1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Surface Proteins of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • Author: Timothy J. Foster1
  • Editors: Vincent A. Fischetti2, Richard P. Novick3, Joseph J. Ferretti4, Daniel A. Portnoy5, Miriam Braunstein6, Julian I. Rood7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Microbiology Department, Trinity College, Dublin, Ireland; 2: The Rockefeller University, New York, NY; 3: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 4: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 5: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 6: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 7: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
  • Received 19 October 2018 Accepted 01 November 2018 Published 05 July 2019
  • Timothy J. Foster, [email protected]
image of Surface Proteins of <span class="jp-italic">Staphylococcus aureus</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Surface Proteins of , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0046-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/4/GPP3-0046-2018-2.gif
  • Abstract:

    The surface of is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent infections.

  • Citation: Foster T. 2019. Surface Proteins of . Microbiol Spectrum 7(4):GPP3-0046-2018. doi:10.1128/microbiolspec.GPP3-0046-2018.

References

1. Patti JM, Allen BL, McGavin MJ, Höök M. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617 http://dx.doi.org/10.1146/annurev.mi.48.100194.003101. [PubMed]
2. Foster TJ, Geoghegan JA, Ganesh VK, Höök M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62 http://dx.doi.org/10.1038/nrmicro3161. [PubMed]
3. Deivanayagam CC, Wann ER, Chen W, Carson M, Rajashankar KR, Höök M, Narayana SV. 2002. A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. EMBO J 21:6660–6672 http://dx.doi.org/10.1093/emboj/cdf619. [PubMed]
4. Ponnuraj K, Bowden MG, Davis S, Gurusiddappa S, Moore D, Choe D, Xu Y, Hook M, Narayana SV. 2003. A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. Cell 115:217–228 http://dx.doi.org/10.1016/S0092-8674(03)00809-2.
5. Ganesh VK, Barbu EM, Deivanayagam CC, Le B, Anderson AS, Matsuka YV, Lin SL, Foster TJ, Narayana SV, Höök M. 2011. Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. J Biol Chem 286:25963–25972 http://dx.doi.org/10.1074/jbc.M110.217414. [PubMed]
6. Bingham RJ, Rudiño-Piñera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Höök M, Garman EF, Potts JR. 2008. Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci U S A 105:12254–12258 http://dx.doi.org/10.1073/pnas.0803556105. [PubMed]
7. Xiang H, Feng Y, Wang J, Liu B, Chen Y, Liu L, Deng X, Yang M. 2012. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog 8:e1002751 http://dx.doi.org/10.1371/journal.ppat.1002751. [PubMed]
8. Herman P, El-Kirat-Chatel S, Beaussart A, Geoghegan JA, Foster TJ, Dufrêne YF. 2014. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol Microbiol 93:356–368 http://dx.doi.org/10.1111/mmi.12663. [PubMed]
9. Herman-Bausier P, Valotteau C, Pietrocola G, Rindi S, Alsteens D, Foster TJ, Speziale P, Dufrêne YF. 2016. Mechanical strength and inhibition of the Staphylococcus aureus collagen-binding protein Cna. MBio 7:e01529-16 http://dx.doi.org/10.1128/mBio.01529-16. [PubMed]
10. Vitry P, Valotteau C, Feuillie C, Bernard S, Alsteens D, Geoghegan JA, Dufrêne YF. 2017. Force-induced strengthening of the interaction between Staphylococcus aureus clumping factor B and loricrin. MBio 8:e01748-17 http://dx.doi.org/10.1128/mBio.01748-17. [PubMed]
11. Ganesh VK, Rivera JJ, Smeds E, Ko YP, Bowden MG, Wann ER, Gurusiddappa S, Fitzgerald JR, Höök M. 2008. A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. PLoS Pathog 4:e1000226 http://dx.doi.org/10.1371/journal.ppat.1000226. [PubMed]
12. Ganesh VK, Liang X, Geoghegan JA, Cohen ALV, Venugopalan N, Foster TJ, Hook M. 2016. Lessons from the crystal structure of the S. aureus surface protein clumping factor A in complex with tefibazumab, an inhibiting monoclonal antibody. EBioMedicine 13:328–338 http://dx.doi.org/10.1016/j.ebiom.2016.09.027. [PubMed]
13. Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, Zang J, Zhang M, Zhang X. 2017. Staphylococcus aureus SdrE captures complement factor H’s C-terminus via a novel ‘close, dock, lock and latch’ mechanism for complement evasion. Biochem J 474:1619–1631 http://dx.doi.org/10.1042/BCJ20170085. [PubMed]
14. Mulcahy ME, Geoghegan JA, Monk IR, O’Keeffe KM, Walsh EJ, Foster TJ, McLoughlin RM. 2012. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 8:e1003092 http://dx.doi.org/10.1371/journal.ppat.1003092. [PubMed]
15. Burke FM, McCormack N, Rindi S, Speziale P, Foster TJ. 2010. Fibronectin-binding protein B variation in Staphylococcus aureus. BMC Microbiol 10:160 http://dx.doi.org/10.1186/1471-2180-10-160. [PubMed]
16. Keane FM, Loughman A, Valtulina V, Brennan M, Speziale P, Foster TJ. 2007. Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus. Mol Microbiol 63:711–723 http://dx.doi.org/10.1111/j.1365-2958.2006.05552.x. [PubMed]
