubMed]
70. Lin PL, Myers A, Smith L, Bigbee C, Bigbee M, Fuhrman C, Grieser H, Chiosea I, Voitenek NN, Capuano SV, Klein E, Flynn JL. 2010. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350. [PubMed]
71. Lin PL, Maiello P, Gideon HP, Coleman MT, Cadena AM, Rodgers MA, Gregg R, O’Malley M, Tomko J, Fillmore D, Frye LJ, Rutledge T, DiFazio RM, Janssen C, Klein E, Andersen PL, Fortune SM, Flynn JL. 2016. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog 12:e1005739 http://dx.doi.org/10.1371/journal.ppat.1005739. [PubMed]
72. Philips JA, Ernst JD. 2012. Tuberculosis pathogenesis and immunity. Annu Rev Pathol 7:353–384 http://dx.doi.org/10.1146/annurev-pathol-011811-132458. [PubMed]
73. Jo EK, Yang CS, Choi CH, Harding CV. 2007. Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 9:1087–1098 http://dx.doi.org/10.1111/j.1462-5822.2007.00914.x. [PubMed]
74. Kleinnijenhuis J, Oosting M, Joosten LA, Netea MG, Van Crevel R. 2011. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol 2011:405310 http://dx.doi.org/10.1155/2011/405310. [PubMed]
75. Watson RO, Manzanillo PS, Cox JS. 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–815 http://dx.doi.org/10.1016/j.cell.2012.06.040. [PubMed]
76. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–480 http://dx.doi.org/10.1016/j.chom.2012.03.007. [PubMed]
77. Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H, Lee JH, Bishai WR. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat Med 21:401–406 http://dx.doi.org/10.1038/nm.3813. [PubMed]
78. Collins AC, Cai H, Li T, Franco LH, Li XD, Nair VR, Scharn CR, Stamm CE, Levine B, Chen ZJ, Shiloh MU. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. Cell Host Microbe 17:820–828 http://dx.doi.org/10.1016/j.chom.2015.05.005. [PubMed]
79. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, Vance RE, Stallings CL, Virgin HW, Cox JS. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:811–819 http://dx.doi.org/10.1016/j.chom.2015.05.004. [PubMed]
80. Court N, Vasseur V, Vacher R, Frémond C, Shebzukhov Y, Yeremeev VV, Maillet I, Nedospasov SA, Gordon S, Fallon PG, Suzuki H, Ryffel B, Quesniaux VF. 2010. Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 184:7057–7070 http://dx.doi.org/10.4049/jimmunol.1000164. [PubMed]
81. Velez DR, Wejse C, Stryjewski ME, Abbate E, Hulme WF, Myers JL, Estevan R, Patillo SG, Olesen R, Tacconelli A, Sirugo G, Gilbert JR, Hamilton CD, Scott WK. 2010. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet 127:65–73 http://dx.doi.org/10.1007/s00439-009-0741-7. [PubMed]
82. Ma X, Liu Y, Gowen BB, Graviss EA, Clark AG, Musser JM. 2007. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One 2:e1318 http://dx.doi.org/10.1371/journal.pone.0001318. [PubMed]
83. Davila S, Hibberd ML, Hari Dass R, Wong HE, Sahiratmadja E, Bonnard C, Alisjahbana B, Szeszko JS, Balabanova Y, Drobniewski F, van Crevel R, van de Vosse E, Nejentsev S, Ottenhoff TH, Seielstad M. 2008. Genetic association and expression studies indicate a role of toll-like receptor 8 in pulmonary tuberculosis. PLoS Genet 4:e1000218 http://dx.doi.org/10.1371/journal.pgen.1000218. [PubMed]
84. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A, Aucan C, Segal S, Moore CE, Knox K, Campbell SJ, Lienhardt C, Scott A, Aaby P, Sow OY, Grignani RT, Sillah J, Sirugo G, Peshu N, Williams TN, Maitland K, Davies RJ, Kwiatkowski DP, Day NP, Yala D, Crook DW, Marsh K, Berkley JA, O’Neill LA, Hill AV. 2007. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39:523–528 http://dx.doi.org/10.1038/ng1976. [PubMed]
85. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. 2004. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 114:1790–1799 http://dx.doi.org/10.1172/JCI200421027. [PubMed]
86. Scanga CA, Bafica A, Feng CG, Cheever AW, Hieny S, Sher A. 2004. MyD88-deficient mice display a profound loss in resistance to Mycobacterium tuberculosis associated with partially impaired Th1 cytokine and nitric oxide synthase 2 expression. Infect Immun 72:2400–2404 http://dx.doi.org/10.1128/IAI.72.4.2400-2404.2004. [PubMed]
87. Mayer-Barber KD, Barber DL, Shenderov K, White SD, Wilson MS, Cheever A, Kugler D, Hieny S, Caspar P, Núñez G, Schlueter D, Flavell RA, Sutterwala FS, Sher A. 2010. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol 184:3326–3330 http://dx.doi.org/10.4049/jimmunol.0904189. [PubMed]
88. Fremond CM, Togbe D, Doz E, Rose S, Vasseur V, Maillet I, Jacobs M, Ryffel B, Quesniaux VF. 2007. IL-1 receptor-mediated signal is an essential component of MyD88-dependent innate response to Mycobacterium tuberculosis infection. J Immunol 179:1178–1189 http://dx.doi.org/10.4049/jimmunol.179.2.1178. [PubMed]
89. Shi S, Nathan C, Schnappinger D, Drenkow J, Fuortes M, Block E, Ding A, Gingeras TR, Schoolnik G, Akira S, Takeda K, Ehrt S. 2003. MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. J Exp Med 198:987–997 http://dx.doi.org/10.1084/jem.20030603. [PubMed]
90. Bafica A, Scanga CA, Feng CG, Leifer C, Cheever A, Sher A. 2005. TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724 http://dx.doi.org/10.1084/jem.20051782. [PubMed]
91. Dorhoi A, Desel C, Yeremeev V, Pradl L, Brinkmann V, Mollenkopf HJ, Hanke K, Gross O, Ruland J, Kaufmann SH. 2010. The adaptor molecule CARD9 is essential for tuberculosis control. J Exp Med 207:777–792 http://dx.doi.org/10.1084/jem.20090067. [PubMed]
92. McElvania Tekippe E, Allen IC, Hulseberg PD, Sullivan JT, McCann JR, Sandor M, Braunstein M, Ting JP. 2010. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 5:e12320 http://dx.doi.org/10.1371/journal.pone.0012320. [PubMed]
93. Eklund D, Welin A, Andersson H, Verma D, Söderkvist P, Stendahl O, Särndahl E, Lerm M. 2014. Human gene variants linked to enhanced NLRP3 activity limit intramacrophage growth of Mycobacterium tuberculosis. J Infect Dis 209:749–753 http://dx.doi.org/10.1093/infdis/jit572. [PubMed]
94. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. 1998. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuber Lung Dis 79:83–89 http://dx.doi.org/10.1054/tuld.1998.0009. [PubMed]
95. Wilkinson RJ, Patel P, Llewelyn M, Hirsch CS, Pasvol G, Snounou G, Davidson RN, Toossi Z. 1999. Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J Exp Med 189:1863–1874 http://dx.doi.org/10.1084/jem.189.12.1863. [PubMed]
96. Flores-Villanueva PO, Ruiz-Morales JA, Song CH, Flores LM, Jo EK, Montaño M, Barnes PF, Selman M, Granados J. 2005. A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 202:1649–1658 http://dx.doi.org/10.1084/jem.20050126. [PubMed]
97. Juffermans NP, Florquin S, Camoglio L, Verbon A, Kolk AH, Speelman P, van Deventer SJ, van Der Poll T. 2000. Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis 182:902–908 http://dx.doi.org/10.1086/315771. [PubMed]
98. Sugawara I, Yamada H, Hua S, Mizuno S. 2001. Role of interleukin (IL)-1 type 1 receptor in mycobacterial infection. Microbiol Immunol 45:743–750 http://dx.doi.org/10.1111/j.1348-0421.2001.tb01310.x. [PubMed]
99. Yamada H, Mizumo S, Horai R, Iwakura Y, Sugawara I. 2000. Protective role of interleukin-1 in mycobacterial infection in IL-1 alpha/beta double-knockout mice. Lab Invest 80:759–767 http://dx.doi.org/10.1038/labinvest.3780079. [PubMed]
100. Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, Derrick SC, Shi R, Kumar NP, Wei W, Yuan X, Zhang G, Cai Y, Babu S, Catalfamo M, Salazar AM, Via LE, Barry CE III, Sher A. 2014. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature 511:99–103 http://dx.doi.org/10.1038/nature13489. [PubMed]
101. Di Paolo NC, Shafiani S, Day T, Papayannopoulou T, Russell DW, Iwakura Y, Sherman D, Urdahl K, Shayakhmetov DM. 2015. Interdependence between interleukin-1 and tumor necrosis factor regulates TNF-dependent control of Mycobacterium tuberculosis infection. Immunity 43:1125–1136 http://dx.doi.org/10.1016/j.immuni.2015.11.016. [PubMed]
102. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87 http://dx.doi.org/10.1038/nature02837. [PubMed]
103. Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, Guilhot C, Kaplan G. 2008. The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76:3027–3036 http://dx.doi.org/10.1128/IAI.01663-07. [PubMed]
104. Blanc L, Gilleron M, Prandi J, Song OR, Jang MS, Gicquel B, Drocourt D, Neyrolles O, Brodin P, Tiraby G, Vercellone A, Nigou J. 2017. Mycobacterium tuberculosis inhibits human innate immune responses via the production of TLR2 antagonist glycolipids. Proc Natl Acad Sci U S A 114:11205–11210 http://dx.doi.org/10.1073/pnas.1707840114. [PubMed]
105. Rengarajan J, Murphy E, Park A, Krone CL, Hett EC, Bloom BR, Glimcher LH, Rubin EJ. 2008. Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc Natl Acad Sci U S A 105:264–269 http://dx.doi.org/10.1073/pnas.0710601105. [PubMed]
106. Madan-Lala R, Peixoto KV, Re F, Rengarajan J. 2011. Mycobacterium tuberculosis Hip1 dampens macrophage proinflammatory responses by limiting Toll-like receptor 2 activation. Infect Immun 79:4828–4838 http://dx.doi.org/10.1128/IAI.05574-11. [PubMed]
107. Madan-Lala R, Sia JK, King R, Adekambi T, Monin L, Khader SA, Pulendran B, Rengarajan J. 2014. Mycobacterium tuberculosis impairs dendritic cell functions through the serine hydrolase Hip1. J Immunol 192:4263–4272 http://dx.doi.org/10.4049/jimmunol.1303185. [PubMed]
108. Naffin-Olivos JL, Georgieva M, Goldfarb N, Madan-Lala R, Dong L, Bizzell E, Valinetz E, Brandt GS, Yu S, Shabashvili DE, Ringe D, Dunn BM, Petsko GA, Rengarajan J. 2014. Mycobacterium tuberculosis Hip1 modulates macrophage responses through proteolysis of GroEL2. PLoS Pathog 10:e1004132 http://dx.doi.org/10.1371/journal.ppat.1004132. [PubMed]
109. Georgieva M, Sia JK, Bizzell E, Madan-Lala R, Rengarajan J. 2018. Mycobacterium tuberculosis GroEL2 modulates dendritic cell responses. Infect Immun 86:e00387-17. [PubMed]
110. Master SS, Rampini SK, Davis AS, Keller C, Ehlers S, Springer B, Timmins GS, Sander P, Deretic V. 2008. Mycobacterium tuberculosis prevents inflammasome activation. Cell Host Microbe 3:224–232 http://dx.doi.org/10.1016/j.chom.2008.03.003. [PubMed]
111. Ehrt S, Schnappinger D. 2009. Mycobacterial survival strategies in the phagosome: defence against host stresses. Cell Microbiol 11:1170–1178 http://dx.doi.org/10.1111/j.1462-5822.2009.01335.x. [PubMed]
112. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK. 2003. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704 http://dx.doi.org/10.1084/jem.20030846. [PubMed]
113. Rengarajan J, Bloom BR, Rubin EJ. 2005. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102:8327–8332 http://dx.doi.org/10.1073/pnas.0503272102. [PubMed]
114. Fratti RA, Chua J, Vergne I, Deretic V. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci USA 100:5437–5442 http://dx.doi.org/10.1073/pnas.0737613100. [PubMed]
115. Saleh MT, Belisle JT. 2000. Secretion of an acid phosphatase (SapM) by Mycobacterium tuberculosis that is similar to eukaryotic acid phosphatases. J Bacteriol 182:6850–6853 http://dx.doi.org/10.1128/JB.182.23.6850-6853.2000. [PubMed]
116. Vergne I, Chua J, Lee HH, Lucas M, Belisle J, Deretic V. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc Natl Acad Sci USA 102:4033–4038 http://dx.doi.org/10.1073/pnas.0409716102. [PubMed]
117. Bach H, Papavinasasundaram KG, Wong D, Hmama Z, Av-Gay Y. 2008. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322 http://dx.doi.org/10.1016/j.chom.2008.03.008. [PubMed]
118. Nguyen L, Pieters J. 2005. The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol 15:269–276 http://dx.doi.org/10.1016/j.tcb.2005.03.009. [PubMed]
119. Majlessi L, Combaluzier B, Albrecht I, Garcia JE, Nouze C, Pieters J, Leclerc C. 2007. Inhibition of phagosome maturation by mycobacteria does not interfere with presentation of mycobacterial antigens by MHC molecules. J Immunol 179:1825–1833 http://dx.doi.org/10.4049/jimmunol.179.3.1825. [PubMed]
120. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C, Huygen K, Klebl B, Thompson C, Bacher G, Pieters J. 2004. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–1804 http://dx.doi.org/10.1126/science.1099384. [PubMed]
121. Cowley S, Ko M, Pick N, Chow R, Downing KJ, Gordhan BG, Betts JC, Mizrahi V, Smith DA, Stokes RW, Av-Gay Y. 2004. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol Microbiol 52:1691–1702 http://dx.doi.org/10.1111/j.1365-2958.2004.04085.x. [PubMed]
122. Quigley J, Hughitt VK, Velikovsky CA, Mariuzza RA, El-Sayed NM, Briken V. 2017. The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis. MBio 8:e00148-17 http://dx.doi.org/10.1128/mBio.00148-17. [PubMed]
123. Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, Verdoes M, Wilkinson RJ, Young DB, Gutierrez MG. 2017. A Rab20-dependent membrane trafficking pathway controls M. tuberculosis replication by regulating phagosome spaciousness and integrity. Cell Host Microbe 21:619–628.e5 http://dx.doi.org/10.1016/j.chom.2017.04.004. [PubMed]
