1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Immune Evasion by

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Nienke W. M. de Jong1, Kok P. M. van Kessel2, Jos A. G. van Strijp3
  • Editors: Vincent A. Fischetti4, Richard P. Novick5, Joseph J. Ferretti6, Daniel A. Portnoy7, Miriam Braunstein8, Julian I. Rood9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 2: Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 3: Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 4: The Rockefeller University, New York, NY; 5: Skirball Institute for Molecular Medicine, NYU Medical Center, New York, NY; 6: Department of Microbiology & Immunology, University of Oklahoma Health Science Center, Oklahoma City, OK; 7: Department of Molecular and Cellular Microbiology, University of California, Berkeley, Berkeley, CA; 8: Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC; 9: Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
  • Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
  • Received 13 February 2019 Accepted 22 February 2019 Published 29 March 2019
  • Jos A.G. van Strijp, [email protected]
image of Immune Evasion by <span class="jp-italic">Staphylococcus aureus</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Immune Evasion by , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0061-2019-1.gif /docserver/preview/fulltext/microbiolspec/7/2/GPP3-0061-2019-2.gif
  • Abstract:

    has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of , such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.

  • Citation: de Jong N, van Kessel K, van Strijp J. 2019. Immune Evasion by . Microbiol Spectrum 7(2):GPP3-0061-2019. doi:10.1128/microbiolspec.GPP3-0061-2019.

References

1. Gorwitz RJ, Kruszon-Moran D, McAllister SK, McQuillan G, McDougal LK, Fosheim GE, Jensen BJ, Killgore G, Tenover FC, Kuehnert MJ. 2008. Changes in the prevalence of nasal colonization with Staphylococcus aureus in the United States, 2001-2004. J Infect Dis 197:1226–1234 http://dx.doi.org/10.1086/533494. [PubMed]
2. Krismer B, Weidenmaier C, Zipperer A, Peschel A. 2017. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol 15:675–687 http://dx.doi.org/10.1038/nrmicro.2017.104. [PubMed]
3. von Eiff C, Becker K, Machka K, Stammer H, Peters G. 2001. Nasal carriage as a source of Staphylococcus aureus bacteremia. N Engl J Med 344:11–16 http://dx.doi.org/10.1056/NEJM200101043440102. [PubMed]
4. Lowy FD. 1998. Staphylococcus aureus infections. N Engl J Med 339:520–532 http://dx.doi.org/10.1056/NEJM199808203390806. [PubMed]
5. Barrett FF, McGehee RF Jr, Finland M. 1968. Methicillin-resistant Staphylococcus aureus at Boston City Hospital. Bacteriologic and epidemiologic observations. N Engl J Med 279:441–448 http://dx.doi.org/10.1056/NEJM196808292790901. [PubMed]
6. Panlilio AL, Culver DH, Gaynes RP, Banerjee S, Henderson TS, Tolson JS, Martone WJ, System NNIS. 1992. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991. Infect Control Hosp Epidemiol 13:582–586 http://dx.doi.org/10.2307/30148460. [PubMed]
7. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. 2010. Community-associated meticillin-resistant Staphylococcus aureus. Lancet 375:1557–1568 http://dx.doi.org/10.1016/S0140-6736(09)61999-1.
8. DeLeo FR, Diep BA, Otto M. 2009. Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 23:17–34 http://dx.doi.org/10.1016/j.idc.2008.10.003. [PubMed]
9. Diekema DJ, Pfaller MA, Schmitz FJ, Smayevsky J, Bell J, Jones RN, Beach M, SENTRY Partcipants Group. 2001. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 32(Suppl 2) :S114–S132 http://dx.doi.org/10.1086/320184. [PubMed]
10. Goldmann O, Medina E. 2017. Staphylococcus aureus strategies to evade the host acquired immune response. Int J Med Microbiol 308:625–630. [PubMed]
11. Kusch H, Engelmann S. 2014. Secrets of the secretome in Staphylococcus aureus. Int J Med Microbiol 304:133–141 http://dx.doi.org/10.1016/j.ijmm.2013.11.005. [PubMed]
12. Faurschou M, Borregaard N. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect 5:1317–1327 http://dx.doi.org/10.1016/j.micinf.2003.09.008. [PubMed]
13. Rigby KM, DeLeo FR. 2012. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34:237–259 http://dx.doi.org/10.1007/s00281-011-0295-3. [PubMed]
14. Cerquetti MC, Sordelli DO, Ortegon RA, Bellanti JA. 1983. Impaired lung defenses against Staphylococcus aureus in mice with hereditary deficiency of the fifth component of complement. Infect Immun 41:1071–1076. [PubMed]
15. von Köckritz-Blickwede M, Konrad S, Foster S, Gessner JE, Medina E. 2010. Protective role of complement C5a in an experimental model of Staphylococcus aureus bacteremia. J Innate Immun 2:87–92 http://dx.doi.org/10.1159/000247157. [PubMed]
16. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. 2012. Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489 http://dx.doi.org/10.1146/annurev-immunol-020711-074942. [PubMed]
17. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H. 2000. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79:155–169 http://dx.doi.org/10.1097/00005792-200005000-00003.
18. Cook N. 1998. Methicillin-resistant Staphylococcus aureus versus the burn patient. Burns 24:91–98 http://dx.doi.org/10.1016/S0305-4179(97)00114-9.