17. Zong Y, Xu Y, Liang X, Keene DR, Höök A, Gurusiddappa S, Höök M, Narayana SV. 2005. A ‘collagen hug’ model for Staphylococcus aureus CNA binding to collagen. EMBO J 24:4224–4236 http://dx.doi.org/10.1038/sj.emboj.7600888. [PubMed]
18. Gaboriaud C, Thielens NM, Gregory LA, Rossi V, Fontecilla-Camps JC, Arlaud GJ. 2004. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol 25:368–373 http://dx.doi.org/10.1016/j.it.2004.04.008. [PubMed]
19. Kang M, Ko YP, Liang X, Ross CL, Liu Q, Murray BE, Höök M. 2013. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288:20520–20531 http://dx.doi.org/10.1074/jbc.M113.454462. [PubMed]
20. Geoghegan JA, Monk IR, O’Gara JP, Foster TJ. 2013. Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 195:2675–2683 http://dx.doi.org/10.1128/JB.02128-12. [PubMed]
21. Barbu EM, Mackenzie C, Foster TJ, Höök M. 2014. SdrC induces staphylococcal biofilm formation through a homophilic interaction. Mol Microbiol 94:172–185 http://dx.doi.org/10.1111/mmi.12750. [PubMed]
22. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP. 2008. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850 http://dx.doi.org/10.1128/JB.00167-08. [PubMed]
23. Feuillie C, Formosa-Dague C, Hays LM, Vervaeck O, Derclaye S, Brennan MP, Foster TJ, Geoghegan JA, Dufrêne YF. 2017. Molecular interactions and inhibition of the staphylococcal biofilm-forming protein SdrC. Proc Natl Acad Sci U S A 114:3738–3743 http://dx.doi.org/10.1073/pnas.1616805114. [PubMed]
24. Barbu EM, Ganesh VK, Gurusiddappa S, Mackenzie RC, Foster TJ, Sudhof TC, Höök M. 2010. beta-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog 6:e1000726 http://dx.doi.org/10.1371/journal.ppat.1000726. [PubMed]
25. Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrêne YF. 2015. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. MBio 6:e00413-15 http://dx.doi.org/10.1128/mBio.00413-15. [PubMed]
26. Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, Speziale P. 2016. Molecular interactions of human plasminogen with fibronectin-binding protein B (FnBPB), a fibrinogen/fibronectin-binding protein from Staphylococcus aureus. J Biol Chem 291:18148–18162 http://dx.doi.org/10.1074/jbc.M116.731125. [PubMed]
27. Herman-Bausier P, Pietrocola G, Foster TJ, Speziale P, Dufrêne YF. 2017. Fibrinogen activates the capture of human plasminogen by staphylococcal fibronectin-binding proteins. MBio 8:e01067-17 http://dx.doi.org/10.1128/mBio.01067-17. [PubMed]
28. Josefsson E, McCrea KW, Ní Eidhin D, O’Connell D, Cox J, Höök M, Foster TJ. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144:3387–3395 http://dx.doi.org/10.1099/00221287-144-12-3387. [PubMed]
29. Josefsson E, O’Connell D, Foster TJ, Durussel I, Cox JA. 1998. The binding of calcium to the B-repeat segment of SdrD, a cell surface protein of Staphylococcus aureus. J Biol Chem 273:31145–31152 http://dx.doi.org/10.1074/jbc.273.47.31145. [PubMed]
30. Herman-Bausier P, Dufrêne YF. 2016. Atomic force microscopy reveals a dual collagen-binding activity for the staphylococcal surface protein SdrF. Mol Microbiol 99:611–621 http://dx.doi.org/10.1111/mmi.13254. [PubMed]
31. Wang X, Ge J, Liu B, Hu Y, Yang M. 2013. Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands. Protein Cell 4:277–285 http://dx.doi.org/10.1007/s13238-013-3009-x. [PubMed]
32. Hartford O, Francois P, Vaudaux P, Foster TJ. 1997. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol 25:1065–1076 http://dx.doi.org/10.1046/j.1365-2958.1997.5291896.x. [PubMed]
33. Hazenbos WL, Kajihara KK, Vandlen R, Morisaki JH, Lehar SM, Kwakkenbos MJ, Beaumont T, Bakker AQ, Phung Q, Swem LR, Ramakrishnan S, Kim J, Xu M, Shah IM, Diep BA, Sai T, Sebrell A, Khalfin Y, Oh A, Koth C, Lin SJ, Lee BC, Strandh M, Koefoed K, Andersen PS, Spits H, Brown EJ, Tan MW, Mariathasan S. 2013. Novel staphylococcal glycosyltransferases SdgA and SdgB mediate immunogenicity and protection of virulence-associated cell wall proteins. PLoS Pathog 9:e1003653 http://dx.doi.org/10.1371/journal.ppat.1003653. [PubMed]
34. Thomer L, Becker S, Emolo C, Quach A, Kim HK, Rauch S, Anderson M, Leblanc JF, Schneewind O, Faull KF, Missiakas D. 2014. N-acetylglucosaminylation of serine-aspartate repeat proteins promotes Staphylococcus aureus bloodstream infection. J Biol Chem 289:3478–3486 http://dx.doi.org/10.1074/jbc.M113.532655. [PubMed]
35. Bleiziffer I, Eikmeier J, Pohlentz G, McAulay K, Xia G, Hussain M, Peschel A, Foster S, Peters G, Heilmann C. 2017. The plasmin-sensitive protein Pls in methicillin-resistant Staphylococcus aureus (MRSA) is a glycoprotein. PLoS Pathog 13:e1006110 http://dx.doi.org/10.1371/journal.ppat.1006110. [PubMed]
36. McAleese FM, Walsh EJ, Sieprawska M, Potempa J, Foster TJ. 2001. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J Biol Chem 276:29969–29978 http://dx.doi.org/10.1074/jbc.M102389200. [PubMed]
37. McCormack N, Foster TJ, Geoghegan JA. 2014. A short sequence within subdomain N1 of region A of the Staphylococcus aureus MSCRAMM clumping factor A is required for export and surface display. Microbiology 160:659–670 http://dx.doi.org/10.1099/mic.0.074724-0. [PubMed]
38. McGavin MJ, Zahradka C, Rice K, Scott JE. 1997. Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect Immun 65:2621–2628.