124. de Jonge MI, Pehau-Arnaudet G, Fretz MM, Romain F, Bottai D, Brodin P, Honoré N, Marchal G, Jiskoot W, England P, Cole ST, Brosch R. 2007. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol 189:6028–6034 http://dx.doi.org/10.1128/JB.00469-07. [PubMed]
125. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, Pierson J, Brenner M, Peters PJ. 2007. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129:1287–1298 http://dx.doi.org/10.1016/j.cell.2007.05.059. [PubMed]
126. Houben D, Demangel C, van Ingen J, Perez J, Baldeón L, Abdallah AM, Caleechurn L, Bottai D, van Zon M, de Punder K, van der Laan T, Kant A, Bossers-de Vries R, Willemsen P, Bitter W, van Soolingen D, Brosch R, van der Wel N, Peters PJ. 2012. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria. Cell Microbiol 14:1287–1298 http://dx.doi.org/10.1111/j.1462-5822.2012.01799.x. [PubMed]
127. De Leon J, Jiang G, Ma Y, Rubin E, Fortune S, Sun J. 2012. Mycobacterium tuberculosis ESAT-6 exhibits a unique membrane-interacting activity that is not found in its ortholog from non-pathogenic Mycobacterium smegmatis. J Biol Chem 287:44184–44191 http://dx.doi.org/10.1074/jbc.M112.420869. [PubMed]
128. Conrad WH, Osman MM, Shanahan JK, Chu F, Takaki KK, Cameron J, Hopkinson-Woolley D, Brosch R, Ramakrishnan L. 2017. Mycobacterial ESX-1 secretion system mediates host cell lysis through bacterium contact-dependent gross membrane disruptions. Proc Natl Acad Sci USA 114:1371–1376 http://dx.doi.org/10.1073/pnas.1620133114. [PubMed]
129. Pandey AK, Yang Y, Jiang Z, Fortune SM, Coulombe F, Behr MA, Fitzgerald KA, Sassetti CM, Kelliher MA. 2009. NOD2, RIP2 and IRF5 play a critical role in the type I interferon response to Mycobacterium tuberculosis. PLoS Pathog 5:e1000500 http://dx.doi.org/10.1371/journal.ppat.1000500. [PubMed]
130. Coulombe F, Divangahi M, Veyrier F, de Léséleuc L, Gleason JL, Yang Y, Kelliher MA, Pandey AK, Sassetti CM, Reed MB, Behr MA. 2009. Increased NOD2-mediated recognition of N-glycolyl muramyl dipeptide. J Exp Med 206:1709–1716 http://dx.doi.org/10.1084/jem.20081779. [PubMed]
131. Mehra A, Zahra A, Thompson V, Sirisaengtaksin N, Wells A, Porto M, Köster S, Penberthy K, Kubota Y, Dricot A, Rogan D, Vidal M, Hill DE, Bean AJ, Philips JA. 2013. Mycobacterium tuberculosis type VII secreted effector EsxH targets host ESCRT to impair trafficking. PLoS Pathog 9:e1003734 http://dx.doi.org/10.1371/journal.ppat.1003734. [PubMed]
132. Tinaztepe E, Wei JR, Raynowska J, Portal-Celhay C, Thompson V, Philips JA. 2016. Role of metal-dependent regulation of ESX-3 secretion in intracellular survival of Mycobacterium tuberculosis. Infect Immun 84:2255–2263 http://dx.doi.org/10.1128/IAI.00197-16. [PubMed]
133. Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilchèze C, Jones CM, Cole LE, Tinaztepe E, Thompson V, Fenyö D, Niederweis M, Ueberheide B, Philips JA, Jacobs WR Jr. 2016. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A 113:E348–E357 http://dx.doi.org/10.1073/pnas.1523321113. [PubMed]
134. Hou JM, D’Lima NG, Rigel NW, Gibbons HS, McCann JR, Braunstein M, Teschke CM. 2008. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J Bacteriol 190:4880–4887 http://dx.doi.org/10.1128/JB.00412-08. [PubMed]
135. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR Jr. 2003. SecA2 functions in the secretion of superoxide dismutase A and in the virulence of Mycobacterium tuberculosis. Mol Microbiol 48:453–464 http://dx.doi.org/10.1046/j.1365-2958.2003.03438.x. [PubMed]
136. Kurtz S, McKinnon KP, Runge MS, Ting JP, Braunstein M. 2006. The SecA2 secretion factor of Mycobacterium tuberculosis promotes growth in macrophages and inhibits the host immune response. Infect Immun 74:6855–6864 http://dx.doi.org/10.1128/IAI.01022-06. [PubMed]
137. Sullivan JT, Young EF, McCann JR, Braunstein M. 2012. The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages. Infect Immun 80:996–1006 http://dx.doi.org/10.1128/IAI.05987-11. [PubMed]
138. Gatfield J, Pieters J. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288:1647–1650 http://dx.doi.org/10.1126/science.288.5471.1647. [PubMed]
139. Jayachandran R, Sundaramurthy V, Combaluzier B, Mueller P, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J, Pieters J. 2007. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130:37–50 http://dx.doi.org/10.1016/j.cell.2007.04.043. [PubMed]
140. Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732–736 http://dx.doi.org/10.1126/science.285.5428.732. [PubMed]
141. Long R, Light B, Talbot JA. 1999. Mycobacteriocidal action of exogenous nitric oxide. Antimicrob Agents Chemother 43:403–405. [PubMed]
142. Yu K, Mitchell C, Xing Y, Magliozzo RS, Bloom BR, Chan J. 1999. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuber Lung Dis 79:191–198 http://dx.doi.org/10.1054/tuld.1998.0203. [PubMed]
143. O’Brien L, Carmichael J, Lowrie DB, Andrew PW. 1994. Strains of Mycobacterium tuberculosis differ in susceptibility to reactive nitrogen intermediates in vitro. Infect Immun 62:5187–5190.
144. Flesch IE, Kaufmann SH. 1991. Mechanisms involved in mycobacterial growth inhibition by gamma interferon-activated bone marrow macrophages: role of reactive nitrogen intermediates. Infect Immun 59:3213–3218.
145. Chan J, Xing Y, Magliozzo RS, Bloom BR. 1992. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175:1111–1122 http://dx.doi.org/10.1084/jem.175.4.1111. [PubMed]
146. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94:5243–5248 http://dx.doi.org/10.1073/pnas.94.10.5243. [PubMed]
147. Chan J, Tanaka K, Carroll D, Flynn J, Bloom BR. 1995. Effects of nitric oxide synthase inhibitors on murine infection with Mycobacterium tuberculosis. Infect Immun 63:736–740.
148. Flynn JL, Scanga CA, Tanaka KE, Chan J. 1998. Effects of aminoguanidine on latent murine tuberculosis. J Immunol 160:1796–1803.
149. Mishra BB, Rathinam VA, Martens GW, Martinot AJ, Kornfeld H, Fitzgerald KA, Sassetti CM. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nat Immunol 14:52–60 http://dx.doi.org/10.1038/ni.2474. [PubMed]
150. Scanga CA, Mohan VP, Tanaka K, Alland D, Flynn JL, Chan J. 2001. The inducible nitric oxide synthase locus confers protection against aerogenic challenge of both clinical and laboratory strains of Mycobacterium tuberculosis in mice. Infect Immun 69:7711–7717 http://dx.doi.org/10.1128/IAI.69.12.7711-7717.2001. [PubMed]
151. Thoma-Uszynski S, Stenger S, Takeuchi O, Ochoa MT, Engele M, Sieling PA, Barnes PF, Rollinghoff M, Bolcskei PL, Wagner M, Akira S, Norgard MV, Belisle JT, Godowski PJ, Bloom BR, Modlin RL. 2001. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291:1544–1547 http://dx.doi.org/10.1126/science.291.5508.1544. [PubMed]
152. Jung JY, Madan-Lala R, Georgieva M, Rengarajan J, Sohaskey CD, Bange FC, Robinson CM. 2013. The intracellular environment of human macrophages that produce nitric oxide promotes growth of mycobacteria. Infect Immun 81:3198–3209 http://dx.doi.org/10.1128/IAI.00611-13. [PubMed]
153. Aston C, Rom WN, Talbot AT, Reibman J. 1998. Early inhibition of mycobacterial growth by human alveolar macrophages is not due to nitric oxide. Am J Respir Crit Care Med 157:1943–1950 http://dx.doi.org/10.1164/ajrccm.157.6.9705028. [PubMed]
154. Nicholson S, Bonecini-Almeida MG, Lapa e Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183:2293–2302 http://dx.doi.org/10.1084/jem.183.5.2293. [PubMed]
155. Li Z, Kelley C, Collins F, Rouse D, Morris S. 1998. Expression of katG in Mycobacterium tuberculosis is associated with its growth and persistence in mice and guinea pigs. J Infect Dis 177:1030–1035 http://dx.doi.org/10.1086/515254. [PubMed]
156. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966 http://dx.doi.org/10.1126/science.1091176. [PubMed]
157. Underhill DM, Ozinsky A, Smith KD, Aderem A. 1999. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 96:14459–14463 http://dx.doi.org/10.1073/pnas.96.25.14459. [PubMed]
158. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, Ochoa MT, Schauber J, Wu K, Meinken C, Kamen DL, Wagner M, Bals R, Steinmeyer A, Zügel U, Gallo RL, Eisenberg D, Hewison M, Hollis BW, Adams JS, Bloom BR, Modlin RL. 2006. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311:1770–1773 http://dx.doi.org/10.1126/science.1123933.
159. Liu PT, Stenger S, Tang DH, Modlin RL. 2007. Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin. J Immunol 179:2060–2063 http://dx.doi.org/10.4049/jimmunol.179.4.2060. [PubMed]
160. Martineau AR, Wilkinson KA, Newton SM, Floto RA, Norman AW, Skolimowska K, Davidson RN, Sørensen OE, Kampmann B, Griffiths CJ, Wilkinson RJ. 2007. IFN-gamma- and TNF-independent vitamin D-inducible human suppression of mycobacteria: the role of cathelicidin LL-37. J Immunol 178:7190–7198 http://dx.doi.org/10.4049/jimmunol.178.11.7190. [PubMed]
161. Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, Lee ZW, Lee SH, Kim JM, Jo EK. 2009. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 6:231–243 http://dx.doi.org/10.1016/j.chom.2009.08.004. [PubMed]
162. Fabri M, Stenger S, Shin DM, Yuk JM, Liu PT, Realegeno S, Lee HM, Krutzik SR, Schenk M, Sieling PA, Teles R, Montoya D, Iyer SS, Bruns H, Lewinsohn DM, Hollis BW, Hewison M, Adams JS, Steinmeyer A, Zügel U, Cheng G, Jo EK, Bloom BR, Modlin RL. 2011. Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages. Sci Transl Med 3:104ra102 http://dx.doi.org/10.1126/scitranslmed.3003045. [PubMed]
163. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766 http://dx.doi.org/10.1016/j.cell.2004.11.038. [PubMed]
164. MacMicking JD, Taylor GA, McKinney JD. 2003. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302:654–659 http://dx.doi.org/10.1126/science.1088063. [PubMed]
165. Singh SB, Davis AS, Taylor GA, Deretic V. 2006. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441 http://dx.doi.org/10.1126/science.1129577. [PubMed]
166. Kumar D, Nath L, Kamal MA, Varshney A, Jain A, Singh S, Rao KV. 2010. Genome-wide analysis of the host intracellular network that regulates survival of Mycobacterium tuberculosis. Cell 140:731–743 http://dx.doi.org/10.1016/j.cell.2010.02.012. [PubMed]
167. Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS. 2013. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512–516 http://dx.doi.org/10.1038/nature12566. [PubMed]
168. Sakowski ET, Koster S, Portal Celhay C, Park HS, Shrestha E, Hetzenecker SE, Maurer K, Cadwell K, Philips JA. 2015. Ubiquilin 1 promotes IFN-γ-induced xenophagy of Mycobacterium tuberculosis. PLoS Pathog 11:e1005076 http://dx.doi.org/10.1371/journal.ppat.1005076. [PubMed]
169. Ní Cheallaigh C, Sheedy FJ, Harris J, Muñoz-Wolf N, Lee J, West K, McDermott EP, Smyth A, Gleeson LE, Coleman M, Martinez N, Hearnden CH, Tynan GA, Carroll EC, Jones SA, Corr SC, Bernard NJ, Hughes MM, Corcoran SE, O’Sullivan M, Fallon CM, Kornfeld H, Golenbock D, Gordon SV, O’Neill LA, Lavelle EC, Keane J. 2016. A common variant in the adaptor Mal regulates interferon gamma signaling. Immunity 44:368–379 http://dx.doi.org/10.1016/j.immuni.2016.01.019. [PubMed]
170. Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, Karunakaran D, Portal-Celhay C, Sheedy FJ, Ray TD, Cecchini K, Zamore PD, Rayner KJ, Marcel YL, Philips JA, Moore KJ. 2016. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol 17:677–686 http://dx.doi.org/10.1038/ni.3434. [PubMed]
171. Saini NK, Baena A, Ng TW, Venkataswamy MM, Kennedy SC, Kunnath-Velayudhan S, Carreño LJ, Xu J, Chan J, Larsen MH, Jacobs WR Jr, Porcelli SA. 2016. Suppression of autophagy and antigen presentation by Mycobacterium tuberculosis PE_PGRS47. Nat Microbiol 1:16133 http://dx.doi.org/10.1038/nmicrobiol.2016.133. [PubMed]
172. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, Delgado-Vargas M, Timmins GS, Bhattacharya D, Yang H, Hutt J, Lyons CR, Dobos KM, Deretic V. 2012. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A 109:E3168–E3176 http://dx.doi.org/10.1073/pnas.1210500109. [PubMed]
173. Kimmey JM, Huynh JP, Weiss LA, Park S, Kambal A, Debnath J, Virgin HW, Stallings CL. 2015. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528:565–569 http://dx.doi.org/10.1038/nature16451. [PubMed]
174. Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, Hsu FF, Jackson M, Sassetti CM, Philips JA. 2017. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A 114:E8711–E8720. [PubMed]
175. Lin Y, Zhang M, Barnes PF. 1998. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 66:1121–1126.
176. Wickremasinghe MI, Thomas LH, Friedland JS. 1999. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kappa B-dependent network. J Immunol 163:3936–3947.
177. Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J III, Faé KC, Arrey F, Kuhlmann S, Bandermann S, Loewe D, Mollenkopf HJ, Vogelzang A, Meyer-Schwesinger C, Mittrücker HW, McEwen G, Kaufmann SH. 2014. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest 124:1268–1282 http://dx.doi.org/10.1172/JCI72030. [PubMed]
178. Reuschl AK, Edwards MR, Parker R, Connell DW, Hoang L, Halliday A, Jarvis H, Siddiqui N, Wright C, Bremang S, Newton SM, Beverley P, Shattock RJ, Kon OM, Lalvani A. 2017. Innate activation of human primary epithelial cells broadens the host response to Mycobacterium tuberculosis in the airways. PLoS Pathog 13:e1006577 http://dx.doi.org/10.1371/journal.ppat.1006577. [PubMed]
179. Eum SY, Kong JH, Hong MS, Lee YJ, Kim JH, Hwang SH, Cho SN, Via LE, Barry CE III. 2010. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest 137:122–128 http://dx.doi.org/10.1378/chest.09-0903. [PubMed]
180. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ, Quinn C, Blankenship D, Dhawan R, Cush JJ, Mejias A, Ramilo O, Kon OM, Pascual V, Banchereau J, Chaussabel D, O’Garra A. 2010. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466:973–977 http://dx.doi.org/10.1038/nature09247. [PubMed]
181. McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA, Wilkinson RJ, Kon OM, Banchereau J, Chaussabel D, O’Garra A. 2011. Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41:1941–1947 http://dx.doi.org/10.1002/eji.201141421. [PubMed]
182. Eruslanov EB, Lyadova IV, Kondratieva TK, Majorov KB, Scheglov IV, Orlova MO, Apt AS. 2005. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun 73:1744–1753 http://dx.doi.org/10.1128/IAI.73.3.1744-1753.2005. [PubMed]
183. Keller C, Hoffmann R, Lang R, Brandau S, Hermann C, Ehlers S. 2006. Genetically determined susceptibility to tuberculosis in mice causally involves accelerated and enhanced recruitment of granulocytes. Infect Immun 74:4295–4309 http://dx.doi.org/10.1128/IAI.00057-06. [PubMed]
184. Yeremeev V, Linge I, Kondratieva T, Apt A. 2015. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb) 95:447–451 http://dx.doi.org/10.1016/j.tube.2015.03.007. [PubMed]
185. Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R. 2009. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31:761–771 http://dx.doi.org/10.1016/j.immuni.2009.09.016. [PubMed]
186. Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM. 2000. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun 68:577–583 http://dx.doi.org/10.1128/IAI.68.2.577-583.2000. [PubMed]
187. Mishra BB, Lovewell RR, Olive AJ, Zhang G, Wang W, Eugenin E, Smith CM, Phuah JY, Long JE, Dubuke ML, Palace SG, Goguen JD, Baker RE, Nambi S, Mishra R, Booty MG, Baer CE, Shaffer SA, Dartois V, McCormick BA, Chen X, Sassetti CM. 2017. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat Microbiol 2:17072 http://dx.doi.org/10.1038/nmicrobiol.2017.72. [PubMed]
188. Martineau AR, Newton SM, Wilkinson KA, Kampmann B, Hall BM, Nawroly N, Packe GE, Davidson RN, Griffiths CJ, Wilkinson RJ. 2007. Neutrophil-mediated innate immune resistance to mycobacteria. J Clin Invest 117:1988–1994 http://dx.doi.org/10.1172/JCI31097. [PubMed]
189. Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa MT, Krutzik SR, Bloom BR, Ganz T, Modlin RL, Stenger S. 2006. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol 177:1864–1871 http://dx.doi.org/10.4049/jimmunol.177.3.1864. [PubMed]
190. Ramos-Kichik V, Mondragón-Flores R, Mondragón-Castelán M, Gonzalez-Pozos S, Muñiz-Hernandez S, Rojas-Espinosa O, Chacón-Salinas R, Estrada-Parra S, Estrada-García I. 2009. Neutrophil extracellular traps are induced by Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:29–37 http://dx.doi.org/10.1016/j.tube.2008.09.009. [PubMed]
191. Schechter MC, Buac K, Adekambi T, Cagle S, Celli J, Ray SM, Mehta CC, Rada B, Rengarajan J. 2017. Neutrophil extracellular trap (NET) levels in human plasma are associated with active TB. PLoS One 12:e0182587 http://dx.doi.org/10.1371/journal.pone.0182587. [PubMed]
192. Serbina NV, Pamer EG. 2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol 7:311–317 http://dx.doi.org/10.1038/ni1309. [PubMed]
193. Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. 2001. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 98:7958–7963 http://dx.doi.org/10.1073/pnas.131207398. [PubMed]
194. Scott HM, Flynn JL. 2002. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun 70:5946–5954 http://dx.doi.org/10.1128/IAI.70.11.5946-5954.2002. [PubMed]
195. Sköld M, Behar SM. 2008. Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J Immunol 181:6349–6360 http://dx.doi.org/10.4049/jimmunol.181.9.6349. [PubMed]
196. Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG. 2013. Essential yet limited role for CCR2 + inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. eLife 2:e01086 http://dx.doi.org/10.7554/eLife.01086. [PubMed]
197. Antonelli LR, Gigliotti Rothfuchs A, Gonçalves R, Roffê E, Cheever AW, Bafica A, Salazar AM, Feng CG, Sher A. 2010. Intranasal poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 120:1674–1682 http://dx.doi.org/10.1172/JCI40817. [PubMed]
198. Esin S, Counoupas C, Aulicino A, Brancatisano FL, Maisetta G, Bottai D, Di Luca M, Florio W, Campa M, Batoni G. 2013. Interaction of Mycobacterium tuberculosis cell wall components with the human natural killer cell receptors NKp44 and Toll-like receptor 2. Scand J Immunol 77:460–469 http://dx.doi.org/10.1111/sji.12052. [PubMed]
199. Vankayalapati R, Garg A, Porgador A, Griffith DE, Klucar P, Safi H, Girard WM, Cosman D, Spies T, Barnes PF. 2005. Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium. J Immunol 175:4611–4617 http://dx.doi.org/10.4049/jimmunol.175.7.4611. [PubMed]
200. Dhiman R, Indramohan M, Barnes PF, Nayak RC, Paidipally P, Rao LV, Vankayalapati R. 2009. IL-22 produced by human NK cells inhibits growth of Mycobacterium tuberculosis by enhancing phagolysosomal fusion. J Immunol 183:6639–6645 http://dx.doi.org/10.4049/jimmunol.0902587. [PubMed]
201. Schierloh P, Alemán M, Yokobori N, Alves L, Roldán N, Abbate E, del C Sasiain M, de la Barrera S. 2005. NK cell activity in tuberculosis is associated with impaired CD11a and ICAM-1 expression: a regulatory role of monocytes in NK activation. Immunology 116:541–552. [PubMed]
202. Vankayalapati R, Klucar P, Wizel B, Weis SE, Samten B, Safi H, Shams H, Barnes PF. 2004. NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. J Immunol 172:130–137 http://dx.doi.org/10.4049/jimmunol.172.1.130. [PubMed]
203. Zhang R, Zheng X, Li B, Wei H, Tian Z. 2006. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis. J Immunol 176:2610–2616 http://dx.doi.org/10.4049/jimmunol.176.4.2610. [PubMed]
204. Roy S, Barnes PF, Garg A, Wu S, Cosman D, Vankayalapati R. 2008. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J Immunol 180:1729–1736 http://dx.doi.org/10.4049/jimmunol.180.3.1729. [PubMed]
205. Nirmala R, Narayanan PR, Mathew R, Maran M, Deivanayagam CN. 2001. Reduced NK activity in pulmonary tuberculosis patients with/without HIV infection: identifying the defective stage and studying the effect of interleukins on NK activity. Tuberculosis (Edinb) 81:343–352 http://dx.doi.org/10.1054/tube.2001.0309. [PubMed]
206. Venkatasubramanian S, Cheekatla S, Paidipally P, Tripathi D, Welch E, Tvinnereim AR, Nurieva R, Vankayalapati R. 2017. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis. Mucosal Immunol 10:1031–1042 http://dx.doi.org/10.1038/mi.2016.105. [PubMed]
207. Manca C, Tsenova L, Bergtold A, Freeman S, Tovey M, Musser JM, Barry CE III, Freedman VH, Kaplan G. 2001. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Proc Natl Acad Sci U S A 98:5752–5757 http://dx.doi.org/10.1073/pnas.091096998. [PubMed]
208. Manca C, Tsenova L, Freeman S, Barczak AK, Tovey M, Murray PJ, Barry C III, Kaplan G. 2005. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J Interferon Cytokine Res 25:694–701 http://dx.doi.org/10.1089/jir.2005.25.694. [PubMed]
209. Ordway D, Henao-Tamayo M, Harton M, Palanisamy G, Troudt J, Shanley C, Basaraba RJ, Orme IM. 2007. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol 179:522–531 http://dx.doi.org/10.4049/jimmunol.179.1.522. [PubMed]
210. Stanley SA, Johndrow JE, Manzanillo P, Cox JS. 2007. The type I IFN response to infection with Mycobacterium tuberculosis requires ESX-1-mediated secretion and contributes to pathogenesis. J Immunol 178:3143–3152 http://dx.doi.org/10.4049/jimmunol.178.5.3143. [PubMed]
211. Desvignes L, Wolf AJ, Ernst JD. 2012. Dynamic roles of type I and type II IFNs in early infection with Mycobacterium tuberculosis. J Immunol 188:6205–6215 http://dx.doi.org/10.4049/jimmunol.1200255. [PubMed]
212. Moreira-Teixeira L, Sousa J, McNab FW, Torrado E, Cardoso F, Machado H, Castro F, Cardoso V, Gaifem J, Wu X, Appelberg R, Castro AG, O’Garra A, Saraiva M. 2016. Type I IFN inhibits alternative macrophage activation during Mycobacterium tuberculosis infection and leads to enhanced protection in the absence of IFN-γ signaling. J Immunol 197:4714–4726 http://dx.doi.org/10.4049/jimmunol.1600584. [PubMed]
213. Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers TG, Rabin RL, Trinchieri G, Sher A, Feng CG. 2011. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1β production in human macrophages. J Immunol 187:2540–2547 http://dx.doi.org/10.4049/jimmunol.1100926. [PubMed]
214. Mayer-Barber KD, Andrade BB, Barber DL, Hieny S, Feng CG, Caspar P, Oland S, Gordon S, Sher A. 2011. Innate and adaptive interferons suppress IL-1α and IL-1β production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034 http://dx.doi.org/10.1016/j.immuni.2011.12.002. [PubMed]
215. McNab FW, Ewbank J, Howes A, Moreira-Teixeira L, Martirosyan A, Ghilardi N, Saraiva M, O’Garra A. 2014. Type I IFN induces IL-10 production in an IL-27-independent manner and blocks responsiveness to IFN-γ for production of IL-12 and bacterial killing in Mycobacterium tuberculosis-infected macrophages. J Immunol 193:3600–3612 http://dx.doi.org/10.4049/jimmunol.1401088. [PubMed]
216. Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT, Tezera LB, Pabisiak PJ, Moores RC, Sathyamoorthy T, Patel V, Gilman RH, Porter JC, Friedland JS. 2015. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog 11:e1004917 http://dx.doi.org/10.1371/journal.ppat.1004917. [PubMed]
217. Elkington PT, Emerson JE, Lopez-Pascua LD, O’Kane CM, Horncastle DE, Boyle JJ, Friedland JS. 2005. Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol 175:5333–5340 http://dx.doi.org/10.4049/jimmunol.175.8.5333. [PubMed]
218. Elkington PT, Nuttall RK, Boyle JJ, O’Kane CM, Horncastle DE, Edwards DR, Friedland JS. 2005. Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1. Am J Respir Crit Care Med 172:1596–1604 http://dx.doi.org/10.1164/rccm.200505-753OC. [PubMed]
219. Price NM, Farrar J, Tran TT, Nguyen TH, Tran TH, Friedland JS. 2001. Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. J Immunol 166:4223–4230 http://dx.doi.org/10.4049/jimmunol.166.6.4223. [PubMed]
220. Elkington P, Shiomi T, Breen R, Nuttall RK, Ugarte-Gil CA, Walker NF, Saraiva L, Pedersen B, Mauri F, Lipman M, Edwards DR, Robertson BD, D’Armiento J, Friedland JS. 2011. MMP-1 drives immunopathology in human tuberculosis and transgenic mice. J Clin Invest 121:1827–1833 http://dx.doi.org/10.1172/JCI45666. [PubMed]
221. Volkman HE, Pozos TC, Zheng J, Davis JM, Rawls JF, Ramakrishnan L. 2010. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327:466–469 http://dx.doi.org/10.1126/science.1179663. [PubMed]
222. Bafica A, Scanga CA, Serhan C, Machado F, White S, Sher A, Aliberti J. 2005. Host control of Mycobacterium tuberculosis is regulated by 5-lipoxygenase-dependent lipoxin production. J Clin Invest 115:1601–1606 http://dx.doi.org/10.1172/JCI23949. [PubMed]
223. Chen M, Divangahi M, Gan H, Shin DS, Hong S, Lee DM, Serhan CN, Behar SM, Remold HG. 2008. Lipid mediators in innate immunity against tuberculosis: opposing roles of PGE2 and LXA4 in the induction of macrophage death. J Exp Med 205:2791–2801 http://dx.doi.org/10.1084/jem.20080767. [PubMed]
224. Divangahi M, Desjardins D, Nunes-Alves C, Remold HG, Behar SM. 2010. Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis. Nat Immunol 11:751–758 http://dx.doi.org/10.1038/ni.1904. [PubMed]
225. Tobin DM, Vary JC Jr, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King MC, Hawn TR, Moens CB, Ramakrishnan L. 2010. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730 http://dx.doi.org/10.1016/j.cell.2010.02.013. [PubMed]
226. Tobin DM, Roca FJ, Oh SF, McFarland R, Vickery TW, Ray JP, Ko DC, Zou Y, Bang ND, Chau TT, Vary JC, Hawn TR, Dunstan SJ, Farrar JJ, Thwaites GE, King MC, Serhan CN, Ramakrishnan L. 2012. Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell 148:434–446 http://dx.doi.org/10.1016/j.cell.2011.12.023. [PubMed]
227. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, Schreiber R, Mak TW, Bloom BR. 1995. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity 2:561–572 http://dx.doi.org/10.1016/1074-7613(95)90001-2.
228. Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM. 2001. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104 http://dx.doi.org/10.1056/NEJMoa011110. [PubMed]
229. Botha T, Ryffel B. 2003. Reactivation of latent tuberculosis infection in TNF-deficient mice. J Immunol 171:3110–3118 http://dx.doi.org/10.4049/jimmunol.171.6.3110. [PubMed]
230. Chakravarty SD, Zhu G, Tsai MC, Mohan VP, Marino S, Kirschner DE, Huang L, Flynn J, Chan J. 2008. Tumor necrosis factor blockade in chronic murine tuberculosis enhances granulomatous inflammation and disorganizes granulomas in the lungs. Infect Immun 76:916–926 http://dx.doi.org/10.1128/IAI.01011-07. [PubMed]
231. Mohan VP, Scanga CA, Yu K, Scott HM, Tanaka KE, Tsang E, Tsai MM, Flynn JL, Chan J. 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect Immun 69:1847–1855 http://dx.doi.org/10.1128/IAI.69.3.1847-1855.2001. [PubMed]
232. Oddo M, Renno T, Attinger A, Bakker T, MacDonald HR, Meylan PR. 1998. Fas ligand-induced apoptosis of infected human macrophages reduces the viability of intracellular Mycobacterium tuberculosis. J Immunol 160:5448–5454.
233. Keane J, Remold HG, Kornfeld H. 2000. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 164:2016–2020 http://dx.doi.org/10.4049/jimmunol.164.4.2016. [PubMed]
234. Chen M, Gan H, Remold HG. 2006. A mechanism of virulence: virulent Mycobacterium tuberculosis strain H37Rv, but not attenuated H37Ra, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. J Immunol 176:3707–3716 http://dx.doi.org/10.4049/jimmunol.176.6.3707. [PubMed]
235. Gan H, Lee J, Ren F, Chen M, Kornfeld H, Remold HG. 2008. Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence. Nat Immunol 9:1189–1197 http://dx.doi.org/10.1038/ni.1654. [PubMed]
236. Hinchey J, Lee S, Jeon BY, Basaraba RJ, Venkataswamy MM, Chen B, Chan J, Braunstein M, Orme IM, Derrick SC, Morris SL, Jacobs WR Jr, Porcelli SA. 2007. Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279–2288 http://dx.doi.org/10.1172/JCI31947. [PubMed]
237. Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, Hsu T, Glickman M, Jacobs WR Jr, Porcelli SA, Briken V. 2007. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3:e110 http://dx.doi.org/10.1371/journal.ppat.0030110. [PubMed]
238. Blomgran R, Ernst JD. 2011. Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol 186:7110–7119 http://dx.doi.org/10.4049/jimmunol.1100001. [PubMed]
239. Blomgran R, Desvignes L, Briken V, Ernst JD. 2012. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:81–90 http://dx.doi.org/10.1016/j.chom.2011.11.012. [PubMed]
240. Martin CJ, Booty MG, Rosebrock TR, Nunes-Alves C, Desjardins DM, Keren I, Fortune SM, Remold HG, Behar SM. 2012. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe 12:289–300 http://dx.doi.org/10.1016/j.chom.2012.06.010. [PubMed]
241. Divangahi M, Chen M, Gan H, Desjardins D, Hickman TT, Lee DM, Fortune S, Behar SM, Remold HG. 2009. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol 10:899–906 http://dx.doi.org/10.1038/ni.1758. [PubMed]
242. Zhao X, Khan N, Gan H, Tzelepis F, Nishimura T, Park SY, Divangahi M, Remold HG. 2017. Bcl-x L mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages. Mucosal Immunol 10:1553–1568 http://dx.doi.org/10.1038/mi.2017.12. [PubMed]
243. Tian T, Woodworth J, Sköld M, Behar SM. 2005. In vivo depletion of CD11c+ cells delays the CD4+ T cell response to Mycobacterium tuberculosis and exacerbates the outcome of infection. J Immunol 175:3268–3272 http://dx.doi.org/10.4049/jimmunol.175.5.3268. [PubMed]
244. Bodnar KA, Serbina NV, Flynn JL. 2001. Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 69:800–809 http://dx.doi.org/10.1128/IAI.69.2.800-809.2001. [PubMed]
245. Jiao X, Lo-Man R, Guermonprez P, Fiette L, Dériaud E, Burgaud S, Gicquel B, Winter N, Leclerc C. 2002. Dendritic cells are host cells for mycobacteria in vivo that trigger innate and acquired immunity. J Immunol 168:1294–1301 http://dx.doi.org/10.4049/jimmunol.168.3.1294. [PubMed]
246. Wolf AJ, Linas B, Trevejo-Nuñez GJ, Kincaid E, Tamura T, Takatsu K, Ernst JD. 2007. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 179:2509–2519 http://dx.doi.org/10.4049/jimmunol.179.4.2509. [PubMed]
247. Henderson RA, Watkins SC, Flynn JL. 1997. Activation of human dendritic cells following infection with Mycobacterium tuberculosis. J Immunol 159:635–643.
248. Tailleux L, Neyrolles O, Honoré-Bouakline S, Perret E, Sanchez F, Abastado JP, Lagrange PH, Gluckman JC, Rosenzwajg M, Herrmann JL. 2003. Constrained intracellular survival of Mycobacterium tuberculosis in human dendritic cells. J Immunol 170:1939–1948 http://dx.doi.org/10.4049/jimmunol.170.4.1939. [PubMed]
249. Tailleux L, Schwartz O, Herrmann JL, Pivert E, Jackson M, Amara A, Legres L, Dreher D, Nicod LP, Gluckman JC, Lagrange PH, Gicquel B, Neyrolles O. 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127 http://dx.doi.org/10.1084/jem.20021468. [PubMed]
250. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, Ernst JD. 2008. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 205:105–115 http://dx.doi.org/10.1084/jem.20071367. [PubMed]
251. Olmos S, Stukes S, Ernst JD. 2010. Ectopic activation of Mycobacterium tuberculosis-specific CD4+ T cells in lungs of CCR7-/- mice. J Immunol 184:895–901 http://dx.doi.org/10.4049/jimmunol.0901230. [PubMed]
252. Bhatt K, Hickman SP, Salgame P. 2004. Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 172:2748–2751 http://dx.doi.org/10.4049/jimmunol.172.5.2748. [PubMed]
253. Khader SA, Partida-Sanchez S, Bell G, Jelley-Gibbs DM, Swain S, Pearl JE, Ghilardi N, Desauvage FJ, Lund FE, Cooper AM. 2006. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203:1805–1815 http://dx.doi.org/10.1084/jem.20052545. [PubMed]
254. Srivastava S, Ernst JD. 2014. Cell-to-cell transfer of M. tuberculosis antigens optimizes CD4 T cell priming. Cell Host Microbe 15:741–752 http://dx.doi.org/10.1016/j.chom.2014.05.007. [PubMed]
255. Srivastava S, Grace PS, Ernst JD. 2016. Antigen export reduces antigen presentation and limits T cell control of M. tuberculosis. Cell Host Microbe 19:44–54 http://dx.doi.org/10.1016/j.chom.2015.12.003. [PubMed]
256. Harding CV, Boom WH. 2010. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8:296–307 http://dx.doi.org/10.1038/nrmicro2321. [PubMed]
257. Ramachandra L, Noss E, Boom WH, Harding CV. 2001. Processing of Mycobacterium tuberculosis antigen 85B involves intraphagosomal formation of peptide-major histocompatibility complex II complexes and is inhibited by live bacilli that decrease phagosome maturation. J Exp Med 194:1421–1432 http://dx.doi.org/10.1084/jem.194.10.1421. [PubMed]
258. Kincaid EZ, Ernst JD. 2003. Mycobacterium tuberculosis exerts gene-selective inhibition of transcriptional responses to IFN-gamma without inhibiting STAT1 function. J Immunol 171:2042–2049 http://dx.doi.org/10.4049/jimmunol.171.4.2042. [PubMed]
259. Pai RK, Convery M, Hamilton TA, Boom WH, Harding CV. 2003. Inhibition of IFN-gamma-induced class II transactivator expression by a 19-kDa lipoprotein from Mycobacterium tuberculosis: a potential mechanism for immune evasion. J Immunol 171:175–184 http://dx.doi.org/10.4049/jimmunol.171.1.175. [PubMed]
260. Pennini ME, Liu Y, Yang J, Croniger CM, Boom WH, Harding CV. 2007. CCAAT/enhancer-binding protein beta and delta binding to CIITA promoters is associated with the inhibition of CIITA expression in response to Mycobacterium tuberculosis 19-kDa lipoprotein. J Immunol 179:6910–6918 http://dx.doi.org/10.4049/jimmunol.179.10.6910. [PubMed]
261. Pennini ME, Pai RK, Schultz DC, Boom WH, Harding CV. 2006. Mycobacterium tuberculosis 19-kDa lipoprotein inhibits IFN-gamma-induced chromatin remodeling of MHC2TA by TLR2 and MAPK signaling. J Immunol 176:4323–4330 http://dx.doi.org/10.4049/jimmunol.176.7.4323. [PubMed]
262. Sia JK, Georgieva M, Rengarajan J. 2015. Innate immune defenses in human tuberculosis: an overview of the interactions between Mycobacterium tuberculosis and innate immune cells. J Immunol Res 2015:747543 http://dx.doi.org/10.1155/2015/747543. [PubMed]
263. Baena A, Porcelli SA. 2009. Evasion and subversion of antigen presentation by Mycobacterium tuberculosis. Tissue Antigens 74:189–204 http://dx.doi.org/10.1111/j.1399-0039.2009.01301.x. [PubMed]
264. Srivastava S, Ernst JD, Desvignes L. 2014. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev 262:179–192 http://dx.doi.org/10.1111/imr.12217. [PubMed]
265. Portal-Celhay C, Tufariello JM, Srivastava S, Zahra A, Klevorn T, Grace PS, Mehra A, Park HS, Ernst JD, Jacobs WR Jr, Philips JA. 2016. Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4 + T-cell activation. Nat Microbiol 2:16232 http://dx.doi.org/10.1038/nmicrobiol.2016.232. [PubMed]
266. Grace PS, Ernst JD. 2016. Suboptimal antigen presentation contributes to virulence of Mycobacterium tuberculosisin vivo. J Immunol 196:357–364 http://dx.doi.org/10.4049/jimmunol.1501494. [PubMed]
267. Bizzell E, Sia JK, Quezada M, Enriquez A, Georgieva M, Rengarajan J. 2017. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses. J Leukoc Biol 103:739–748. [PubMed]
268. Sia JK, Bizzell E, Madan-Lala R, Rengarajan J. 2017. Engaging the CD40-CD40L pathway augments T-helper cell responses and improves control of Mycobacterium tuberculosis infection. PLoS Pathog 13:e1006530 http://dx.doi.org/10.1371/journal.ppat.1006530. [PubMed]
269. Griffiths KL, Ahmed M, Das S, Gopal R, Horne W, Connell TD, Moynihan KD, Kolls JK, Irvine DJ, Artyomov MN, Rangel-Moreno J, Khader SA. 2016. Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 7:13894 http://dx.doi.org/10.1038/ncomms13894. [PubMed]
270. Mogues T, Goodrich ME, Ryan L, LaCourse R, North RJ. 2001. The relative importance of T cell subsets in immunity and immunopathology of airborne Mycobacterium tuberculosis infection in mice. J Exp Med 193:271–280 http://dx.doi.org/10.1084/jem.193.3.271. [PubMed]
271. Caruso AM, Serbina N, Klein E, Triebold K, Bloom BR, Flynn JL. 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J Immunol 162:5407–5416.