19. Church D, Elsayed S, Reid O, Winston B, Lindsay R. 2006. Burn wound infections. Clin Microbiol Rev 19:403–434 http://dx.doi.org/10.1128/CMR.19.2.403-434.2006. [PubMed]
20. Verkaik NJ, de Vogel CP, Boelens HA, Grumann D, Hoogenboezem T, Vink C, Hooijkaas H, Foster TJ, Verbrugh HA, van Belkum A, van Wamel WJ. 2009. Anti-staphylococcal humoral immune response in persistent nasal carriers and noncarriers of Staphylococcus aureus. J Infect Dis 199:625–632 http://dx.doi.org/10.1086/596743. [PubMed]
21. Vestweber D. 2007. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178–196 http://dx.doi.org/10.1111/j.1600-065X.2007.00533.x. [PubMed]
22. Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175 http://dx.doi.org/10.1038/nri3399. [PubMed]
23. Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. 1995. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 128:661–671 http://dx.doi.org/10.1083/jcb.128.4.661. [PubMed]
24. Phillipson M, Heit B, Colarusso P, Liu L, Ballantyne CM, Kubes P. 2006. Intraluminal crawling of neutrophils to emigration sites: a molecularly distinct process from adhesion in the recruitment cascade. J Exp Med 203:2569–2575 http://dx.doi.org/10.1084/jem.20060925. [PubMed]
25. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. 1989. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83:2008–2017 http://dx.doi.org/10.1172/JCI114111. [PubMed]
26. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA. 1990. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111:3129–3139 http://dx.doi.org/10.1083/jcb.111.6.3129. [PubMed]
27. Kim M, Carman CV, Springer TA. 2003. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725 http://dx.doi.org/10.1126/science.1084174. [PubMed]
28. Jones DH, Anderson DC, Burr BL, Rudloff HE, Smith CW, Krater SS, Schmalstieg FC. 1988. Quantitation of intracellular Mac-1 (CD11b/CD18) pools in human neutrophils. J Leukoc Biol 44:535–544 http://dx.doi.org/10.1002/jlb.44.6.535. [PubMed]
29. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689 http://dx.doi.org/10.1038/nri2156. [PubMed]
30. Bestebroer J, Poppelier MJJG, Ulfman LH, Lenting PJ, Denis CV, van Kessel KPM, van Strijp JA, de Haas CJ. 2007. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 109:2936–2943. [PubMed]
31. Walenkamp AME, Bestebroer J, Boer IGJ, Kruizinga R, Verheul HM, van Strijp JA, de Haas CJ. 2010. Staphylococcal SSL5 binding to human leukemia cells inhibits cell adhesion to endothelial cells and platelets. Cell Oncol 32:1–10. [PubMed]
32. Somers WS, Shaw GD, Camphausen RT. 2001. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1 (Cell 103:3 (467-479)). Cell 105:971 http://dx.doi.org/10.1016/S0092-8674(01)00399-3.
33. Chung MC, Wines BD, Baker H, Langley RJ, Baker EN, Fraser JD. 2007. The crystal structure of staphylococcal superantigen-like protein 11 in complex with sialyl Lewis X reveals the mechanism for cell binding and immune inhibition. Mol Microbiol 66:1342–1355 http://dx.doi.org/10.1111/j.1365-2958.2007.05989.x. [PubMed]
34. Fevre C, Bestebroer J, Mebius MM, de Haas CJC, van Strijp JA, Fitzgerald JR, Haas PJ. 2014. Staphylococcus aureus proteins SSL6 and SElX interact with neutrophil receptors as identified using secretome phage display. Cell Microbiol 16:1646–1665 http://dx.doi.org/10.1111/cmi.12313. [PubMed]
35. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA, Guinane CM, Park JY, Bohach GA, Schlievert PM, Morrison WI, Fitzgerald JR. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog 7:e1002271 http://dx.doi.org/10.1371/journal.ppat.1002271. [PubMed]
36. Baker HM, Basu I, Chung MC, Caradoc-Davies T, Fraser JD, Baker EN. 2007. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J Mol Biol 374:1298–1308 http://dx.doi.org/10.1016/j.jmb.2007.09.091. [PubMed]
37. Tuffs SW, James DBA, Bestebroer J, Richards AC, Goncheva MI, O’Shea M, Wee BA, Seo KS, Schlievert PM, Lengeling A, van Strijp JA, Torres VJ, Fitzgerald JR. 2017. The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function. PLoS Pathog 13:e1006461 http://dx.doi.org/10.1371/journal.ppat.1006461. [PubMed]
38. Langley RJ, Ting YT, Clow F, Young PG, Radcliff FJ, Choi JM, Sequeira RP, Holtfreter S, Baker H, Fraser JD. 2017. Staphylococcal enterotoxin-like X (SElX) is a unique superantigen with functional features of two major families of staphylococcal virulence factors. PLoS Pathog 13:e1006549 http://dx.doi.org/10.1371/journal.ppat.1006549. [PubMed]
39. Chavakis T, Hussain M, Kanse SM, Peters G, Bretzel RG, Flock J-I, Herrmann M, Preissner KT. 2002. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 8:687–693 http://dx.doi.org/10.1038/nm728. [PubMed]
40. Ellis TN, Beaman BL. 2004. Interferon-γ activation of polymorphonuclear neutrophil function. Immunology 112:2–12 http://dx.doi.org/10.1111/j.1365-2567.2004.01849.x. [PubMed]
41. Swain SD, Rohn TT, Quinn MT. 2002. Neutrophil priming in host defense: role of oxidants as priming agents. Antioxid Redox Signal 4:69–83 http://dx.doi.org/10.1089/152308602753625870. [PubMed]
42. Skjeflo EW, Christiansen D, Espevik T, Nielsen EW, Mollnes TE. 2014. Combined inhibition of complement and CD14 efficiently attenuated the inflammatory response induced by Staphylococcus aureus in a human whole blood model. J Immunol 192:2857–2864 http://dx.doi.org/10.4049/jimmunol.1300755. [PubMed]
43. Mitchell GB, Albright BN, Caswell JL. 2003. Effect of interleukin-8 and granulocyte colony-stimulating factor on priming and activation of bovine neutrophils. Infect Immun 71:1643–1649 http://dx.doi.org/10.1128/IAI.71.4.1643-1649.2003. [PubMed]
44. Rainard P, Riollet C, Poutrel B, Paape MJ. 2000. Phagocytosis and killing of Staphylococcus aureus by bovine neutrophils after priming by tumor necrosis factor-alpha and the des-arginine derivative of C5a. Am J Vet Res 61:951–959 http://dx.doi.org/10.2460/ajvr.2000.61.951. [PubMed]
45. Edwards SW, Say JE, Hughes V. 1988. Gamma interferon enhances the killing of Staphylococcus aureus by human neutrophils. J Gen Microbiol 134:37–42.