39. Werbick C, Becker K, Mellmann A, Juuti KM, von Eiff C, Peters G, Kuusela PI, Friedrich AW, Sinha B. 2007. Staphylococcal chromosomal cassette mec type I, spa type, and expression of Pls are determinants of reduced cellular invasiveness of methicillin-resistant Staphylococcus aureus isolates. J Infect Dis 195:1678–1685 http://dx.doi.org/10.1086/517517. [PubMed]
40. Banner MA, Cunniffe JG, Macintosh RL, Foster TJ, Rohde H, Mack D, Hoyes E, Derrick J, Upton M, Handley PS. 2007. Localized tufts of fibrils on Staphylococcus epidermidis NCTC 11047 are comprised of the accumulation-associated protein. J Bacteriol 189:2793–2804 http://dx.doi.org/10.1128/JB.00952-06. [PubMed]
41. Corrigan RM, Rigby D, Handley P, Foster TJ. 2007. The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446 http://dx.doi.org/10.1099/mic.0.2007/006676-0. [PubMed]
42. Juuti KM, Sinha B, Werbick C, Peters G, Kuusela PI. 2004. Reduced adherence and host cell invasion by methicillin-resistant Staphylococcus aureus expressing the surface protein Pls. J Infect Dis 189:1574–1584 http://dx.doi.org/10.1086/383348. [PubMed]
43. Roche FM, Meehan M, Foster TJ. 2003. The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767 http://dx.doi.org/10.1099/mic.0.26412-0. [PubMed]
44. Huesca M, Peralta R, Sauder DN, Simor AE, McGavin MJ. 2002. Adhesion and virulence properties of epidemic Canadian methicillin-resistant Staphylococcus aureus strain 1: identification of novel adhesion functions associated with plasmin-sensitive surface protein. J Infect Dis 185:1285–1296 http://dx.doi.org/10.1086/340123. [PubMed]
45. Schaeffer CR, Woods KM, Longo GM, Kiedrowski MR, Paharik AE, Büttner H, Christner M, Boissy RJ, Horswill AR, Rohde H, Fey PD. 2015. Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun 83:214–226 http://dx.doi.org/10.1128/IAI.02177-14. [PubMed]
46. Conlon BP, Geoghegan JA, Waters EM, McCarthy H, Rowe SE, Davies JR, Schaeffer CR, Foster TJ, Fey PD, O’Gara JP. 2014. Role for the A domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype. J Bacteriol 196:4268–4275 http://dx.doi.org/10.1128/JB.01946-14. [PubMed]
47. Gruszka DT, Whelan F, Farrance OE, Fung HK, Paci E, Jeffries CM, Svergun DI, Baldock C, Baumann CG, Brockwell DJ, Potts JR, Clarke J. 2015. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein. Nat Commun 6:7271 http://dx.doi.org/10.1038/ncomms8271. [PubMed]
48. Gruszka DT, Wojdyla JA, Bingham RJ, Turkenburg JP, Manfield IW, Steward A, Leech AP, Geoghegan JA, Foster TJ, Clarke J, Potts JR. 2012. Staphylococcal biofilm-forming protein has a contiguous rod-like structure. Proc Natl Acad Sci U S A 109:E1011–E1018 http://dx.doi.org/10.1073/pnas.1119456109. [PubMed]
49. Conrady DG, Wilson JJ, Herr AB. 2013. Structural basis for Zn2+-dependent intercellular adhesion in staphylococcal biofilms. Proc Natl Acad Sci U S A 110:E202–E211 http://dx.doi.org/10.1073/pnas.1208134110. [PubMed]
50. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch JK, Heilmann C, Herrmann M, Mack D. 2005. Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895 http://dx.doi.org/10.1111/j.1365-2958.2005.04515.x. [PubMed]
51. Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O’Gara JP, Potts JR, Foster TJ. 2010. Role of surface protein SasG in biofilm formation by Staphylococcus aureus. J Bacteriol 192:5663–5673 http://dx.doi.org/10.1128/JB.00628-10. [PubMed]
52. Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrêne YF. 2016. Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming surface protein SasG. Proc Natl Acad Sci U S A 113:410–415 http://dx.doi.org/10.1073/pnas.1519265113. [PubMed]
53. Graille M, Stura EA, Corper AL, Sutton BJ, Taussig MJ, Charbonnier JB, Silverman GJ. 2000. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404 http://dx.doi.org/10.1073/pnas.97.10.5399. [PubMed]
54. Gómez MI, O’Seaghdha M, Magargee M, Foster TJ, Prince AS. 2006. Staphylococcus aureus protein A activates TNFR1 signaling through conserved IgG binding domains. J Biol Chem 281:20190–20196 http://dx.doi.org/10.1074/jbc.M601956200. [PubMed]
55. Silverman GJ, Goodyear CS. 2006. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 6:465–475 http://dx.doi.org/10.1038/nri1853. [PubMed]
56. O’Seaghdha M, van Schooten CJ, Kerrigan SW, Emsley J, Silverman GJ, Cox D, Lenting PJ, Foster TJ. 2006. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 273:4831–4841 http://dx.doi.org/10.1111/j.1742-4658.2006.05482.x. [PubMed]
57. Deis LN, Wu Q, Wang Y, Qi Y, Daniels KG, Zhou P, Oas TG. 2015. Suppression of conformational heterogeneity at a protein-protein interface. Proc Natl Acad Sci U S A 112:9028–9033 http://dx.doi.org/10.1073/pnas.1424724112. [PubMed]
58. Martin FJ, Gomez MI, Wetzel DM, Memmi G, O’Seaghdha M, Soong G, Schindler C, Prince A. 2009. Staphylococcus aureus activates type I IFN signaling in mice and humans through the Xr repeated sequences of protein A. J Clin Invest 119:1931–1939. [PubMed]
59. Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernadó P, Bagby S, Svergun DI, Foster TJ, Isenman DE, van den Elsen JM. 2008. Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593 http://dx.doi.org/10.1074/jbc.M800265200. [PubMed]
60. Smith EJ, Corrigan RM, van der Sluis T, Gründling A, Speziale P, Geoghegan JA, Foster TJ. 2012. The immune evasion protein Sbi of Staphylococcus aureus occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid. Mol Microbiol 83:789–804 http://dx.doi.org/10.1111/j.1365-2958.2011.07966.x. [PubMed]
61. Upadhyay A, Burman JD, Clark EA, Leung E, Isenman DE, van den Elsen JM, Bagby S. 2008. Structure-function analysis of the C3 binding region of Staphylococcus aureus immune subversion protein Sbi. J Biol Chem 283:22113–22120 http://dx.doi.org/10.1074/jbc.M802636200. [PubMed]
62. Hammer ND, Skaar EP. 2011. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147 http://dx.doi.org/10.1146/annurev-micro-090110-102851. [PubMed]
63. Cassat JE, Skaar EP. 2012. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 34:215–235 http://dx.doi.org/10.1007/s00281-011-0294-4. [PubMed]
64. Grigg JC, Ukpabi G, Gaudin CF, Murphy ME. 2010. Structural biology of heme binding in the Staphylococcus aureus Isd system. J Inorg Biochem 104:341–348 http://dx.doi.org/10.1016/j.jinorgbio.2009.09.012. [PubMed]
65. Clarke SR, Brummell KJ, Horsburgh MJ, McDowell PW, Mohamad SA, Stapleton MR, Acevedo J, Read RC, Day NP, Peacock SJ, Mond JJ, Kokai-Kun JF, Foster SJ. 2006. Identification of in vivo-expressed antigens of Staphylococcus aureus and their use in vaccinations for protection against nasal carriage. J Infect Dis 193:1098–1108 http://dx.doi.org/10.1086/501471. [PubMed]
66. Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kun JF, Mond JJ, Tarkowski A, Foster SJ. 2007. The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1:199–212 http://dx.doi.org/10.1016/j.chom.2007.04.005. [PubMed]
67. Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ. 2010. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156:920–928 http://dx.doi.org/10.1099/mic.0.036673-0. [PubMed]
68. Zapotoczna M, Jevnikar Z, Miajlovic H, Kos J, Foster TJ. 2013. Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 15:1026–1041 http://dx.doi.org/10.1111/cmi.12097. [PubMed]
69. Visai L, Yanagisawa N, Josefsson E, Tarkowski A, Pezzali I, Rooijakkers SH, Foster TJ, Speziale P. 2009. Immune evasion by Staphylococcus aureus conferred by iron-regulated surface determinant protein IsdH. Microbiology 155:667–679 http://dx.doi.org/10.1099/mic.0.025684-0. [PubMed]
70. Lizcano A, Sanchez CJ, Orihuela CJ. 2012. A role for glycosylated serine-rich repeat proteins in Gram-positive bacterial pathogenesis. Mol Oral Microbiol 27:257–269 http://dx.doi.org/10.1111/j.2041-1014.2012.00653.x. [PubMed]
71. Yang YH, Jiang YL, Zhang J, Wang L, Bai XH, Zhang SJ, Ren YM, Li N, Zhang YH, Zhang Z, Gong Q, Mei Y, Xue T, Zhang JR, Chen Y, Zhou CZ. 2014. Structural insights into SraP-mediated Staphylococcus aureus adhesion to host cells. PLoS Pathog 10:e1004169 http://dx.doi.org/10.1371/journal.ppat.1004169. [PubMed]
72. Kukita K, Kawada-Matsuo M, Oho T, Nagatomo M, Oogai Y, Hashimoto M, Suda Y, Tanaka T, Komatsuzawa H. 2013. Staphylococcus aureus SasA is responsible for binding to the salivary agglutinin gp340, derived from human saliva. Infect Immun 81:1870–1879 http://dx.doi.org/10.1128/IAI.00011-13. [PubMed]
73. Peacock SJ, Foster TJ, Cameron BJ, Berendt AR. 1999. Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145:3477–3486 http://dx.doi.org/10.1099/00221287-145-12-3477. [PubMed]
74. Sinha B, François PP, Nüsse O, Foti M, Hartford OM, Vaudaux P, Foster TJ, Lew DP, Herrmann M, Krause KH. 1999. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol 1:101–117 http://dx.doi.org/10.1046/j.1462-5822.1999.00011.x. [PubMed]
75. Dziewanowska K, Patti JM, Deobald CF, Bayles KW, Trumble WR, Bohach GA. 1999. Fibronectin binding protein and host cell tyrosine kinase are required for internalization of Staphylococcus aureus by epithelial cells. Infect Immun 67:4673–4678.
76. Fowler T, Wann ER, Joh D, Johansson S, Foster TJ, Höök M. 2000. Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. Eur J Cell Biol 79:672–679 http://dx.doi.org/10.1078/0171-9335-00104. [PubMed]
77. Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR. 2005. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci 118:2189–2200 http://dx.doi.org/10.1242/jcs.02328. [PubMed]
78. Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M, Korting HC, Ring J, Abeck D. 2002. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 146:943–951 http://dx.doi.org/10.1046/j.1365-2133.2002.04752.x. [PubMed]
79. Jett BD, Gilmore MS. 2002. Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors. Infect Immun 70:4697–4700 http://dx.doi.org/10.1128/IAI.70.8.4697-4700.2002. [PubMed]
80. Ahmed S, Meghji S, Williams RJ, Henderson B, Brock JH, Nair SP. 2001. Staphylococcus aureus fibronectin binding proteins are essential for internalization by osteoblasts but do not account for differences in intracellular levels of bacteria. Infect Immun 69:2872–2877 http://dx.doi.org/10.1128/IAI.69.5.2872-2877.2001. [PubMed]
81. Sendi P, Proctor RA. 2009. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol 17:54–58 http://dx.doi.org/10.1016/j.tim.2008.11.004. [PubMed]
82. Vaudaux P, Francois P, Bisognano C, Kelley WL, Lew DP, Schrenzel J, Proctor RA, McNamara PJ, Peters G, Von Eiff C. 2002. Increased expression of clumping factor and fibronectin-binding proteins by hemB mutants of Staphylococcus aureus expressing small colony variant phenotypes. Infect Immun 70:5428–5437 http://dx.doi.org/10.1128/IAI.70.10.5428-5437.2002. [PubMed]
83. Henderson B, Nair S, Pallas J, Williams MA. 2011. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200 http://dx.doi.org/10.1111/j.1574-6976.2010.00243.x. [PubMed]
84. Liang X, Garcia BL, Visai L, Prabhakaran S, Meenan NA, Potts JR, Humphries MJ, Höök M. 2016. Allosteric regulation of fibronectin/α5β1 interaction by fibronectin-binding MSCRAMMs. PLoS One 11:e0159118 http://dx.doi.org/10.1371/journal.pone.0159118. [PubMed]
85. Hauck CR, Ohlsen K. 2006. Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol 9:5–11 http://dx.doi.org/10.1016/j.mib.2005.12.002. [PubMed]
86. Schwarz-Linek U, Höök M, Potts JR. 2004. The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641 http://dx.doi.org/10.1111/j.1365-2958.2004.04027.x. [PubMed]
87. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O. 2009. Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206:2417–2427 http://dx.doi.org/10.1084/jem.20090097. [PubMed]
88. Thammavongsa V, Schneewind O, Missiakas DM. 2011. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem 12:56 http://dx.doi.org/10.1186/1471-2091-12-56. [PubMed]
89. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–1535 http://dx.doi.org/10.1126/science.1092385. [PubMed]
90. Thammavongsa V, Missiakas DM, Schneewind O. 2013. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–866 http://dx.doi.org/10.1126/science.1242255. [PubMed]
91. Berends ET, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. 2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586 http://dx.doi.org/10.1159/000319909. [PubMed]
92. O’Brien LM, Walsh EJ, Massey RC, Peacock SJ, Foster TJ. 2002. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4:759–770 http://dx.doi.org/10.1046/j.1462-5822.2002.00231.x. [PubMed]
93. Corrigan RM, Miajlovic H, Foster TJ. 2009. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22 http://dx.doi.org/10.1186/1471-2180-9-22. [PubMed]
94. Que YA, Haefliger JA, Piroth L, François P, Widmer E, Entenza JM, Sinha B, Herrmann M, Francioli P, Vaudaux P, Moreillon P. 2005. Fibrinogen and fibronectin binding cooperate for valve infection and invasion in Staphylococcus aureus experimental endocarditis. J Exp Med 201:1627–1635 http://dx.doi.org/10.1084/jem.20050125. [PubMed]
95. Sinha B, Francois P, Que YA, Hussain M, Heilmann C, Moreillon P, Lew D, Krause KH, Peters G, Herrmann M. 2000. Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68:6871–6878 http://dx.doi.org/10.1128/IAI.68.12.6871-6878.2000. [PubMed]
96. Monk IR, Foster TJ. 2012. Genetic manipulation of staphylococci: breaking through the barrier. Front Cell Infect Microbiol 2:49 http://dx.doi.org/10.3389/fcimb.2012.00049. [PubMed]
97. Monk IR, Shah IM, Xu M, Tan MW, Foster TJ. 2012. Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3:e00277-11 http://dx.doi.org/10.1128/mBio.00277-11. [PubMed]
98. Monk IR, Tree JJ, Howden BP, Stinear TP, Foster TJ. 2015. Complete bypass of restriction systems for major Staphylococcus aureus lineages. MBio 6:e00308-15 http://dx.doi.org/10.1128/mBio.00308-15. [PubMed]