272. Reiley WW, Calayag MD, Wittmer ST, Huntington JL, Pearl JE, Fountain JJ, Martino CA, Roberts AD, Cooper AM, Winslow GM, Woodland DL. 2008. ESAT-6-specific CD4 T cell responses to aerosol Mycobacterium tuberculosis infection are initiated in the mediastinal lymph nodes. Proc Natl Acad Sci U S A 105:10961–10966 http://dx.doi.org/10.1073/pnas.0801496105. [PubMed]
273. Urdahl KB, Shafiani S, Ernst JD. 2011. Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4:288–293 http://dx.doi.org/10.1038/mi.2011.10. [PubMed]
274. Chackerian AA, Alt JM, Perera TV, Dascher CC, Behar SM. 2002. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect Immun 70:4501–4509 http://dx.doi.org/10.1128/IAI.70.8.4501-4509.2002. [PubMed]
275. Winslow GM, Cooper A, Reiley W, Chatterjee M, Woodland DL. 2008. Early T-cell responses in tuberculosis immunity. Immunol Rev 225:284–299 http://dx.doi.org/10.1111/j.1600-065X.2008.00693.x. [PubMed]
276. Lin PL, Pawar S, Myers A, Pegu A, Fuhrman C, Reinhart TA, Capuano SV, Klein E, Flynn JL. 2006. Early events in Mycobacterium tuberculosis infection in cynomolgus macaques. Infect Immun 74:3790–3803 http://dx.doi.org/10.1128/IAI.00064-06. [PubMed]
277. Kursar M, Bonhagen K, Köhler A, Kamradt T, Kaufmann SH, Mittrücker HW. 2002. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J Immunol 168:6382–6387 http://dx.doi.org/10.4049/jimmunol.168.12.6382. [PubMed]
278. Manicassamy B, Manicassamy S, Belicha-Villanueva A, Pisanelli G, Pulendran B, García-Sastre A. 2010. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc Natl Acad Sci U S A 107:11531–11536 http://dx.doi.org/10.1073/pnas.0914994107. [PubMed]
279. Gallegos AM, Pamer EG, Glickman MS. 2008. Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J Exp Med 205:2359–2368 http://dx.doi.org/10.1084/jem.20080353. [PubMed]
280. Sakai S, Kauffman KD, Schenkel JM, McBerry CC, Mayer-Barber KD, Masopust D, Barber DL. 2014. Cutting edge: control of Mycobacterium tuberculosis infection by a subset of lung parenchyma-homing CD4 T cells. J Immunol 192:2965–2969 http://dx.doi.org/10.4049/jimmunol.1400019. [PubMed]
281. Sakai S, Kauffman KD, Sallin MA, Sharpe AH, Young HA, Ganusov VV, Barber DL. 2016. CD4 T cell-derived IFN-γ plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 12:e1005667 http://dx.doi.org/10.1371/journal.ppat.1005667. [PubMed]
282. Kauffman KD, Sallin MA, Sakai S, Kamenyeva O, Kabat J, Weiner D, Sutphin M, Schimel D, Via L, Barry CE III, Wilder-Kofie T, Moore I, Moore R, Barber DL. 2017. Defective positioning in granulomas but not lung-homing limits CD4 T-cell interactions with Mycobacterium tuberculosis-infected macrophages in rhesus macaques. Mucosal Immunol 11:462–473. [PubMed]
283. Mehra S, Alvarez X, Didier PJ, Doyle LA, Blanchard JL, Lackner AA, Kaushal D. 2013. Granuloma correlates of protection against tuberculosis and mechanisms of immune modulation by Mycobacterium tuberculosis. J Infect Dis 207:1115–1127 http://dx.doi.org/10.1093/infdis/jis778. [PubMed]
284. Ottenhoff TH, Kumararatne D, Casanova JL. 1998. Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today 19:491–494 http://dx.doi.org/10.1016/S0167-5699(98)01321-8.
285. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, Levin M, Blanche S, Seboun E, Fischer A, Casanova JL. 1996. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med 335:1956–1961 http://dx.doi.org/10.1056/NEJM199612263352604. [PubMed]
286. Newport MJ, Huxley CM, Huston S, Hawrylowicz CM, Oostra BA, Williamson R, Levin M. 1996. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 335:1941–1949 http://dx.doi.org/10.1056/NEJM199612263352602. [PubMed]
287. Dorman SE, Holland SM. 1998. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 101:2364–2369 http://dx.doi.org/10.1172/JCI2901. [PubMed]
288. Jouanguy E, Lamhamedi-Cherradi S, Lammas D, Dorman SE, Fondanèche MC, Dupuis S, Döffinger R, Altare F, Girdlestone J, Emile JF, Ducoulombier H, Edgar D, Clarke J, Oxelius VA, Brai M, Novelli V, Heyne K, Fischer A, Holland SM, Kumararatne DS, Schreiber RD, Casanova JL. 1999. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 21:370–378 http://dx.doi.org/10.1038/7701. [PubMed]
289. Dupuis S, Dargemont C, Fieschi C, Thomassin N, Rosenzweig S, Harris J, Holland SM, Schreiber RD, Casanova JL. 2001. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293:300–303 http://dx.doi.org/10.1126/science.1061154. [PubMed]
290. Filipe-Santos O, Bustamante J, Haverkamp MH, Vinolo E, Ku CL, Puel A, Frucht DM, Christel K, von Bernuth H, Jouanguy E, Feinberg J, Durandy A, Senechal B, Chapgier A, Vogt G, de Beaucoudrey L, Fieschi C, Picard C, Garfa M, Chemli J, Bejaoui M, Tsolia MN, Kutukculer N, Plebani A, Notarangelo L, Bodemer C, Geissmann F, Israël A, Véron M, Knackstedt M, Barbouche R, Abel L, Magdorf K, Gendrel D, Agou F, Holland SM, Casanova JL. 2006. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med 203:1745–1759 http://dx.doi.org/10.1084/jem.20060085. [PubMed]
291. Altare F, Durandy A, Lammas D, Emile JF, Lamhamedi S, Le Deist F, Drysdale P, Jouanguy E, Döffinger R, Bernaudin F, Jeppsson O, Gollob JA, Meinl E, Segal AW, Fischer A, Kumararatne D, Casanova JL. 1998. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 280:1432–1435 http://dx.doi.org/10.1126/science.280.5368.1432. [PubMed]
292. Altare F, Lammas D, Revy P, Jouanguy E, Döffinger R, Lamhamedi S, Drysdale P, Scheel-Toellner D, Girdlestone J, Darbyshire P, Wadhwa M, Dockrell H, Salmon M, Fischer A, Durandy A, Casanova JL, Kumararatne DS. 1998. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest 102:2035–2040 http://dx.doi.org/10.1172/JCI4950. [PubMed]
293. Elloumi-Zghal H, Barbouche MR, Chemli J, Béjaoui M, Harbi A, Snoussi N, Abdelhak S, Dellagi K. 2002. Clinical and genetic heterogeneity of inherited autosomal recessive susceptibility to disseminated Mycobacterium bovis bacille Calmette-Guérin infection. J Infect Dis 185:1468–1475 http://dx.doi.org/10.1086/340510. [PubMed]
294. Picard C, Fieschi C, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, Dupuis S, Soudais C, Al-Mohsen IZ, Génin E, Lammas D, Kumararatne DS, Leclerc T, Rafii A, Frayha H, Murugasu B, Wah LB, Sinniah R, Loubser M, Okamoto E, Al-Ghonaium A, Tufenkeji H, Abel L, Casanova JL. 2002. Inherited interleukin-12 deficiency: IL12B genotype and clinical phenotype of 13 patients from six kindreds. Am J Hum Genet 70:336–348 http://dx.doi.org/10.1086/338625. [PubMed]
295. de Jong R, Altare F, Haagen IA, Elferink DG, Boer T, van Breda Vriesman PJ, Kabel PJ, Draaisma JM, van Dissel JT, Kroon FP, Casanova JL, Ottenhoff TH. 1998. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 280:1435–1438 http://dx.doi.org/10.1126/science.280.5368.1435. [PubMed]
296. Altare F, Ensser A, Breiman A, Reichenbach J, Baghdadi JE, Fischer A, Emile JF, Gaillard JL, Meinl E, Casanova JL. 2001. Interleukin-12 receptor beta1 deficiency in a patient with abdominal tuberculosis. J Infect Dis 184:231–236 http://dx.doi.org/10.1086/321999. [PubMed]
297. Caragol I, Raspall M, Fieschi C, Feinberg J, Larrosa MN, Hernández M, Figueras C, Bertrán JM, Casanova JL, Español T. 2003. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor beta1 deficiency. Clin Infect Dis 37:302–306 http://dx.doi.org/10.1086/375587. [PubMed]
298. Fieschi C, Bosticardo M, de Beaucoudrey L, Boisson-Dupuis S, Feinberg J, Santos OF, Bustamante J, Levy J, Candotti F, Casanova JL. 2004. A novel form of complete IL-12/IL-23 receptor beta1 deficiency with cell surface-expressed nonfunctional receptors. Blood 104:2095–2101 http://dx.doi.org/10.1182/blood-2004-02-0584. [PubMed]
299. Tsao TC, Chen CH, Hong JH, Hsieh MJ, Tsao KC, Lee CH. 2002. Shifts of T4/T8 T lymphocytes from BAL fluid and peripheral blood by clinical grade in patients with pulmonary tuberculosis. Chest 122:1285–1291 http://dx.doi.org/10.1378/chest.122.4.1285. [PubMed]
300. Bhattacharyya S, Singla R, Dey AB, Prasad HK. 1999. Dichotomy of cytokine profiles in patients and high-risk healthy subjects exposed to tuberculosis. Infect Immun 67:5597–5603.
301. Hirsch CS, Toossi Z, Othieno C, Johnson JL, Schwander SK, Robertson S, Wallis RS, Edmonds K, Okwera A, Mugerwa R, Peters P, Ellner JJ. 1999. Depressed T-cell interferon-gamma responses in pulmonary tuberculosis: analysis of underlying mechanisms and modulation with therapy. J Infect Dis 180:2069–2073 http://dx.doi.org/10.1086/315114. [PubMed]
302. Torres M, Herrera T, Villareal H, Rich EA, Sada E. 1998. Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun 66:176–180.
303. Vekemans J, Lienhardt C, Sillah JS, Wheeler JG, Lahai GP, Doherty MT, Corrah T, Andersen P, McAdam KP, Marchant A. 2001. Tuberculosis contacts but not patients have higher gamma interferon responses to ESAT-6 than do community controls in The Gambia. Infect Immun 69:6554–6557 http://dx.doi.org/10.1128/IAI.69.10.6554-6557.2001. [PubMed]
304. Pathan AA, Wilkinson KA, Klenerman P, McShane H, Davidson RN, Pasvol G, Hill AV, Lalvani A. 2001. Direct ex vivo analysis of antigen-specific IFN-gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J Immunol 167:5217–5225 http://dx.doi.org/10.4049/jimmunol.167.9.5217. [PubMed]
305. Sodhi A, Gong J, Silva C, Qian D, Barnes PF. 1997. Clinical correlates of interferon gamma production in patients with tuberculosis. Clin Infect Dis 25:617–620 http://dx.doi.org/10.1086/513769. [PubMed]
306. Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA, Kim Y, Sidney J, James EA, Taplitz R, McKinney DM, Kwok WW, Grey H, Sallusto F, Peters B, Sette A. 2013. Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9:e1003130 http://dx.doi.org/10.1371/journal.ppat.1003130. [PubMed]
307. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. 1993. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 178:2249–2254 http://dx.doi.org/10.1084/jem.178.6.2249. [PubMed]
308. Cooper AM, Dalton DK, Stewart TA, Griffin JP, Russell DG, Orme IM. 1993. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 178:2243–2247 http://dx.doi.org/10.1084/jem.178.6.2243. [PubMed]
309. Cooper AM, Magram J, Ferrante J, Orme IM. 1997. Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186:39–45 http://dx.doi.org/10.1084/jem.186.1.39. [PubMed]
310. Feng CG, Jankovic D, Kullberg M, Cheever A, Scanga CA, Hieny S, Caspar P, Yap GS, Sher A. 2005. Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J Immunol 174:4185–4192 http://dx.doi.org/10.4049/jimmunol.174.7.4185. [PubMed]
311. Redford PS, Boonstra A, Read S, Pitt J, Graham C, Stavropoulos E, Bancroft GJ, O’Garra A. 2010. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol 40:2200–2210 http://dx.doi.org/10.1002/eji.201040433. [PubMed]
312. Moreira-Teixeira L, Redford PS, Stavropoulos E, Ghilardi N, Maynard CL, Weaver CT, Freitas do Rosário AP, Wu X, Langhorne J, O’Garra A. 2017. T cell-derived IL-10 impairs host resistance to Mycobacterium tuberculosis infection. J Immunol 199:613–623 http://dx.doi.org/10.4049/jimmunol.1601340. [PubMed]
313. Gerosa F, Nisii C, Righetti S, Micciolo R, Marchesini M, Cazzadori A, Trinchieri G. 1999. CD4(+) T cell clones producing both interferon-gamma and interleukin-10 predominate in bronchoalveolar lavages of active pulmonary tuberculosis patients. Clin Immunol 92:224–234 http://dx.doi.org/10.1006/clim.1999.4752. [PubMed]
314. Saraiva M, Christensen JR, Veldhoen M, Murphy TL, Murphy KM, O’Garra A. 2009. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31:209–219 http://dx.doi.org/10.1016/j.immuni.2009.05.012. [PubMed]
315. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. 2000. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669 http://dx.doi.org/10.1016/S0092-8674(00)80702-3.