46. Bestebroer J, De Haas CJC, Van Strijp JA. 2010. How microorganisms avoid phagocyte attraction. FEMS Microbiol Rev 34:395–414 http://dx.doi.org/10.1111/j.1574-6976.2009.00202.x. [PubMed]
47. Chalovich JM, Eisenberg E. 2005. G protein-coupled receptor rhodopsin. Biophys Chem 257:2432–2437.
48. Allen SJ, Crown SE, Handel TM. 2007. Chemokine: receptor structure, interactions, and antagonism. Annu Rev Immunol 25:787–820 http://dx.doi.org/10.1146/annurev.immunol.24.021605.090529. [PubMed]
49. Tecchio C, Cassatella MA. 2016. Neutrophil-derived chemokines on the road to immunity. Semin Immunol 28:119–128 http://dx.doi.org/10.1016/j.smim.2016.04.003. [PubMed]
50. Schiffmann E, Corcoran BA, Wahl SM. 1975. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A 72:1059–1062 http://dx.doi.org/10.1073/pnas.72.3.1059. [PubMed]
51. Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. 2016. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 114:22–39 http://dx.doi.org/10.1016/j.bcp.2016.04.014. [PubMed]
52. Le Y, Oppenheim JJ, Wang JM. 2001. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev 12:91–105 http://dx.doi.org/10.1016/S1359-6101(01)00003-X.
53. Kretschmer D, Gleske A-K, Rautenberg M, Wang R, Köberle M, Bohn E, Schöneberg T, Rabiet M-J, Boulay F, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A. 2010. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe 7:463–473 http://dx.doi.org/10.1016/j.chom.2010.05.012. [PubMed]
54. Gasque P. 2004. Complement: a unique innate immune sensor for danger signals. Mol Immunol 41:1089–1098 http://dx.doi.org/10.1016/j.molimm.2004.06.011. [PubMed]
55. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384 http://dx.doi.org/10.1038/ni.1863. [PubMed]
56. O’Neill LA, Bowie AG. 2007. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364 http://dx.doi.org/10.1038/nri2079. [PubMed]
57. Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Lee H, Lee JO. 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130:1071–1082 http://dx.doi.org/10.1016/j.cell.2007.09.008. [PubMed]
58. Rodríguez D, Morrison CJ, Overall CM. 2010. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54 http://dx.doi.org/10.1016/j.bbamcr.2009.09.015. [PubMed]
59. Guerra FE, Borgogna TR, Patel DM, Sward EW, Voyich JM. 2017. Epic immune battles of history: neutrophils vs. Staphylococcus aureus. Front Cell Infect Microbiol 7:286 http://dx.doi.org/10.3389/fcimb.2017.00286. [PubMed]
60. Bestebroer J, van Kessel KPM, Azouagh H, Walenkamp AM, Boer IGJ, Romijn RA, van Strijp JA, de Haas CJC. 2009. Staphylococcal SSL5 inhibits leukocyte activation by chemokines and anaphylatoxins. Blood 113:328–337 http://dx.doi.org/10.1182/blood-2008-04-153882. [PubMed]
61. Itoh S, Hamada E, Kamoshida G, Takeshita K, Oku T, Tsuji T. 2010. Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun 78:3298–3305 http://dx.doi.org/10.1128/IAI.00178-10. [PubMed]
62. Koymans KJ, Bisschop A, Vughs MM, van Kessel KPM, de Haas CJC, van Strijp JA. 2016. Staphylococcal superantigen-like protein 1 and 5 (SSL1 & SSL5) limit neutrophil chemotaxis and migration through MMP-inhibition. Int J Mol Sci 17:1–16 http://dx.doi.org/10.3390/ijms17071072. [PubMed]
63. de Haas CJC, Weeterings C, Vughs MM, de Groot PG, Van Strijp JA, Lisman T. 2009. Staphylococcal superantigen-like 5 activates platelets and supports platelet adhesion under flow conditions, which involves glycoprotein Ibalpha and α IIb β 3. J Thromb Haemost 7:1867–1874 http://dx.doi.org/10.1111/j.1538-7836.2009.03564.x. [PubMed]
64. Hu H, Armstrong PCJ, Khalil E, Chen YC, Straub A, Li M, Soosairajah J, Hagemeyer CE, Bassler N, Huang D, Ahrens I, Krippner G, Gardiner E, Peter K. 2011. GPVI and GPIBα mediate staphylococcal superantigen-like protein 5 (SSL5) induced platelet activation and direct toward glycans as potential inhibitors. PLoS One 6:1–9.