99. Parker D. 2017. Humanized mouse models of Staphylococcus aureus infection. Front Immunol 8:512 http://dx.doi.org/10.3389/fimmu.2017.00512. [PubMed]
100. Pishchany G, McCoy AL, Torres VJ, Krause JC, Crowe JE Jr, Fabry ME, Skaar EP. 2010. Specificity for human hemoglobin enhances Staphylococcus aureus infection. Cell Host Microbe 8:544–550 http://dx.doi.org/10.1016/j.chom.2010.11.002. [PubMed]
101. Tsai YH, Disson O, Bierne H, Lecuit M. 2013. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses. PLoS Pathog 9:e1003381 http://dx.doi.org/10.1371/journal.ppat.1003381. [PubMed]
102. Cheng AG, Kim HK, Burts ML, Krausz T, Schneewind O, Missiakas DM. 2009. Genetic requirements for Staphylococcus aureus abscess formation and persistence in host tissues. FASEB J 23:3393–3404 http://dx.doi.org/10.1096/fj.09-135467. [PubMed]
103. Cheng AG, DeDent AC, Schneewind O, Missiakas D. 2011. A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19:225–232 http://dx.doi.org/10.1016/j.tim.2011.01.007. [PubMed]
104. Grundmeier M, Hussain M, Becker P, Heilmann C, Peters G, Sinha B. 2004. Truncation of fibronectin-binding proteins in Staphylococcus aureus strain Newman leads to deficient adherence and host cell invasion due to loss of the cell wall anchor function. Infect Immun 72:7155–7163 http://dx.doi.org/10.1128/IAI.72.12.7155-7163.2004. [PubMed]
105. Xu Y, Rivas JM, Brown EL, Liang X, Höök M. 2004. Virulence potential of the staphylococcal adhesin CNA in experimental arthritis is determined by its affinity for collagen. J Infect Dis 189:2323–2333 http://dx.doi.org/10.1086/420851. [PubMed]
106. Lower SK, Lamlertthon S, Casillas-Ituarte NN, Lins RD, Yongsunthon R, Taylor ES, DiBartola AC, Edmonson C, McIntyre LM, Reller LB, Que YA, Ros R, Lower BH, Fowler VG Jr. 2011. Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proc Natl Acad Sci U S A 108:18372–18377 http://dx.doi.org/10.1073/pnas.1109071108. [PubMed]
107. Josefsson E, Higgins J, Foster TJ, Tarkowski A. 2008. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence. PLoS One 3:e2206 http://dx.doi.org/10.1371/journal.pone.0002206. [PubMed]
108. Wertheim HF, Vos MC, Ott A, van Belkum A, Voss A, Kluytmans JA, van Keulen PH, Vandenbroucke-Grauls CM, Meester MH, Verbrugh HA. 2004. Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364:703–705 http://dx.doi.org/10.1016/S0140-6736(04)16897-9.
109. van Belkum A, Verkaik NJ, de Vogel CP, Boelens HA, Verveer J, Nouwen JL, Verbrugh HA, Wertheim HF. 2009. Reclassification of Staphylococcus aureus nasal carriage types. J Infect Dis 199:1820–1826 http://dx.doi.org/10.1086/599119. [PubMed]
110. Sivaraman K, Venkataraman N, Cole AM. 2009. Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol 4:999–1008 http://dx.doi.org/10.2217/fmb.09.79. [PubMed]
111. Weidenmaier C, Goerke C, Wolz C. 2012. Staphylococcus aureus determinants for nasal colonization. Trends Microbiol 20:243–250 http://dx.doi.org/10.1016/j.tim.2012.03.004. [PubMed]
112. Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C. 2014. A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10:e1004089 http://dx.doi.org/10.1371/journal.ppat.1004089. [PubMed]
113. Winstel V, Kühner P, Salomon F, Larsen J, Skov R, Hoffmann W, Peschel A, Weidenmaier C. 2015. Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. MBio 6:e00632 http://dx.doi.org/10.1128/mBio.00632-15. [PubMed]
114. Wertheim HF, Walsh E, Choudhurry R, Melles DC, Boelens HA, Miajlovic H, Verbrugh HA, Foster T, van Belkum A. 2008. Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5:e17 http://dx.doi.org/10.1371/journal.pmed.0050017. [PubMed]
115. Li M, Du X, Villaruz AE, Diep BA, Wang D, Song Y, Tian Y, Hu J, Yu F, Lu Y, Otto M. 2012. MRSA epidemic linked to a quickly spreading colonization and virulence determinant. Nat Med 18:816–819 http://dx.doi.org/10.1038/nm.2692. [PubMed]
116. Savolainen K, Paulin L, Westerlund-Wikström B, Foster TJ, Korhonen TK, Kuusela P. 2001. Expression of pls, a gene closely associated with the mecA gene of methicillin-resistant Staphylococcus aureus, prevents bacterial adhesion in vitro. Infect Immun 69:3013–3020 http://dx.doi.org/10.1128/IAI.69.5.3013-3020.2001. [PubMed]
117. Lindsay JA, Moore CE, Day NP, Peacock SJ, Witney AA, Stabler RA, Husain SE, Butcher PD, Hinds J. 2006. Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676 http://dx.doi.org/10.1128/JB.188.2.669-676.2006. [PubMed]
118. Walsh EJ, O’Brien LM, Liang X, Hook M, Foster TJ. 2004. Clumping factor B, a fibrinogen-binding MSCRAMM (microbial surface components recognizing adhesive matrix molecules) adhesin of Staphylococcus aureus, also binds to the tail region of type I cytokeratin 10. J Biol Chem 279:50691–50699 http://dx.doi.org/10.1074/jbc.M408713200. [PubMed]
119. Clarke SR, Andre G, Walsh EJ, Dufrêne YF, Foster TJ, Foster SJ. 2009. Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77:2408–2416 http://dx.doi.org/10.1128/IAI.01304-08. [PubMed]
120. Askarian F, Uchiyama S, Valderrama JA, Ajayi C, Sollid JU, van Sorge NM, Nizet V, van Strijp JA, Johannessen M. 2016. Serine-aspartate repeat protein D increases Staphylococcus aureus virulence and survival in blood. Infect Immun 85:85. [PubMed]
121. Ishida-Yamamoto A, Igawa S. 2015. The biology and regulation of corneodesmosomes. Cell Tissue Res 360:477–482 http://dx.doi.org/10.1007/s00441-014-2037-z. [PubMed]
122. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, Nomicos E, Polley EC, Komarow HD, Murray PR, Turner ML, Segre JA, Segre JA, NISC Comparative Sequence Program. 2012. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res 22:850–859 http://dx.doi.org/10.1101/gr.131029.111. [PubMed]
123. Ong PY, Leung DY. 2016. Bacterial and viral infections in atopic dermatitis: a comprehensive review. Clin Rev Allergy Immunol 51:329–337 http://dx.doi.org/10.1007/s12016-016-8548-5. [PubMed]
124. Fleury OM, McAleer MA, Feuillie C, Formosa-Dague C, Sansevere E, Bennett DE, Towell AM, McLean WHI, Kezic S, Robinson DA, Fallon PG, Foster TJ, Dufrêne YF, Irvine AD, Geoghegan JA. 2017. Clumping factor B promotes adherence of Staphylococcus aureus to corneocytes in atopic dermatitis. Infect Immun 85:85 http://dx.doi.org/10.1128/IAI.00994-16. [PubMed]
125. Riethmuller C, McAleer MA, Koppes SA, Abdayem R, Franz J, Haftek M, Campbell LE, MacCallum SF, McLean WH, Irvine AD, Kezic S. 2015. Filaggrin breakdown products determine corneocyte conformation in patients with atopic dermatitis. J Allergy Clin Immunol 136:1573–80e1-2. [PubMed]
126. Forsgren A, Quie PG. 1974. Effects of staphylococcal protein A on heat labile opsonins. J Immunol 112:1177–1180. [PubMed]
127. Cedergren L, Andersson R, Jansson B, Uhlén M, Nilsson B. 1993. Mutational analysis of the interaction between staphylococcal protein A and human IgG1. Protein Eng 6:441–448 http://dx.doi.org/10.1093/protein/6.4.441.