316. Gallegos AM, van Heijst JW, Samstein M, Su X, Pamer EG, Glickman MS. 2011. A gamma interferon independent mechanism of CD4 T cell mediated control of M. tuberculosis infection in vivo. PLoS Pathog 7:e1002052 http://dx.doi.org/10.1371/journal.ppat.1002052. [PubMed]
317. Gopal R, Monin L, Slight S, Uche U, Blanchard E, Fallert Junecko BA, Ramos-Payan R, Stallings CL, Reinhart TA, Kolls JK, Kaushal D, Nagarajan U, Rangel-Moreno J, Khader SA. 2014. Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 10:e1004099 http://dx.doi.org/10.1371/journal.ppat.1004099. [PubMed]
318. Freches D, Korf H, Denis O, Havaux X, Huygen K, Romano M. 2013. Mice genetically inactivated in interleukin-17A receptor are defective in long-term control of Mycobacterium tuberculosis infection. Immunology 140:220–231 http://dx.doi.org/10.1111/imm.12130. [PubMed]
319. Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K, Hara H, Nakae S, Iwakura Y, Matsuzaki G. 2010. Essential role of IL-17A in the formation of a mycobacterial infection-induced granuloma in the lung. J Immunol 184:4414–4422 http://dx.doi.org/10.4049/jimmunol.0903332. [PubMed]
320. Wozniak TM, Saunders BM, Ryan AA, Britton WJ. 2010. Mycobacterium bovis BCG-specific Th17 cells confer partial protection against Mycobacterium tuberculosis infection in the absence of gamma interferon. Infect Immun 78:4187–4194 http://dx.doi.org/10.1128/IAI.01392-09. [PubMed]
321. Scriba TJ, Kalsdorf B, Abrahams DA, Isaacs F, Hofmeister J, Black G, Hassan HY, Wilkinson RJ, Walzl G, Gelderbloem SJ, Mahomed H, Hussey GD, Hanekom WA. 2008. Distinct, specific IL-17- and IL-22-producing CD4+ T cell subsets contribute to the human anti-mycobacterial immune response. J Immunol 180:1962–1970 http://dx.doi.org/10.4049/jimmunol.180.3.1962. [PubMed]
322. Okada S, et al. 2015. Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349:606–613 http://dx.doi.org/10.1126/science.aaa4282.
323. Domingo-Gonzalez R, Das S, Griffiths KL, Ahmed M, Bambouskova M, Gopal R, Gondi S, Muñoz-Torrico M, Salazar-Lezama MA, Cruz-Lagunas A, Jiménez-Álvarez L, Ramirez-Martinez G, Espinosa-Soto R, Sultana T, Lyons-Weiler J, Reinhart TA, Arcos J, de la Luz Garcia-Hernandez M, Mastrangelo MA, Al-Hammadi N, Townsend R, Balada-Llasat JM, Torrelles JB, Kaplan G, Horne W, Kolls JK, Artyomov MN, Rangel-Moreno J, Zúñiga J, Khader SA. 2017. Interleukin-17 limits hypoxia-inducible factor 1α and development of hypoxic granulomas during tuberculosis. JCI Insight 2:92973 http://dx.doi.org/10.1172/jci.insight.92973. [PubMed]
324. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 8:369–377 http://dx.doi.org/10.1038/ni1449. [PubMed]
325. Khader SA, Guglani L, Rangel-Moreno J, Gopal R, Junecko BA, Fountain JJ, Martino C, Pearl JE, Tighe M, Lin YY, Slight S, Kolls JK, Reinhart TA, Randall TD, Cooper AM. 2011. IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187:5402–5407 http://dx.doi.org/10.4049/jimmunol.1101377. [PubMed]
326. Nandi B, Behar SM. 2011. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med 208:2251–2262 http://dx.doi.org/10.1084/jem.20110919. [PubMed]
327. Desvignes L, Ernst JD. 2009. Interferon-gamma-responsive nonhematopoietic cells regulate the immune response to Mycobacterium tuberculosis. Immunity 31:974–985 http://dx.doi.org/10.1016/j.immuni.2009.10.007. [PubMed]
328. Green AM, Mattila JT, Bigbee CL, Bongers KS, Lin PL, Flynn JL. 2010. CD4(+) regulatory T cells in a cynomolgus macaque model of Mycobacterium tuberculosis infection. J Infect Dis 202:533–541 http://dx.doi.org/10.1086/654896. [PubMed]
329. Geffner L, Basile JI, Yokobori N, Sabio Y García C, Musella R, Castagnino J, Sasiain MC, de la Barrera S. 2014. CD4(+) CD25(high) forkhead box protein 3(+) regulatory T lymphocytes suppress interferon-γ and CD107 expression in CD4(+) and CD8(+) T cells from tuberculous pleural effusions. Clin Exp Immunol 175:235–245 http://dx.doi.org/10.1111/cei.12227. [PubMed]
330. Guyot-Revol V, Innes JA, Hackforth S, Hinks T, Lalvani A. 2006. Regulatory T cells are expanded in blood and disease sites in patients with tuberculosis. Am J Respir Crit Care Med 173:803–810 http://dx.doi.org/10.1164/rccm.200508-1294OC. [PubMed]
331. Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, Maciel E, Hirsch CS. 2006. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol 144:25–34 http://dx.doi.org/10.1111/j.1365-2249.2006.03027.x. [PubMed]
332. Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, Wu C, Larmonier N, Zhang W, Zhang H, Wang H, Katsanis E. 2007. CD4(+)CD25(+)FoxP3(+) regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol 123:50–59 http://dx.doi.org/10.1016/j.clim.2006.11.009. [PubMed]
333. Hougardy JM, Place S, Hildebrand M, Drowart A, Debrie AS, Locht C, Mascart F. 2007. Regulatory T cells depress immune responses to protective antigens in active tuberculosis. Am J Respir Crit Care Med 176:409–416 http://dx.doi.org/10.1164/rccm.200701-084OC. [PubMed]
334. Garg A, Barnes PF, Roy S, Quiroga MF, Wu S, García VE, Krutzik SR, Weis SE, Vankayalapati R. 2008. Mannose-capped lipoarabinomannan- and prostaglandin E2-dependent expansion of regulatory T cells in human Mycobacterium tuberculosis infection. Eur J Immunol 38:459–469 http://dx.doi.org/10.1002/eji.200737268. [PubMed]
335. Scott-Browne JP, Shafiani S, Tucker-Heard G, Ishida-Tsubota K, Fontenot JD, Rudensky AY, Bevan MJ, Urdahl KB. 2007. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis. J Exp Med 204:2159–2169 http://dx.doi.org/10.1084/jem.20062105. [PubMed]
336. Shafiani S, Tucker-Heard G, Kariyone A, Takatsu K, Urdahl KB. 2010. Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420 http://dx.doi.org/10.1084/jem.20091885. [PubMed]
337. Shafiani S, Dinh C, Ertelt JM, Moguche AO, Siddiqui I, Smigiel KS, Sharma P, Campbell DJ, Way SS, Urdahl KB. 2013. Pathogen-specific Treg cells expand early during mycobacterium tuberculosis infection but are later eliminated in response to interleukin-12. Immunity 38:1261–1270 http://dx.doi.org/10.1016/j.immuni.2013.06.003. [PubMed]
338. Shang S, Harton M, Tamayo MH, Shanley C, Palanisamy GS, Caraway M, Chan ED, Basaraba RJ, Orme IM, Ordway DJ. 2011. Increased Foxp3 expression in guinea pigs infected with W-Beijing strains of M. tuberculosis. Tuberculosis (Edinb) 91:378–385 http://dx.doi.org/10.1016/j.tube.2011.06.001. [PubMed]
339. McBride A, Konowich J, Salgame P. 2013. Host defense and recruitment of Foxp3 + T regulatory cells to the lungs in chronic Mycobacterium tuberculosis infection requires toll-like receptor 2. PLoS Pathog 9:e1003397 http://dx.doi.org/10.1371/journal.ppat.1003397. [PubMed]
340. Rogerson BJ, Jung YJ, LaCourse R, Ryan L, Enright N, North RJ. 2006. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195–201 http://dx.doi.org/10.1111/j.1365-2567.2006.02355.x. [PubMed]
341. Shi L, North R, Gennaro ML. 2004. Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung. Infect Immun 72:2420–2424 http://dx.doi.org/10.1128/IAI.72.4.2420-2424.2004. [PubMed]
342. Moguche AO, Shafiani S, Clemons C, Larson RP, Dinh C, Higdon LE, Cambier CJ, Sissons JR, Gallegos AM, Fink PJ, Urdahl KB. 2015. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J Exp Med 212:715–728 http://dx.doi.org/10.1084/jem.20141518. [PubMed]
343. Moguche AO, Musvosvi M, Penn-Nicholson A, Plumlee CR, Mearns H, Geldenhuys H, Smit E, Abrahams D, Rozot V, Dintwe O, Hoff ST, Kromann I, Ruhwald M, Bang P, Larson RP, Shafiani S, Ma S, Sherman DR, Sette A, Lindestam Arlehamn CS, McKinney DM, Maecker H, Hanekom WA, Hatherill M, Andersen P, Scriba TJ, Urdahl KB. 2017. Antigen availability shapes T cell differentiation and function during tuberculosis. Cell Host Microbe 21:695–706.e5 http://dx.doi.org/10.1016/j.chom.2017.05.012. [PubMed]
344. Bold TD, Banaei N, Wolf AJ, Ernst JD. 2011. Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosisin vivo. PLoS Pathog 7:e1002063 http://dx.doi.org/10.1371/journal.ppat.1002063. [PubMed]
345. Egen JG, Rothfuchs AG, Feng CG, Horwitz MA, Sher A, Germain RN. 2011. Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34:807–819 http://dx.doi.org/10.1016/j.immuni.2011.03.022. [PubMed]
346. Reiley WW, Shafiani S, Wittmer ST, Tucker-Heard G, Moon JJ, Jenkins MK, Urdahl KB, Winslow GM, Woodland DL. 2010. Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 107:19408–19413 http://dx.doi.org/10.1073/pnas.1006298107. [PubMed]
347. Winslow GM, Roberts AD, Blackman MA, Woodland DL. 2003. Persistence and turnover of antigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. J Immunol 170:2046–2052 http://dx.doi.org/10.4049/jimmunol.170.4.2046. [PubMed]
348. Aagaard C, Hoang T, Dietrich J, Cardona PJ, Izzo A, Dolganov G, Schoolnik GK, Cassidy JP, Billeskov R, Andersen P. 2011. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med 17:189–194 http://dx.doi.org/10.1038/nm.2285. [PubMed]
349. Behar SM, Dascher CC, Grusby MJ, Wang CR, Brenner MB. 1999. Susceptibility of mice deficient in CD1D or TAP1 to infection with Mycobacterium tuberculosis. J Exp Med 189:1973–1980 http://dx.doi.org/10.1084/jem.189.12.1973. [PubMed]
350. Sousa AO, Mazzaccaro RJ, Russell RG, Lee FK, Turner OC, Hong S, Van Kaer L, Bloom BR. 2000. Relative contributions of distinct MHC class I-dependent cell populations in protection to tuberculosis infection in mice. Proc Natl Acad Sci U S A 97:4204–4208 http://dx.doi.org/10.1073/pnas.97.8.4204. [PubMed]
351. van Pinxteren LA, Cassidy JP, Smedegaard BH, Agger EM, Andersen P. 2000. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur J Immunol 30:3689–3698 http://dx.doi.org/10.1002/1521-4141(200012)30:12<3689::AID-IMMU3689>3.0.CO;2-4.
352. Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL. 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687 http://dx.doi.org/10.1126/science.276.5319.1684. [PubMed]
353. Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, Porcelli SA, Bloom BR, Krensky AM, Modlin RL. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121–125 http://dx.doi.org/10.1126/science.282.5386.121. [PubMed]
354. Ernst WA, Thoma-Uszynski S, Teitelbaum R, Ko C, Hanson DA, Clayberger C, Krensky AM, Leippe M, Bloom BR, Ganz T, Modlin RL. 2000. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol 165:7102–7108 http://dx.doi.org/10.4049/jimmunol.165.12.7102. [PubMed]
355. Bruns H, Meinken C, Schauenberg P, Härter G, Kern P, Modlin RL, Antoni C, Stenger S. 2009. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J Clin Invest 119:1167–1177 http://dx.doi.org/10.1172/JCI38482. [PubMed]
356. Shams H, Klucar P, Weis SE, Lalvani A, Moonan PK, Safi H, Wizel B, Ewer K, Nepom GT, Lewinsohn DM, Andersen P, Barnes PF. 2004. Characterization of a Mycobacterium tuberculosis peptide that is recognized by human CD4+ and CD8+ T cells in the context of multiple HLA alleles. J Immunol 173:1966–1977 http://dx.doi.org/10.4049/jimmunol.173.3.1966. [PubMed]
357. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, Dockrell H, Pasvol G, Hill AV. 1998. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95:270–275 http://dx.doi.org/10.1073/pnas.95.1.270. [PubMed]
358. Pathan AA, Wilkinson KA, Wilkinson RJ, Latif M, McShane H, Pasvol G, Hill AV, Lalvani A. 2000. High frequencies of circulating IFN-gamma-secreting CD8 cytotoxic T cells specific for a novel MHC class I-restricted Mycobacterium tuberculosis epitope in M. tuberculosis-infected subjects without disease. Eur J Immunol 30:2713–2721 http://dx.doi.org/10.1002/1521-4141(200009)30:9<2713::AID-IMMU2713>3.0.CO;2-4.