65. Walenkamp AME, Boer IGJ, Bestebroer J, Rozeveld D, Timmer-Bosscha H, Hemrika W, van Strijp JA, de Haas CJC. 2009. Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 11:333–344 http://dx.doi.org/10.1593/neo.81508. [PubMed]
66. Bardoel BW, Vos R, Bouman T, Aerts PC, Bestebroer J, Huizinga EG, Brondijk THC, van Strijp JA, de Haas CJ. 2012. Evasion of Toll-like receptor 2 activation by staphylococcal superantigen-like protein 3. J Mol Med (Berl) 90:1109–1120 http://dx.doi.org/10.1007/s00109-012-0926-8. [PubMed]
67. Yokoyama R, Itoh S, Kamoshida G, Takii T, Fujii S, Tsuji T, Onozaki K. 2012. Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages. Infect Immun 80:2816–2825 http://dx.doi.org/10.1128/IAI.00399-12.
68. Koymans KJ, Feitsma LJ, Brondijk THC, Aerts PC, Lukkien E, Lössl P, van Kessel KPM, de Haas CJC, van Strijp JA, Huizinga EG. 2015. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc Natl Acad Sci U S A 112:11018–11023 http://dx.doi.org/10.1073/pnas.1502026112. [PubMed]
69. Hermans SJ, Baker HM, Sequeira RP, Langley RJ, Baker EN, Fraser JD. 2012. Structural and functional properties of staphylococcal superantigen-like protein 4. Infect Immun 80:4004–4013 http://dx.doi.org/10.1128/IAI.00764-12. [PubMed]
70. Koymans KJ, Goldmann O, Karlsson CAQ, Sital W, Thänert R, Bisschop A, Vrieling M, Malmström J, van Kessel KPM, de Haas CJC, van Strijp JAG, Medina E. 2017. The TLR2 antagonist staphylococcal superantigen-like protein 3 acts as a virulence factor to promote bacterial pathogenicity in vivo. J Innate Immun 9:561–573 http://dx.doi.org/10.1159/000479100. [PubMed]
71. Laarman AJ, Mijnheer G, Mootz JM, van Rooijen WJM, Ruyken M, Malone CL, Heezius EC, Ward R, Milligan G, van Strijp JA, de Haas CJC, Horswill AR, van Kessel KPM, Rooijakkers SHM. 2012. Staphylococcus aureus staphopain A inhibits CXCR2-dependent neutrophil activation and chemotaxis. EMBO J 31:3607–3619 http://dx.doi.org/10.1038/emboj.2012.212. [PubMed]
72. Nickerson N, Ip J, Passos DT, McGavin MJ. 2010. Comparison of staphopain A (ScpA) and B (SspB) precursor activation mechanisms reveals unique secretion kinetics of proSspB (staphopain B), and a different interaction with its cognate Staphostatin, SspC. Mol Microbiol 75:161–177 http://dx.doi.org/10.1111/j.1365-2958.2009.06974.x.
73. Veldkamp KE, Heezius HCJM, Verhoef J, van Strijp JAG, van Kessel KPM. 2000. Modulation of neutrophil chemokine receptors by Staphylococcus aureus supernate. Infect Immun 68:5908–5913 http://dx.doi.org/10.1128/IAI.68.10.5908-5913.2000. [PubMed]
74. de Haas CJC, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695 http://dx.doi.org/10.1084/jem.20031636. [PubMed]
75. Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJC, van Kessel KPM. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 172:6994–7001 http://dx.doi.org/10.4049/jimmunol.172.11.6994. [PubMed]
76. Haas P-J, de Haas CJC, Kleibeuker W, Poppelier MJJG, van Kessel KPM, Kruijtzer JA, Liskamp RM, van Strijp JA. 2004. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J Immunol 173:5704–5711 http://dx.doi.org/10.4049/jimmunol.173.9.5704. [PubMed]
77. Postma B, Kleibeuker W, Poppelier MJJG, Boonstra M, Van Kessel KPM, Van Strijp JA, de Haas CJC. 2005. Residues 10-18 within the C5a receptor N terminus compose a binding domain for chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 280:2020–2027 http://dx.doi.org/10.1074/jbc.M412230200. [PubMed]
78. Haas PJ, de Haas CJC, Poppelier MJJC, van Kessel KPM, van Strijp JA, Dijkstra K, Scheek RM, Fan H, Kruijtzer JA, Liskamp RMJ, Kemmink J. 2005. The structure of the C5a receptor-blocking domain of chemotaxis inhibitory protein of Staphylococcus aureus is related to a group of immune evasive molecules. J Mol Biol 353:859–872 http://dx.doi.org/10.1016/j.jmb.2005.09.014. [PubMed]
79. Prat C, Bestebroer J, de Haas CJC, van Strijp JA, van Kessel KPM. 2006. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol 177:8017–8026 http://dx.doi.org/10.4049/jimmunol.177.11.8017. [PubMed]
80. Prat C, Haas P-J, Bestebroer J, de Haas CJC, van Strijp JA, van Kessel KP. 2009. A homolog of formyl peptide receptor-like 1 (FPRL1) inhibitor from Staphylococcus aureus (FPRL1 inhibitory protein) that inhibits FPRL1 and FPR. J Immunol 183:6569–6578 http://dx.doi.org/10.4049/jimmunol.0801523. [PubMed]
81. Stemerding AM, Köhl J, Pandey MK, Kuipers A, Leusen JH, Boross P, Nederend M, Vidarsson G, Weersink AYL, van de Winkel JGJ, van Kessel KPM, van Strijp JA. 2013. Staphylococcus aureus formyl peptide receptor-like 1 inhibitor (FLIPr) and its homologue FLIPr-like are potent FcγR antagonists that inhibit IgG-mediated effector functions. J Immunol 191:353–362 http://dx.doi.org/10.4049/jimmunol.1203243. [PubMed]
82. Ferreira VP, Pangburn MK, Cortés C. 2010. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol 47:2187–2197 http://dx.doi.org/10.1016/j.molimm.2010.05.007.