128. Thielens NM, Tedesco F, Bohlson SS, Gaboriaud C, Tenner AJ. 2017. C1q: a fresh look upon an old molecule. Mol Immunol 89:73–83 http://dx.doi.org/10.1016/j.molimm.2017.05.025. [PubMed]
129. Tosi MF. 2005. Innate immune responses to infection. J Allergy Clin Immunol 116:241–249, quiz 250 http://dx.doi.org/10.1016/j.jaci.2005.05.036. [PubMed]
130. Hair PS, Echague CG, Sholl AM, Watkins JA, Geoghegan JA, Foster TJ, Cunnion KM. 2010. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infect Immun 78:1717–1727 http://dx.doi.org/10.1128/IAI.01065-09. [PubMed]
131. Hair PS, Ward MD, Semmes OJ, Foster TJ, Cunnion KM. 2008. Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis 198:125–133 http://dx.doi.org/10.1086/588825. [PubMed]
132. Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM. 2012. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One 7:e38407 http://dx.doi.org/10.1371/journal.pone.0038407. [PubMed]
133. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DY, Schlievert PM. 2013. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev 26:422–447 http://dx.doi.org/10.1128/CMR.00104-12. [PubMed]
134. Votintseva AA, Fung R, Miller RR, Knox K, Godwin H, Wyllie DH, Bowden R, Crook DW, Walker AS. 2014. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol 14:63 http://dx.doi.org/10.1186/1471-2180-14-63. [PubMed]
135. Cole AL, Muthukrishnan G, Chong C, Beavis A, Eade CR, Wood MP, Deichen MG, Cole AM. 2016. Host innate inflammatory factors and staphylococcal protein A influence the duration of human Staphylococcus aureus nasal carriage. Mucosal Immunol 9:1537–1548 http://dx.doi.org/10.1038/mi.2016.2. [PubMed]
136. Becker S, Frankel MB, Schneewind O, Missiakas D. 2014. Release of protein A from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 111:1574–1579 http://dx.doi.org/10.1073/pnas.1317181111. [PubMed]
137. Kim HK, Falugi F, Missiakas DM, Schneewind O. 2016. Peptidoglycan-linked protein A promotes T cell-dependent antibody expansion during Staphylococcus aureus infection. Proc Natl Acad Sci U S A 113:5718–5723 http://dx.doi.org/10.1073/pnas.1524267113. [PubMed]
138. Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, Zheng NY, Kaur K, Andrews SF, Huang Y, DeDent A, Frank KM, Charnot-Katsikas A, Schneewind O, Wilson PC. 2014. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. J Exp Med 211:2331–2339 http://dx.doi.org/10.1084/jem.20141404. [PubMed]
139. Missiakas D, Schneewind O. 2016. Staphylococcus aureus vaccines: deviating from the carol. J Exp Med 213:1645–1653 http://dx.doi.org/10.1084/jem.20160569. [PubMed]
140. Geoghegan JA, Foster TJ. 2015. Cell wall-anchored surface proteins of Staphylococcus aureus: many proteins, multiple functions. Curr Top Microbiol Immunol 409:95–120 http://dx.doi.org/10.1007/82_2015_5002. [PubMed]
141. Josefsson E, Hartford O, O’Brien L, Patti JM, Foster T. 2001. Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. J Infect Dis 184:1572–1580 http://dx.doi.org/10.1086/324430. [PubMed]
142. Nilsson IM, Patti JM, Bremell T, Höök M, Tarkowski A. 1998. Vaccination with a recombinant fragment of collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J Clin Invest 101:2640–2649 http://dx.doi.org/10.1172/JCI1823. [PubMed]
143. Stranger-Jones YK, Bae T, Schneewind O. 2006. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci U S A 103:16942–16947 http://dx.doi.org/10.1073/pnas.0606863103. [PubMed]
144. Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. 2010. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 207:1863–1870 http://dx.doi.org/10.1084/jem.20092514. [PubMed]
145. Anderson AS, Miller AA, Donald RG, Scully IL, Nanra JS, Cooper D, Jansen KU. 2012. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 8:1585–1594 http://dx.doi.org/10.4161/hv.21872. [PubMed]
146. Jansen KU, Girgenti DQ, Scully IL, Anderson AS. 2013. Vaccine review: “ Staphyloccocus aureus vaccines: problems and prospects”. Vaccine 31:2723–2730 http://dx.doi.org/10.1016/j.vaccine.2013.04.002. [PubMed]
147. Levy J, Licini L, Haelterman E, Moris P, Lestrate P, Damaso S, Van Belle P, Boutriau D. 2015. Safety and immunogenicity of an investigational 4-component Staphylococcus aureus vaccine with or without AS03B adjuvant: results of a randomized phase I trial. Hum Vaccin Immunother 11:620–631 http://dx.doi.org/10.1080/21645515.2015.1011021. [PubMed]
148. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, Corey GR, Carmeli Y, Betts R, Hartzel JS, Chan IS, McNeely TB, Kartsonis NA, Guris D, Onorato MT, Smugar SS, DiNubile MJ, Sobanjo-ter Meulen A. 2013. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368–1378 http://dx.doi.org/10.1001/jama.2013.3010. [PubMed]
149. Bagnoli F, Bertholet S, Grandi G. 2012. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2:16 http://dx.doi.org/10.3389/fcimb.2012.00016. [PubMed]
150. Walsh EJ, Miajlovic H, Gorkun OV, Foster TJ. 2008. Identification of the Staphylococcus aureus MSCRAMM clumping factor B (ClfB) binding site in the alphaC-domain of human fibrinogen. Microbiology 154:550–558 http://dx.doi.org/10.1099/mic.0.2007/010868-0. [PubMed]