359. Klein MR, Smith SM, Hammond AS, Ogg GS, King AS, Vekemans J, Jaye A, Lukey PT, McAdam KP. 2001. HLA-B*35-restricted CD8 T cell epitopes in the antigen 85 complex of Mycobacterium tuberculosis. J Infect Dis 183:928–934 http://dx.doi.org/10.1086/319267. [PubMed]
360. Caccamo N, Meraviglia S, La Mendola C, Guggino G, Dieli F, Salerno A. 2006. Phenotypical and functional analysis of memory and effector human CD8 T cells specific for mycobacterial antigens. J Immunol 177:1780–1785 http://dx.doi.org/10.4049/jimmunol.177.3.1780. [PubMed]
361. Lewinsohn DA, Winata E, Swarbrick GM, Tanner KE, Cook MS, Null MD, Cansler ME, Sette A, Sidney J, Lewinsohn DM. 2007. Immunodominant tuberculosis CD8 antigens preferentially restricted by HLA-B. PLoS Pathog 3:1240–1249 http://dx.doi.org/10.1371/journal.ppat.0030127. [PubMed]
362. Lewinsohn DM, Swarbrick GM, Cansler ME, Null MD, Rajaraman V, Frieder MM, Sherman DR, McWeeney S, Lewinsohn DA. 2013. Human Mycobacterium tuberculosis CD8 T Cell antigens/epitopes identified by a proteomic peptide library. PLoS One 8:e67016 http://dx.doi.org/10.1371/journal.pone.0067016. [PubMed]
363. Wherry EJ. 2011. T cell exhaustion. Nat Immunol 12:492–499 http://dx.doi.org/10.1038/ni.2035. [PubMed]
364. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, Mncube Z, Duraiswamy J, Zhu B, Eichbaum Q, Altfeld M, Wherry EJ, Coovadia HM, Goulder PJ, Klenerman P, Ahmed R, Freeman GJ, Walker BD. 2006. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443:350–354 http://dx.doi.org/10.1038/nature05115. [PubMed]
365. Rozot V, Vigano S, Mazza-Stalder J, Idrizi E, Day CL, Perreau M, Lazor-Blanchet C, Petruccioli E, Hanekom W, Goletti D, Bart PA, Nicod L, Pantaleo G, Harari A. 2013. Mycobacterium tuberculosis-specific CD8+ T cells are functionally and phenotypically different between latent infection and active disease. Eur J Immunol 43:1568–1577 http://dx.doi.org/10.1002/eji.201243262. [PubMed]
366. Saharia KK, Petrovas C, Ferrando-Martinez S, Leal M, Luque R, Ive P, Luetkemeyer A, Havlir D, Koup RA. 2016. Tuberculosis therapy modifies the cytokine profile, maturation state, and expression of inhibitory molecules on Mycobacterium tuberculosis-specific CD4+ T-cells. PLoS One 11:e0158262 http://dx.doi.org/10.1371/journal.pone.0158262. [PubMed]
367. Hassan SS, Akram M, King EC, Dockrell HM, Cliff JM. 2015. PD-1, PD-L1 and PD-L2 gene expression on T-cells and natural killer cells declines in conjunction with a reduction in PD-1 protein during the intensive phase of tuberculosis treatment. PLoS One 10:e0137646 http://dx.doi.org/10.1371/journal.pone.0137646. [PubMed]
368. Adekambi T, Ibegbu CC, Kalokhe AS, Yu T, Ray SM, Rengarajan J. 2012. Distinct effector memory CD4+ T cell signatures in latent Mycobacterium tuberculosis infection, BCG vaccination and clinically resolved tuberculosis. PLoS One 7:e36046 http://dx.doi.org/10.1371/journal.pone.0036046. [PubMed]
369. Singh A, Mohan A, Dey AB, Mitra DK. 2013. Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon γ-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis 208:603–615 http://dx.doi.org/10.1093/infdis/jit206. [PubMed]
370. Jurado JO, Alvarez IB, Pasquinelli V, Martínez GJ, Quiroga MF, Abbate E, Musella RM, Chuluyan HE, García VE. 2008. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol 181:116–125 http://dx.doi.org/10.4049/jimmunol.181.1.116. [PubMed]
371. Govender L, Abel B, Hughes EJ, Scriba TJ, Kagina BM, de Kock M, Walzl G, Black G, Rosenkrands I, Hussey GD, Mahomed H, Andersen P, Hanekom WA. 2010. Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 29:51–57 http://dx.doi.org/10.1016/j.vaccine.2010.10.022. [PubMed]
372. Day CL, Abrahams DA, Lerumo L, Janse van Rensburg E, Stone L, O’rie T, Pienaar B, de Kock M, Kaplan G, Mahomed H, Dheda K, Hanekom WA. 2011. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol 187:2222–2232 http://dx.doi.org/10.4049/jimmunol.1101122. [PubMed]
373. Lázár-Molnár E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, Porcelli SA, Almo SC, Nathenson SG, Jacobs WR Jr. 2010. Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A 107:13402–13407 http://dx.doi.org/10.1073/pnas.1007394107. [PubMed]
374. Barber DL, Mayer-Barber KD, Feng CG, Sharpe AH, Sher A. 2011. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J Immunol 186:1598–1607 http://dx.doi.org/10.4049/jimmunol.1003304. [PubMed]
375. Jayaraman P, Sada-Ovalle I, Beladi S, Anderson AC, Dardalhon V, Hotta C, Kuchroo VK, Behar SM. 2010. Tim3 binding to galectin-9 stimulates antimicrobial immunity. J Exp Med 207:2343–2354 http://dx.doi.org/10.1084/jem.20100687. [PubMed]
376. Sada-Ovalle I, Chávez-Galán L, Torre-Bouscoulet L, Nava-Gamiño L, Barrera L, Jayaraman P, Torres-Rojas M, Salazar-Lezama MA, Behar SM. 2012. The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis. J Immunol 189:5896–5902 http://dx.doi.org/10.4049/jimmunol.1200990. [PubMed]
377. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, Anderson AC, Kuchroo VK, Behar SM. 2016. TIM3 mediates T cell exhaustion during Mycobacterium tuberculosis infection. PLoS Pathog 12:e1005490 http://dx.doi.org/10.1371/journal.ppat.1005490. [PubMed]
378. Qiu Y, Chen J, Liao H, Zhang Y, Wang H, Li S, Luo Y, Fang D, Li G, Zhou B, Shen L, Chen CY, Huang D, Cai J, Cao K, Jiang L, Zeng G, Chen ZW. 2012. Tim-3-expressing CD4+ and CD8+ T cells in human tuberculosis (TB) exhibit polarized effector memory phenotypes and stronger anti-TB effector functions. PLoS Pathog 8:e1002984 http://dx.doi.org/10.1371/journal.ppat.1002984. [PubMed]
379. Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. 2013. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur J Immunol 43:2797–2809 http://dx.doi.org/10.1002/eji.201343751. [PubMed]
380. Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712 http://dx.doi.org/10.1038/44385. [PubMed]
381. Caccamo N, Guggino G, Meraviglia S, Gelsomino G, Di Carlo P, Titone L, Bocchino M, Galati D, Matarese A, Nouta J, Klein MR, Salerno A, Sanduzzi A, Dieli F, Ottenhoff TH. 2009. Analysis of Mycobacterium tuberculosis-specific CD8 T-cells in patients with active tuberculosis and in individuals with latent infection. PLoS One 4:e5528 http://dx.doi.org/10.1371/journal.pone.0005528. [PubMed]
382. Griffin JP, Orme IM. 1994. Evolution of CD4 T-cell subsets following infection of naive and memory immune mice with Mycobacterium tuberculosis. Infect Immun 62:1683–1690.
383. Andersen P, Smedegaard B. 2000. CD4(+) T-cell subsets that mediate immunological memory to Mycobacterium tuberculosis infection in mice. Infect Immun 68:621–629 http://dx.doi.org/10.1128/IAI.68.2.621-629.2000. [PubMed]
384. Serbina NV, Flynn JL. 2001. CD8(+) T cells participate in the memory immune response to Mycobacterium tuberculosis. Infect Immun 69:4320–4328 http://dx.doi.org/10.1128/IAI.69.7.4320-4328.2001. [PubMed]
385. Kamath A, Woodworth JS, Behar SM. 2006. Antigen-specific CD8+ T cells and the development of central memory during Mycobacterium tuberculosis infection. J Immunol 177:6361–6369 http://dx.doi.org/10.4049/jimmunol.177.9.6361. [PubMed]
386. Hubbard RD, Flory CM, Collins FM. 1991. Memory T cell-mediated resistance to Mycobacterium tuberculosis infection in innately susceptible and resistant mice. Infect Immun 59:2012–2016.
387. Andersen P, Heron I. 1993. Specificity of a protective memory immune response against Mycobacterium tuberculosis. Infect Immun 61:844–851.
388. Orme IM. 1988. Characteristics and specificity of acquired immunologic memory to Mycobacterium tuberculosis infection. J Immunol 140:3589–3593.
389. Kamath AB, Behar SM. 2005. Anamnestic responses of mice following Mycobacterium tuberculosis infection. Infect Immun 73:6110–6118 http://dx.doi.org/10.1128/IAI.73.9.6110-6118.2005. [PubMed]
390. Achkar JM, Chan J, Casadevall A. 2015. B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunol Rev 264:167–181 http://dx.doi.org/10.1111/imr.12276. [PubMed]
391. Ulrichs T, Kosmiadi GA, Trusov V, Jörg S, Pradl L, Titukhina M, Mishenko V, Gushina N, Kaufmann SH. 2004. Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol 204:217–228 http://dx.doi.org/10.1002/path.1628. [PubMed]
392. Tsai MC, Chakravarty S, Zhu G, Xu J, Tanaka K, Koch C, Tufariello J, Flynn J, Chan J. 2006. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell Microbiol 8:218–232 http://dx.doi.org/10.1111/j.1462-5822.2005.00612.x. [PubMed]
393. Kozakiewicz L, Phuah J, Flynn J, Chan J. 2013. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Adv Exp Med Biol 783:225–250 http://dx.doi.org/10.1007/978-1-4614-6111-1_12. [PubMed]
394. Cliff JM, Lee JS, Constantinou N, Cho JE, Clark TG, Ronacher K, King EC, Lukey PT, Duncan K, Van Helden PD, Walzl G, Dockrell HM. 2013. Distinct phases of blood gene expression pattern through tuberculosis treatment reflect modulation of the humoral immune response. J Infect Dis 207:18–29 http://dx.doi.org/10.1093/infdis/jis499. [PubMed]
395. Lyashchenko K, Colangeli R, Houde M, Al Jahdali H, Menzies D, Gennaro ML. 1998. Heterogeneous antibody responses in tuberculosis. Infect Immun 66:3936–3940.
396. Li H, Wang XX, Wang B, Fu L, Liu G, Lu Y, Cao M, Huang H, Javid B. 2017. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 114:5023–5028 http://dx.doi.org/10.1073/pnas.1611776114. [PubMed]
397. Kunnath-Velayudhan S, Salamon H, Wang HY, Davidow AL, Molina DM, Huynh VT, Cirillo DM, Michel G, Talbot EA, Perkins MD, Felgner PL, Liang X, Gennaro ML. 2010. Dynamic antibody responses to the Mycobacterium tuberculosis proteome. Proc Natl Acad Sci U S A 107:14703–14708 http://dx.doi.org/10.1073/pnas.1009080107. [PubMed]
398. Maglione PJ, Xu J, Chan J. 2007. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J Immunol 178:7222–7234 http://dx.doi.org/10.4049/jimmunol.178.11.7222. [PubMed]
399. Kozakiewicz L, Chen Y, Xu J, Wang Y, Dunussi-Joannopoulos K, Ou Q, Flynn JL, Porcelli SA, Jacobs WR Jr, Chan J. 2013. B cells regulate neutrophilia during Mycobacterium tuberculosis infection and BCG vaccination by modulating the interleukin-17 response. PLoS Pathog 9:e1003472 http://dx.doi.org/10.1371/journal.ppat.1003472. [PubMed]
400. Maglione PJ, Chan J. 2009. How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol 39:676–686 http://dx.doi.org/10.1002/eji.200839148. [PubMed]
401. Maglione PJ, Xu J, Casadevall A, Chan J. 2008. Fc gamma receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J Immunol 180:3329–3338 http://dx.doi.org/10.4049/jimmunol.180.5.3329. [PubMed]
402. Benard A, Sakwa I, Schierloh P, Colom A, Mercier I, Tailleux L, Jouneau L, Boudinot P, Al-Saati T, Lang R, Rehwinkel J, Loxton AG, Kaufmann SH, Anton-Leberre V, O’Garra A, Del Carmen Sasiain M, Gicquel B, Fillatreau S, Neyrolles O, Hudrisier D. 2017. B cells producing type I interferon modulate macrophage polarization in tuberculosis. Am J Respir Crit Care Med 197:801–813. [PubMed]
403. Carding SR, Egan PJ. 2002. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345 http://dx.doi.org/10.1038/nri797. [PubMed]
404. Bonneville M, O’Brien RL, Born WK. 2010. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 10:467–478 http://dx.doi.org/10.1038/nri2781. [PubMed]
405. Havlir DV, Ellner JJ, Chervenak KA, Boom WH. 1991. Selective expansion of human gamma delta T cells by monocytes infected with live Mycobacterium tuberculosis. J Clin Invest 87:729–733 http://dx.doi.org/10.1172/JCI115053. [PubMed]
406. Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT. 1994. Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci U S A 91:8175–8179 http://dx.doi.org/10.1073/pnas.91.17.8175. [PubMed]
407. Tanaka Y, Morita CT, Tanaka Y, Nieves E, Brenner MB, Bloom BR. 1995. Natural and synthetic non-peptide antigens recognized by human gamma delta T cells. Nature 375:155–158 http://dx.doi.org/10.1038/375155a0. [PubMed]
408. Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournié JJ. 1994. Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264:267–270 http://dx.doi.org/10.1126/science.8146660. [PubMed]
409. Haregewoin A, Soman G, Hom RC, Finberg RW. 1989. Human gamma delta+ T cells respond to mycobacterial heat-shock protein. Nature 340:309–312 http://dx.doi.org/10.1038/340309a0. [PubMed]
410. Kabelitz D, Bender A, Schondelmaier S, Schoel B, Kaufmann SH. 1990. A large fraction of human peripheral blood gamma/delta + T cells is activated by Mycobacterium tuberculosis but not by its 65-kD heat shock protein. J Exp Med 171:667–679 http://dx.doi.org/10.1084/jem.171.3.667. [PubMed]
411. Kabelitz D, Bender A, Prospero T, Wesselborg S, Janssen O, Pechhold K. 1991. The primary response of human gamma/delta + T cells to Mycobacterium tuberculosis is restricted to V gamma 9-bearing cells. J Exp Med 173:1331–1338 http://dx.doi.org/10.1084/jem.173.6.1331. [PubMed]
412. Boom WH, Chervenak KA, Mincek MA, Ellner JJ. 1992. Role of the mononuclear phagocyte as an antigen-presenting cell for human gamma delta T cells activated by live Mycobacterium tuberculosis. Infect Immun 60:3480–3488.