83. Cunnion KM, Hair PS, Buescher ES. 2004. Cleavage of complement C3b to iC3b on the surface of Staphylococcus aureus is mediated by serum complement factor I. Infect Immun 72:2858–2863 http://dx.doi.org/10.1128/IAI.72.5.2858-2863.2004. [PubMed]
84. Müller-Eberhard HJ. 1986. The membrane attack complex of complement. Annu Rev Immunol 4:503–528 http://dx.doi.org/10.1146/annurev.iy.04.040186.002443. [PubMed]
85. Wellek B, Hahn H, Opferkuch W. 1976. Opsonizing activities of IgG, IgM antibodies and the C3b inactivator-cleaved third component of complement in macrophage phagocytosis. Agents Actions 6:260–262 http://dx.doi.org/10.1007/BF01972219. [PubMed]
86. Mantovani B. 1975. Different roles of IgG and complement receptors in phagocytosis by polymorphonuclear leukocytes. J Immunol 115:15–17. [PubMed]
87. Radaev S, Sun P. 2013. Structural recognition of immunoglobulins by Fcγ receptors, p 131–144. In Ackerman ME, Nimmerjahn F (ed), Antibody Fc: Linking Adaptive and Innate Immunity. Academic Press, San Diego, CA.
88. Stuart LM, Ezekowitz RAB. 2005. Phagocytosis: elegant complexity. Immunity 22:539–550 http://dx.doi.org/10.1016/j.immuni.2005.05.002. [PubMed]
89. Rosales C. 2017. Fcγ receptor heterogeneity in leukocyte functional responses. Front Immunol 8:280 http://dx.doi.org/10.3389/fimmu.2017.00280.
90. McGreal E, Gasque P. 2002. Structure-function studies of the receptors for complement C1q. Biochem Soc Trans 30:1010–1014 http://dx.doi.org/10.1042/bst0301010. [PubMed]
91. Todd RF III. 1996. The continuing saga of complement receptor type 3 (CR3). J Clin Invest 98:1–2 http://dx.doi.org/10.1172/JCI118752. [PubMed]
92. O’Riordan K, Lee JC, Riordan KO, Lee JC. 2004. Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17:218–234 http://dx.doi.org/10.1128/CMR.17.1.218-234.2004. [PubMed]
93. Cunnion KM, Lee JC, Frank MM. 2001. Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect Immun 69:6796–6803 http://dx.doi.org/10.1128/IAI.69.11.6796-6803.2001. [PubMed]
94. Rajagopal M, Walker S. 2015. Envelope structures of Gram-positive bacteria. Curr Top Microbiol Immunol 404:1–44.
95. Schneewind O, Model P, Fischetti VA. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267–281 http://dx.doi.org/10.1016/0092-8674(92)90101-H.
96. Becker S, Frankel MB, Schneewind O, Missiakas D. 2014. Release of protein A from the cell wall of Staphylococcus aureus. Proc Natl Acad Sci U S A 111:1574–1579 http://dx.doi.org/10.1073/pnas.1317181111. [PubMed]
97. Forsgren A, Sjöquist J. 1966. “Protein A” from S. aureus. I. Pseudo-immune reaction with human gamma-globulin. J Immunol 97:822–827. [PubMed]
98. Falugi F, Kim HK, Missiakas DM, Schneewind O. 2013. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. MBio 4:e00575-13 http://dx.doi.org/10.1128/mBio.00575-13. [PubMed]
99. Goodyear CS, Silverman GJ. 2003. Death by a B cell superantigen: in vivo VH-targeted apoptotic supraclonal B cell deletion by a staphylococcal toxin. J Exp Med 197:1125–1139 http://dx.doi.org/10.1084/jem.20020552. [PubMed]
100. Pauli NT, Kim HK, Falugi F, Huang M, Dulac J, Henry Dunand C, Zheng N-Y, Kaur K, Andrews SF, Huang Y, DeDent A, Frank KM, Charnot-Katsikas A, Schneewind O, Wilson PC. 2014. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. J Exp Med 211:2331–2339 http://dx.doi.org/10.1084/jem.20141404. [PubMed]
101. Kim HK, Falugi F, Thomer L, Missiakas DM, Schneewind O. 2015. Protein A suppresses immune responses during Staphylococcus aureus bloodstream infection in guinea pigs. MBio 6:e02369-14 http://dx.doi.org/10.1128/mBio.02369-14. [PubMed]
102. Zhang L, Jacobsson K, Vasi J, Lindberg M, Frykberg L. 1998. A second IgG-binding protein in Staphylococcus aureus. Microbiology 144:985–991 http://dx.doi.org/10.1099/00221287-144-4-985. [PubMed]
103. Zhang L, Jacobsson K, Ström K, Lindberg M, Frykberg L. 1999. Staphylococcus aureus expresses a cell surface protein that binds both IgG and glycoprotein I. Microbiology 145:177–183 http://dx.doi.org/10.1099/13500872-145-1-177. [PubMed]
104. Ebner P, Prax M, Nega M, Koch I, Dube L, Yu W, Rinker J, Popella P, Flötenmeyer M, Götz F. 2015. Excretion of cytoplasmic proteins (ECP) in Staphylococcus aureus. Mol Microbiol 97:775–789 http://dx.doi.org/10.1111/mmi.13065. [PubMed]
105. Atkins KL, Burman JD, Chamberlain ES, Cooper JE, Poutrel B, Bagby S, Jenkins AT, Feil EJ, van den Elsen JM. 2008. S. aureus IgG-binding proteins SpA and Sbi: host specificity and mechanisms of immune complex formation. Mol Immunol 45:1600–1611 http://dx.doi.org/10.1016/j.molimm.2007.10.021. [PubMed]