151. Vazquez V, Liang X, Horndahl JK, Ganesh VK, Smeds E, Foster TJ, Hook M. 2011. Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). J Biol Chem 286:29797–29805 http://dx.doi.org/10.1074/jbc.M110.214981. [PubMed]
152. Burke FM, Di Poto A, Speziale P, Foster TJ. 2011. The A domain of fibronectin-binding protein B of Staphylococcus aureus contains a novel fibronectin binding site. FEBS J 278:2359–2371 http://dx.doi.org/10.1111/j.1742-4658.2011.08159.x. [PubMed]
153. Schwarz-Linek U, Werner JM, Pickford AR, Gurusiddappa S, Kim JH, Pilka ES, Briggs JA, Gough TS, Höök M, Campbell ID, Potts JR. 2003. Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181 http://dx.doi.org/10.1038/nature01589. [PubMed]
154. Valotteau C, Prystopiuk V, Pietrocola G, Rindi S, Peterle D, De Filippis V, Foster TJ, Speziale P, Dufrêne YF. 2017. Single-cell and single-molecule analysis unravels the multifunctionality of the Staphylococcus aureus collagen-binding protein Cna. ACS Nano 11:2160–2170 http://dx.doi.org/10.1021/acsnano.6b08404. [PubMed]
155. Clarke SR, Wiltshire MD, Foster SJ. 2004. IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51:1509–1519 http://dx.doi.org/10.1111/j.1365-2958.2003.03938.x. [PubMed]
156. Clarke SR, Foster SJ. 2008. IsdA protects Staphylococcus aureus against the bactericidal protease activity of apolactoferrin. Infect Immun 76:1518–1526 http://dx.doi.org/10.1128/IAI.01530-07. [PubMed]
157. Pilpa RM, Robson SA, Villareal VA, Wong ML, Phillips M, Clubb RT. 2009. Functionally distinct NEAT (NEAr transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J Biol Chem 284:1166–1176 http://dx.doi.org/10.1074/jbc.M806007200. [PubMed]
158. Lasa I, Penadés JR. 2006. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107 http://dx.doi.org/10.1016/j.resmic.2005.11.003. [PubMed]
159. Valle J, Latasa C, Gil C, Toledo-Arana A, Solano C, Penadés JR, Lasa I. 2012. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8:e1002843 http://dx.doi.org/10.1371/journal.ppat.1002843. [PubMed]
160. Schroeder K, Jularic M, Horsburgh SM, Hirschhausen N, Neumann C, Bertling A, Schulte A, Foster S, Kehrel BE, Peters G, Heilmann C. 2009. Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS One 4:e7567 http://dx.doi.org/10.1371/journal.pone.0007567. [PubMed]
161. Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay JA, Tarkowski A, Horsburgh MJ. 2009. The Staphylococcus aureus response to unsaturated long chain free fatty acids: survival mechanisms and virulence implications. PLoS One 4:e4344 http://dx.doi.org/10.1371/journal.pone.0004344. [PubMed]
162. Roche FM, Massey R, Peacock SJ, Day NP, Visai L, Speziale P, Lam A, Pallen M, Foster TJ. 2003. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149:643–654 http://dx.doi.org/10.1099/mic.0.25996-0. [PubMed]
163. Moreillon P, Entenza JM, Francioli P, McDevitt D, Foster TJ, François P, Vaudaux P. 1995. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 63:4738–4743.
164. Entenza JM, Foster TJ, Ni Eidhin D, Vaudaux P, Francioli P, Moreillon P. 2000. Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun 68:5443–5446 http://dx.doi.org/10.1128/IAI.68.9.5443-5446.2000. [PubMed]
165. Siboo IR, Chambers HF, Sullam PM. 2005. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73:2273–2280 http://dx.doi.org/10.1128/IAI.73.4.2273-2280.2005. [PubMed]
166. Brouillette E, Grondin G, Shkreta L, Lacasse P, Talbot BG. 2003. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog 35:159–168 http://dx.doi.org/10.1016/S0882-4010(03)00112-8.
167. Gómez MI, Lee A, Reddy B, Muir A, Soong G, Pitt A, Cheung A, Prince A. 2004. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10:842–848 http://dx.doi.org/10.1038/nm1079. [PubMed]
168. Vergara-Irigaray M, Valle J, Merino N, Latasa C, García B, Ruiz de Los Mozos I, Solano C, Toledo-Arana A, Penadés JR, Lasa I. 2009. Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77:3978–3991 http://dx.doi.org/10.1128/IAI.00616-09. [PubMed]
169. Arrecubieta C, Asai T, Bayern M, Loughman A, Fitzgerald JR, Shelton CE, Baron HM, Dang NC, Deng MC, Naka Y, Foster TJ, Lowy FD. 2006. The role of Staphylococcus aureus adhesins in the pathogenesis of ventricular assist device-related infections. J Infect Dis 193:1109–1119 http://dx.doi.org/10.1086/501366. [PubMed]
170. Rhem MN, Lech EM, Patti JM, McDevitt D, Höök M, Jones DB, Wilhelmus KR. 2000. The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis. Infect Immun 68:3776–3779 http://dx.doi.org/10.1128/IAI.68.6.3776-3779.2000. [PubMed]
171. Patel AH, Nowlan P, Weavers ED, Foster T. 1987. Virulence of protein A-deficient and alpha-toxin-deficient mutants of Staphylococcus aureus isolated by allele replacement. Infect Immun 55:3103–3110.
172. Palmqvist N, Foster T, Tarkowski A, Josefsson E. 2002. Protein A is a virulence factor in Staphylococcus aureus arthritis and septic death. Microb Pathog 33:239–249 http://dx.doi.org/10.1006/mpat.2002.0533. [PubMed]
173. Patti JM, Bremell T, Krajewska-Pietrasik D, Abdelnour A, Tarkowski A, Rydén C, Höök M. 1994. The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62:152–161.
174. Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M. 2015. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis 211:641–650 http://dx.doi.org/10.1093/infdis/jiu514. [PubMed]
175. Kwiecinski J, Jin T, Josefsson E. 2014. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS 122:1240–1250 http://dx.doi.org/10.1111/apm.12295. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0046-2018
2019-07-05
2019-07-16

Abstract:

The surface of is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

CWA surface proteins classified based on structural motifs. The primary translation products of all CWA proteins contain a signal sequence (S) at the amino terminus and a wall-spanning region (W, Xc) and sorting signal (SS) at the carboxyl terminus. The CWA proteins that are depicted are those for which structural analysis has facilitated classification into five distinct groups. Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs). The clumping factor (Clf)-serine aspartate repeat (Sdr) group comprises proteins that are closely related to ClfA. ClfA and ClfB have a similar domain organization, whereas SdrC, SdrD, and SdrE contain additional B repeats that are located between the A domain and the serine-aspartate SD repeat R region. The N-terminal A region contains three separately folded domains, called N1, N2, and N3. Structurally, N2 and N3 form IgG-like folds that bind ligands by the DLL mechanism. Fibronectin-binding protein A (FnBPA) and FnBPB have A domains that are structurally and functionally similar to the A domain of the Clf-Sdr group. Located in place of the serine-aspartate repeat region are tandemly repeated fibronectin-binding domains (11 in FnBPA, 10 in FnBPB). The A region of the collagen adhesin (Cna) protein is organized differently than other MSCRAMMs, with N1 and N2 comprising IgG-like folds that bind to ligands using the collagen hug mechanism. The A region is linked to the wall-spanning and anchorage domains by variable numbers of B repeats. Near iron transporter (NEAT) motif protein family. The iron-regulated surface determinant (Isd) proteins have one (for IsdA), two (for IsdB), or three (for IsdH) NEAT motifs that bind to hemoglobin or heme. The figure depicts IsdA, which has a C-terminal hydrophilic stretch that reduces cell surface hydrophobicity and contributes to resistance to bactericidal lipids and antimicrobial peptides. Three-helical bundle motif protein A. The five N-terminal tandemly linked triple-helical bundle domains (known as EABCD) that bind to IgG and other ligands are followed by the repeat-containing Xr region and the nonrepetitive Xc region. G5-E repeat family. The alternating repeats of the G5 and E domains of surface protein G (SasG) (and the accumulation-associated protein [Aap] from ) link the N-terminal A region to the wall-spanning and anchorage domains. If the A domain is removed, the G5-E region can promote cell aggregation. Legume-lectin, cadherin-like domain protein. The BR region of the serine rich adhesin of platelets (SraP) protein is flanked by serine-rich repeat domains. The BR region comprises three distinct structural domains: the legume lectin-like, the β-grasp fold (β-GF), and the cadherin-like (CHLD) domains.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

MSCRAMM binding to ligand by DLL. Ribbon diagram showing the structure of the N2 (green) and N3 (yellow) subdomains of SdrG in the apo form and in complex with a peptide from the β-chain (purple) of fibrinogen following ligand binding by the DLL mechanism. The C-terminal extension of N3 in the apo form undergoes a conformational change following ligand binding, resulting in an additional β-strand in a β-sheet in subdomain N2 forming the latch (red) and lock (blue). The letters refer to β-strands.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagrams of MSCRAMMs before and after ligand binding. The top figure depicts an MSCRAMM in the apo form with the N2 (green) and N3 (yellow) subdomains shown as semicircles and the unstructured N1 subdomain. Serine residues in the flexible stalk are glycosylated, which prevents degradation by cathepsin. The middle diagram shows the conformational change in an MSCRAMM with respect to the bacterial cell that occurs following ligand binding by DLL. The C-terminal γ-chain peptide of fibrinogen is depicted by the red dashed line, and the gamma globule domain is in contact with the second ligand binding site in ClfA subdomain N3. It is not known if other MSCRAMMs have two binding sites on their ligands. The bottom diagram indicates that binding to fibrinogen by FnBPs exposes the N3 subdomain to plasminogen, which binds the MSCRAMM more efficiently in the presence of fibrinogen.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

SdrE binding to complement factor H. The top figure shows SdrE in the apo form with the unstructured N1 subdomain and the N2 and N3 subdomains (yellow and green semicircles, respectively). The loop that occludes the ligand binding trench is shown in blue. The bottom figure shows the conformational changes that occur when complement factor H binds by closed DLL. Factor H (red) can then engage nearby C3b molecules (blue) and facilitate binding and activation of the protease factor I, which cleaves C3b.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Collagen binding protein and the collagen hug. The upper part shows a schematic diagram of the Cna protein in the apo form on the left and following binding by the collagen hug to the collagen triple helix on the right. Below is a ribbon diagram of the Cna protein in complex with the collagen triple helix. The N1 subdomain (green) and N2 subdomain (yellow) are separated by a long unfolded region (blue) that forms the lock around collagen (purple). β-strand complementation by the red strand completes the hug.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Complement protein C1q. C1q is a complex of six identical heterotrimers that form a bouquet-like structure. The globular domains (blue, green, and cyan ovals) make up the six IgG binding sites. Each heterotrimer forms an extended collagen-like triple-helix stalk which coalesces into a complex stem. C1r and C1s bind to the triple-helix region and are displaced when Cna binds. The figure was kindly provided by Nicole Thielens, CNRA-CFE-Université Joseph Fournier, Grenoble, France.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Homophilic interactions and biofilm formation. The upper part shows a schematic diagram of the model for homophilic interactions between the A domains of the MSCRAMMs FnBPA, FnBPB, and SdrC, which promote cell-cell accumulation of staphylococcal cells (yellow spheres) during biofilm formation. See Fig. 2 and 3 for the key. The lower part shows the extended fibrillar region of SdrG and Aap (orange and blue strands), which form extended zinc-dependent zipper interactions predicted to form a twisted rope-like structure.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

G5-E domains of SasG and Aap. The G5 (red) and E (blue) domains each form two triple-stranded β-helices separated by a short collagen-like triple helix.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Fibronectin binding by FnBPs. The figure shows how one fibronectin binding repeat of the unstructured fibronectin binding region of FnBP binds to N-terminal type I modules of fibronectin by the tandem β zipper mechanism. Potentially up to 10 such interactions can occur per molecule of FnBP. Intramolecular interactions between the N-terminal type I modules and C-terminal type III modules result in allosteric activation of the 10th type III module, exposing an RGD motif which engages an αβ integrin on the surface of a mammalian cell to promote invasion by endocytosis.

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Properties of CSA surface proteins

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018
Generic image for table
TABLE 2

CWA proteins as colonization and virulence factors studied using animal models

Source: microbiolspec July 2019 vol. 7 no. 4 doi:10.1128/microbiolspec.GPP3-0046-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error