413. De Libero G, Casorati G, Giachino C, Carbonara C, Migone N, Matzinger P, Lanzavecchia A. 1991. Selection by two powerful antigens may account for the presence of the major population of human peripheral gamma/delta T cells. J Exp Med 173:1311–1322 http://dx.doi.org/10.1084/jem.173.6.1311. [PubMed]
414. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Bonneville M, Peyrat MA, Sireci G, Salerno A. 2000. Vgamma9/Vdelta2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 30:1512–1519 http://dx.doi.org/10.1002/(SICI)1521-4141(200005)30:5<1512::AID-IMMU1512>3.0.CO;2-3.
415. Abate G, Spencer CT, Hamzabegovic F, Blazevic A, Xia M, Hoft DF. 2015. Mycobacterium-specific γ9δ2 T cells mediate both pathogen-inhibitory and CD40 ligand-dependent antigen presentation effects important for tuberculosis immunity. Infect Immun 84:580–589 http://dx.doi.org/10.1128/IAI.01262-15. [PubMed]
416. Panchamoorthy G, McLean J, Modlin RL, Morita CT, Ishikawa S, Brenner MB, Band H. 1991. A predominance of the T cell receptor V gamma 2/V delta 2 subset in human mycobacteria-responsive T cells suggests germline gene encoded recognition. J Immunol 147:3360–3369.
417. Chen CY, Yao S, Huang D, Wei H, Sicard H, Zeng G, Jomaa H, Larsen MH, Jacobs WR Jr, Wang R, Letvin N, Shen Y, Qiu L, Shen L, Chen ZW. 2013. Phosphoantigen/IL2 expansion and differentiation of Vγ2Vδ2 T cells increase resistance to tuberculosis in nonhuman primates. PLoS Pathog 9:e1003501 http://dx.doi.org/10.1371/journal.ppat.1003501. [PubMed]
418. Qaqish A, Huang D, Chen CY, Zhang Z, Wang R, Li S, Yang E, Lu Y, Larsen MH, Jacobs WR Jr, Qian L, Frencher J, Shen L, Chen ZW. 2017. Adoptive transfer of phosphoantigen-specific γδ T cell subset attenuates Mycobacterium tuberculosis infection in nonhuman primates. J Immunol 198:4753–4763 http://dx.doi.org/10.4049/jimmunol.1602019. [PubMed]
419. Dieli F, Troye-Blomberg M, Ivanyi J, Fournié JJ, Krensky AM, Bonneville M, Peyrat MA, Caccamo N, Sireci G, Salerno A. 2001. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis 184:1082–1085 http://dx.doi.org/10.1086/323600. [PubMed]
420. Spencer CT, Abate G, Sakala IG, Xia M, Truscott SM, Eickhoff CS, Linn R, Blazevic A, Metkar SS, Peng G, Froelich CJ, Hoft DF. 2013. Granzyme A produced by γ(9)δ(2) T cells induces human macrophages to inhibit growth of an intracellular pathogen. PLoS Pathog 9:e1003119 http://dx.doi.org/10.1371/journal.ppat.1003119. [PubMed]
421. Meraviglia S, Caccamo N, Salerno A, Sireci G, Dieli F. 2010. Partial and ineffective activation of V gamma 9V delta 2 T cells by Mycobacterium tuberculosis-infected dendritic cells. J Immunol 185:1770–1776 http://dx.doi.org/10.4049/jimmunol.1000966. [PubMed]
422. Janis EM, Kaufmann SH, Schwartz RH, Pardoll DM. 1989. Activation of gamma delta T cells in the primary immune response to Mycobacterium tuberculosis. Science 244:713–716 http://dx.doi.org/10.1126/science.2524098. [PubMed]
423. Lockhart E, Green AM, Flynn JL. 2006. IL-17 production is dominated by gammadelta T cells rather than CD4 T cells during Mycobacterium tuberculosis infection. J Immunol 177:4662–4669 http://dx.doi.org/10.4049/jimmunol.177.7.4662. [PubMed]
424. Strominger JL. 2010. An alternative path for antigen presentation: group 1 CD1 proteins. J Immunol 184:3303–3305 http://dx.doi.org/10.4049/jimmunol.1090008. [PubMed]
425. Moody DB, Ulrichs T, Mühlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888 http://dx.doi.org/10.1038/35009119. [PubMed]
426. Ulrichs T, Moody DB, Grant E, Kaufmann SH, Porcelli SA. 2003. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect Immun 71:3076–3087 http://dx.doi.org/10.1128/IAI.71.6.3076-3087.2003. [PubMed]
427. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Böhmer G, Prandi J, Mori L, Puzo G, De Libero G. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659 http://dx.doi.org/10.1084/jem.20031097. [PubMed]
428. Layre E, Collmann A, Bastian M, Mariotti S, Czaplicki J, Prandi J, Mori L, Stenger S, De Libero G, Puzo G, Gilleron M. 2009. Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16:82–92 http://dx.doi.org/10.1016/j.chembiol.2008.11.008. [PubMed]
429. Kasmar AG, van Rhijn I, Cheng TY, Turner M, Seshadri C, Schiefner A, Kalathur RC, Annand JW, de Jong A, Shires J, Leon L, Brenner M, Wilson IA, Altman JD, Moody DB. 2011. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J Exp Med 208:1741–1747 http://dx.doi.org/10.1084/jem.20110665. [PubMed]
430. Montamat-Sicotte DJ, Millington KA, Willcox CR, Hingley-Wilson S, Hackforth S, Innes J, Kon OM, Lammas DA, Minnikin DE, Besra GS, Willcox BE, Lalvani A. 2011. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J Clin Invest 121:2493–2503 http://dx.doi.org/10.1172/JCI46216. [PubMed]
431. Ly D, Kasmar AG, Cheng TY, de Jong A, Huang S, Roy S, Bhatt A, van Summeren RP, Altman JD, Jacobs WR Jr, Adams EJ, Minnaard AJ, Porcelli SA, Moody DB. 2013. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J Exp Med 210:729–741 http://dx.doi.org/10.1084/jem.20120624. [PubMed]
432. Seshadri C, Turner MT, Lewinsohn DM, Moody DB, Van Rhijn I. 2013. Lipoproteins are major targets of the polyclonal human T cell response to Mycobacterium tuberculosis. J Immunol 190:278–284 http://dx.doi.org/10.4049/jimmunol.1201667. [PubMed]
433. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. 1994. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 372:691–694 http://dx.doi.org/10.1038/372691a0. [PubMed]
434. Sieling PA, Ochoa MT, Jullien D, Leslie DS, Sabet S, Rosat JP, Burdick AE, Rea TH, Brenner MB, Porcelli SA, Modlin RL. 2000. Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J Immunol 164:4790–4796 http://dx.doi.org/10.4049/jimmunol.164.9.4790. [PubMed]
435. Moody DB, Young DC, Cheng TY, Rosat JP, Roura-Mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB, Wilson IA, Costello CE, Brenner MB. 2004. T cell activation by lipopeptide antigens. Science 303:527–531 http://dx.doi.org/10.1126/science.1089353. [PubMed]
436. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C, Premel V, Devys A, Moura IC, Tilloy F, Cherif S, Vera G, Latour S, Soudais C, Lantz O. 2009. Stepwise development of MAIT cells in mouse and human. PLoS Biol 7:e54 http://dx.doi.org/10.1371/journal.pbio.1000054. [PubMed]
437. Gold MC, Lewinsohn DM. 2013. Co-dependents: MR1-restricted MAIT cells and their antimicrobial function. Nat Rev Microbiol 11:14–19 http://dx.doi.org/10.1038/nrmicro2918. [PubMed]
438. Le Bourhis L, Mburu YK, Lantz O. 2013. MAIT cells, surveyors of a new class of antigen: development and functions. Curr Opin Immunol 25:174–180 http://dx.doi.org/10.1016/j.coi.2013.01.005. [PubMed]
439. Treiner E, Duban L, Bahram S, Radosavljevic M, Wanner V, Tilloy F, Affaticati P, Gilfillan S, Lantz O. 2003. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422:164–169 http://dx.doi.org/10.1038/nature01433. [PubMed]
440. Kjer-Nielsen L, Patel O, Corbett AJ, Le Nours J, Meehan B, Liu L, Bhati M, Chen Z, Kostenko L, Reantragoon R, Williamson NA, Purcell AW, Dudek NL, McConville MJ, O’Hair RA, Khairallah GN, Godfrey DI, Fairlie DP, Rossjohn J, McCluskey J. 2012. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–723 http://dx.doi.org/10.1038/nature11605. [PubMed]
441. Dusseaux M, Martin E, Serriari N, Péguillet I, Premel V, Louis D, Milder M, Le Bourhis L, Soudais C, Treiner E, Lantz O. 2011. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117:1250–1259 http://dx.doi.org/10.1182/blood-2010-08-303339. [PubMed]
442. Gold MC, Cerri S, Smyk-Pearson S, Cansler ME, Vogt TM, Delepine J, Winata E, Swarbrick GM, Chua WJ, Yu YY, Lantz O, Cook MS, Null MD, Jacoby DB, Harriff MJ, Lewinsohn DA, Hansen TH, Lewinsohn DM. 2010. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol 8:e1000407 http://dx.doi.org/10.1371/journal.pbio.1000407. [PubMed]
443. Gold MC, Eid T, Smyk-Pearson S, Eberling Y, Swarbrick GM, Langley SM, Streeter PR, Lewinsohn DA, Lewinsohn DM. 2013. Human thymic MR1-restricted MAIT cells are innate pathogen-reactive effectors that adapt following thymic egress. Mucosal Immunol 6:35–44 http://dx.doi.org/10.1038/mi.2012.45. [PubMed]
444. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O’Brien P, Chen C, Kaya F, Weiner DM, Chen PY, Song T, Lee M, Shim TS, Cho JS, Kim W, Cho SN, Olivier KN, Barry CE III, Dartois V. 2015. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med 21:1223–1227 http://dx.doi.org/10.1038/nm.3937. [PubMed]
445. Ramakrishnan L. 2012. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol 12:352–366 http://dx.doi.org/10.1038/nri3211. [PubMed]
446. Cadena AM, Fortune SM, Flynn JL. 2017. Heterogeneity in tuberculosis. Nat Rev Immunol 17:691–702 http://dx.doi.org/10.1038/nri.2017.69. [PubMed]
447. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F. 2009. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat Immunol 10:943–948 http://dx.doi.org/10.1038/ni.1781. [PubMed]
448. Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE III. 2008. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2333–2340 http://dx.doi.org/10.1128/IAI.01515-07. [PubMed]
449. Volkman HE, Clay H, Beery D, Chang JCW, Sherman DR, Ramakrishnan L. 2004. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biol 2:e367 http://dx.doi.org/10.1371/journal.pbio.0020367. [PubMed]
450. Davis JM, Ramakrishnan L. 2009. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49 http://dx.doi.org/10.1016/j.cell.2008.11.014. [PubMed]
451. Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, Cosma CL, Ramakrishnan L. 2014. Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505:218–222 http://dx.doi.org/10.1038/nature12799. [PubMed]
452. Cambier CJ, O’Leary SM, O’Sullivan MP, Keane J, Ramakrishnan L. 2017. Phenolic glycolipid facilitates mycobacterial escape from microbicidal tissue-resident macrophages. Immunity 47:552–565.e4 http://dx.doi.org/10.1016/j.immuni.2017.08.003. [PubMed]
453. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM, Kirschner DE, Lin PL, Flynn JL. 2015. Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 11:e1004603 http://dx.doi.org/10.1371/journal.ppat.1004603. [PubMed]
454. Marakalala MJ, Raju RM, Sharma K, Zhang YJ, Eugenin EA, Prideaux B, Daudelin IB, Chen PY, Booty MG, Kim JH, Eum SY, Via LE, Behar SM, Barry CE III, Mann M, Dartois V, Rubin EJ. 2016. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat Med 22:531–538 http://dx.doi.org/10.1038/nm.4073. [PubMed]
455. Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop J, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NT, Jones-López EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan B, Winn-Deen E, Christel L, Dailey P, Perkins MD, Persing DH, Alland D. 2010. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48:229–237 http://dx.doi.org/10.1128/JCM.01463-09. [PubMed]
456. Stevens WS, Scott L, Noble L, Gous N, Dheda K. 2017. Impact of the GeneXpert MTB/RIF technology on tuberculosis control. Microbiol Spectr 5:10.1128/microbiolspec.TBTB2-0040-2016 http://dx.doi.org/10.1128/microbiolspec.TBTB2-0040-2016. [PubMed]
457.