106. Burman JD, Leung E, Atkins KL, O’Seaghdha MN, Lango L, Bernadó P, Bagby S, Svergun DI, Foster TJ, Isenman DE, van den Elsen JMH. 2008. Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593 http://dx.doi.org/10.1074/jbc.M800265200. [PubMed]
107. Haupt K, Reuter M, van den Elsen J, Burman J, Hälbich S, Richter J, Skerka C, Zipfel PF. 2008. The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement factor H and C3b. PLoS Pathog 4:e1000250 http://dx.doi.org/10.1371/journal.ppat.1000250. [PubMed]
108. Itoh S, Hamada E, Kamoshida G, Yokoyama R, Takii T, Onozaki K, Tsuji T. 2010. Staphylococcal superantigen-like protein 10 (SSL10) binds to human immunoglobulin G (IgG) and inhibits complement activation via the classical pathway. Mol Immunol 47:932–938 http://dx.doi.org/10.1016/j.molimm.2009.09.027. [PubMed]
109. Patel D, Wines BD, Langley RJ, Fraser JD. 2010. Specificity of staphylococcal superantigen-like protein 10 toward the human IgG1 Fc domain. J Immunol 184:6283–6292 http://dx.doi.org/10.4049/jimmunol.0903311. [PubMed]
110. Itoh S, Yokoyama R, Kamoshida G, Fujiwara T, Okada H, Takii T, Tsuji T, Fujii S, Hashizume H, Onozaki K. 2013. Staphylococcal superantigen-like protein 10 (SSL10) inhibits blood coagulation by binding to prothrombin and factor Xa via their γ-carboxyglutamic acid (Gla) domain. J Biol Chem 288:21569–21580 http://dx.doi.org/10.1074/jbc.M113.451419. [PubMed]
111. Itoh S, Yokoyama R, Murase C, Takii T, Tsuji T, Onozaki K. 2012. Staphylococcal superantigen-like protein 10 binds to phosphatidylserine and apoptotic cells. Microbiol Immunol 56:363–371 http://dx.doi.org/10.1111/j.1348-0421.2012.00452.x. [PubMed]
112. Prokesová L, Potuzníková B, Potempa J, Zikán J, Radl J, Hachová L, Baran K, Porwit-Bobr Z, John C. 1992. Cleavage of human immunoglobulins by serine proteinase from Staphylococcus aureus. Immunol Lett 31:259–265 http://dx.doi.org/10.1016/0165-2478(92)90124-7.
113. Laarman AJ, Ruyken M, Malone CL, van Strijp JA, Horswill AR, Rooijakkers SHM. 2011. Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453 http://dx.doi.org/10.4049/jimmunol.1002948. [PubMed]
114. Rooijakkers SHM, Ruyken M, Roos A, Daha MR, Presanis JS, Sim RB, van Wamel WJB, van Kessel KPM, van Strijp JAG. 2005. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927 http://dx.doi.org/10.1038/ni1235. [PubMed]
115. Rooijakkers SHM, Milder FJ, Bardoel BW, Ruyken M, van Strijp JA, Gros P. 2007. Staphylococcal complement inhibitor: structure and active sites. J Immunol 179:2989–2998 http://dx.doi.org/10.4049/jimmunol.179.5.2989. [PubMed]
116. Rooijakkers SHM, Wu J, Ruyken M, van Domselaar R, Planken KL, Tzekou A, Ricklin D, Lambris JD, Janssen BJC, van Strijp JA, Gros P. 2009. Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor. Nat Immunol 10:721–727 http://dx.doi.org/10.1038/ni.1756. [PubMed]
117. Garcia BL, Ramyar KX, Tzekou A, Ricklin D, McWhorter WJ, Lambris JD, Geisbrecht BV. 2010. Molecular basis for complement recognition and inhibition determined by crystallographic studies of the staphylococcal complement inhibitor (SCIN) bound to C3c and C3b. J Mol Biol 402:17–29 http://dx.doi.org/10.1016/j.jmb.2010.07.029.
118. Jongerius I, Köhl J, Pandey MK, Ruyken M, van Kessel KPM, van Strijp JA, Rooijakkers SHM. 2007. Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 204:2461–2471 http://dx.doi.org/10.1084/jem.20070818.
119. Bodén MK, Flock JI. 1994. Cloning and characterization of a gene for a 19 kDa fibrinogen-binding protein from Staphylococcus aureus. Mol Microbiol 12:599–606 http://dx.doi.org/10.1111/j.1365-2958.1994.tb01046.x.
120. Palma M, Shannon O, Quezada HC, Berg A, Flock JI. 2001. Extracellular fibrinogen-binding protein, Efb, from Staphylococcus aureus blocks platelet aggregation due to its binding to the α-chain. J Biol Chem 276:31691–31697 http://dx.doi.org/10.1074/jbc.M104554200.
121. Heilmann C, Herrmann M, Kehrel BE, Peters G. 2002. Platelet-binding domains in 2 fibrinogen-binding proteins of Staphylococcus aureus identified by phage display. J Infect Dis 186:32–39 http://dx.doi.org/10.1086/341081.
122. Palma M, Nozohoor S, Schennings T, Heimdahl A, Flock JI. 1996. Lack of the extracellular 19-kilodalton fibrinogen-binding protein from Staphylococcus aureus decreases virulence in experimental wound infection. Infect Immun 64:5284–5289.
123. Lee LYL, Höök M, Haviland D, Wetsel RA, Yonter EO, Syribeys P, Vernachio J, Brown EL. 2004. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J Infect Dis 190:571–579 http://dx.doi.org/10.1086/422259.
124. Hammel M, Sfyroera G, Ricklin D, Magotti P, Lambris JD, Geisbrecht BV. 2007. A structural basis for complement inhibition by Staphylococcus aureus. Nat Immunol 8:430–437 http://dx.doi.org/10.1038/ni1450.
125. Ko YP, Kuipers A, Freitag CM, Jongerius I, Medina E, van Rooijen WJ, Spaan AN, van Kessel KPM, Höök M, Rooijakkers SHM. 2013. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 9:e1003816 http://dx.doi.org/10.1371/journal.ppat.1003816.
126. Kuipers A, Stapels DA, Weerwind LT, Ko YP, Ruyken M, Lee JC, van Kessel KPM, Rooijakkers SHM. 2016. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. Microbiology 162:1185–1194.
127. Rothfork JM, Dessus-Babus S, Van Wamel WJB, Cheung AL, Gresham HD. 2003. Fibrinogen depletion attenuates Staphyloccocus aureus infection by preventing density-dependent virulence gene up-regulation. J Immunol 171:5389–5395.
128. Hammel M, Sfyroera G, Pyrpassopoulos S, Ricklin D, Ramyar KX, Pop M, Jin Z, Lambris JD, Geisbrecht BV. 2007. Characterization of Ehp, a secreted complement inhibitory protein from Staphylococcus aureus. J Biol Chem 282:30051–30061 http://dx.doi.org/10.1074/jbc.M704247200.
129. Jongerius I, Garcia BL, Geisbrecht BV, van Strijp JA, Rooijakkers SH. 2010. Convertase inhibitory properties of staphylococcal extracellular complement-binding protein. J Biol Chem 285:14973–14979 http://dx.doi.org/10.1074/jbc.M109.091975.
130. Jongerius I, von Köckritz-Blickwede M, Horsburgh MJ, Ruyken M, Nizet V, Rooijakkers SHM. 2012. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses. J Innate Immun 4:301–311 http://dx.doi.org/10.1159/000334604.
131. Sharp JA, Echague CG, Hair PS, Ward MD, Nyalwidhe JO, Geoghegan JA, Foster TJ, Cunnion KM. 2012. Staphylococcus aureus surface protein SdrE binds complement regulator factor H as an immune evasion tactic. PLoS One 7:e38407 http://dx.doi.org/10.1371/journal.pone.0038407.
132. Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, Zang J, Zhang M, Zhang X. 2017. Staphylococcus aureus SdrE captures complement factor H’s C-terminus via a novel ‘close, dock, lock and latch’ mechanism for complement evasion. Biochem J 474:1619–1631 http://dx.doi.org/10.1042/BCJ20170085.
133. Hair PS, Ward MD, Semmes OJ, Foster TJ, Cunnion KM. 2008. Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis 198:125–133 http://dx.doi.org/10.1086/588825.
134. Hair PS, Echague CG, Sholl AM, Watkins JA, Geoghegan JA, Foster TJ, Cunnion KM. 2010. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. Infect Immun 78:1717–1727 http://dx.doi.org/10.1128/IAI.01065-09.
135. Woehl JL, Stapels DAC, Garcia BL, Ramyar KX, Keightley A, Ruyken M, Syriga M, Sfyroera G, Weber AB, Zolkiewski M, Ricklin D, Lambris JD, Rooijakkers SHM, Geisbrecht BV. 2014. The extracellular adherence protein from Staphylococcus aureus inhibits the classical and lectin pathways of complement by blocking formation of the C3 proconvertase. J Immunol 193:6161–6171 http://dx.doi.org/10.4049/jimmunol.1401600.
136. Rooijakkers SHM, van Wamel WJB, Ruyken M, van Kessel KPM, van Strijp JA. 2005. Anti-opsonic properties of staphylokinase. Microbes Infect 7:476–484 http://dx.doi.org/10.1016/j.micinf.2004.12.014.
137. Langley R, Wines B, Willoughby N, Basu I, Proft T, Fraser JD. 2005. The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 174:2926–2933 http://dx.doi.org/10.4049/jimmunol.174.5.2926.
138. Laursen NS, Gordon N, Hermans S, Lorenz N, Jackson N, Wines B, Spillner E, Christensen JB, Jensen M, Fredslund F, Bjerre M, Sottrup-Jensen L, Fraser JD, Andersen GR. 2010. Structural basis for inhibition of complement C5 by the SSL7 protein from Staphylococcus aureus. Proc Natl Acad Sci U S A 107:3681–3686 http://dx.doi.org/10.1073/pnas.0910565107.
139. Bestebroer J, Aerts PC, Rooijakkers SHM, Pandey MK, Köhl J, van Strijp JA, de Haas CJ. 2010. Functional basis for complement evasion by staphylococcal superantigen-like 7. Cell Microbiol 12:1506–1516 http://dx.doi.org/10.1111/j.1462-5822.2010.01486.x.
140. Kang M, Ko YP, Liang X, Ross CL, Liu Q, Murray BE, Höök M. 2013. Collagen-binding microbial surface components recognizing adhesive matrix molecule (MSCRAMM) of Gram-positive bacteria inhibit complement activation via the classical pathway. J Biol Chem 288:20520–20531 http://dx.doi.org/10.1074/jbc.M113.454462.
141. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A. 2004. Neutrophil extracellular traps kill bacteria. Science 303:1532–1535 http://dx.doi.org/10.1126/science.1092385.
142. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. 2014. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports 8:883–896 http://dx.doi.org/10.1016/j.celrep.2014.06.044.
143. von Köckritz-Blickwede M, Nizet V. 2009. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl) 87:775–783 http://dx.doi.org/10.1007/s00109-009-0481-0.
144. McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. 2012. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12:324–333 http://dx.doi.org/10.1016/j.chom.2012.06.011.
145. Berends ETM, Horswill AR, Haste NM, Monestier M, Nizet V, von Köckritz-Blickwede M. 2010. Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. J Innate Immun 2:576–586 http://dx.doi.org/10.1159/000319909.
146. Thammavongsa V, Missiakas DM, Schneewind O. 2013. Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342:863–866 http://dx.doi.org/10.1126/science.1242255.
147. Manda-Handzlik A, Demkow U. 2015. Neutrophils: the role of oxidative and nitrosative stress in health and disease. Adv Exp Med Biol 857:51–60 http://dx.doi.org/10.1007/5584_2015_117.
148. Borregaard N, Cowland JB. 1997. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521.
149. Egesten A, Breton-Gorius J, Guichard J, Gullberg U, Olsson I. 1994. The heterogeneity of azurophil granules in neutrophil promyelocytes: immunogold localization of myeloperoxidase, cathepsin G, elastase, proteinase 3, and bactericidal/permeability increasing protein. Blood 83:2985–2994.
150. Levy O. 2004. Antimicrobial proteins and peptides: anti-infective molecules of mammalian leukocytes. J Leukoc Biol 76:909–925 http://dx.doi.org/10.1189/jlb.0604320.
151. Turner J, Cho Y, Dinh NN, Waring AJ, Lehrer RI. 1998. Activities of LL-37, a cathelin-associated antimicrobial peptide of human neutrophils. Antimicrob Agents Chemother 42:2206–2214 http://dx.doi.org/10.1128/AAC.42.9.2206. [PubMed]
152. Noore J, Noore A, Li B. 2013. Cationic antimicrobial peptide LL-37 is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 57:1283–1290 http://dx.doi.org/10.1128/AAC.01650-12. [PubMed]
153. Wimley WC, Selsted ME, White SH. 1994. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci 3:1362–1373 http://dx.doi.org/10.1002/pro.5560030902.
154. Pham CTN. 2006. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol 6:541–550 http://dx.doi.org/10.1038/nri1841. [PubMed]
155. Reeves EP, Lu H, Jacobs HL, Messina CGM, Bolsover S, Gabella G, Potma EO, Warley A, Roes J, Segal AW. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416:291–297 http://dx.doi.org/10.1038/416291a. [PubMed]
156. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP, Skaar EP. 2008. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319:962–965 http://dx.doi.org/10.1126/science.1152449. [PubMed]
157. Stríz I, Trebichavský I. 2004. Calprotectin: a pleiotropic molecule in acute and chronic inflammation. Physiol Res 53:245–253. [PubMed]
158. Schindler M, Assaf Y, Sharon N, Chipman DM. 1977. Mechanism of lysozyme catalysis: role of ground-state strain in subsite D in hen egg-white and human lysozymes. Biochemistry 16:423–431 http://dx.doi.org/10.1021/bi00622a013. [PubMed]
159. Selsted ME, Martinez RJ. 1978. Lysozyme: primary bactericidin in human plasma serum active against Bacillus subtilis. Infect Immun 20:782–791. [PubMed]
160. Babior BM, Lambeth JD, Nauseef W. 2002. The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344 http://dx.doi.org/10.1006/abbi.2001.2642. [PubMed]
161. Kettle AJ, Anderson RF, Hampton MB, Winterbourn CC. 2007. Reactions of superoxide with myeloperoxidase. Biochemistry 46:4888–4897 http://dx.doi.org/10.1021/bi602587k. [PubMed]
162. Klebanoff SJ, Kettle AJ, Rosen H, Winterbourn CC, Nauseef WM. 2013. Myeloperoxidase: a front-line defender against phagocytosed microorganisms. J Leukoc Biol 93:185–198 http://dx.doi.org/10.1189/jlb.0712349. [PubMed]
163. Klebanoff SJ. 2005. Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625 http://dx.doi.org/10.1189/jlb.1204697. [PubMed]
164. Klebanoff SJ, Hamon CB. 1972. Role of myeloperoxidase-mediated antimicrobial systems in intact leukocytes. J Reticuloendothel Soc 12:170–196. [PubMed]
165. Aratani Y, Kura F, Watanabe H, Akagawa H, Takano Y, Suzuki K, Maeda N, Koyama H. 2000. Differential host susceptibility to pulmonary infections with bacteria and fungi in mice deficient in myeloperoxidase. J Infect Dis 182:1276–1279 http://dx.doi.org/10.1086/315843. [PubMed]
166. Jensen MS, Bainton DF. 1973. Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J Cell Biol 56:379–388 http://dx.doi.org/10.1083/jcb.56.2.379. [PubMed]
167. Dri P, Presani G, Perticarari S, Albèri L, Prodan M, Decleva E. 2002. Measurement of phagosomal pH of normal and CGD-like human neutrophils by dual fluorescence flow cytometry. Cytometry 48:159–166 http://dx.doi.org/10.1002/cyto.10123. [PubMed]
168. Cech P, Lehrer RI. 1984. Phagolysosomal pH of human neutrophils. Blood 63:88–95. [PubMed]
169. Levine AP, Duchen MR, de Villiers S, Rich PR, Segal AW. 2015. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity. PLoS One 10:e0125906 http://dx.doi.org/10.1371/journal.pone.0125906. [PubMed]
170. Kettle AJ, Winterbourn CC. 2001. A kinetic analysis of the catalase activity of myeloperoxidase. Biochemistry 40:10204–10212 http://dx.doi.org/10.1021/bi010940b. [PubMed]
171. Levine AP, Segal AW. 2016. The NADPH oxidase and microbial killing by neutrophils, with a particular emphasis on the proposed antimicrobial role of myeloperoxidase within the phagocytic vacuole. Microbiol Spectr 4:MCHD-0018-2015. doi:10.1128/microbiolspec.MCHD-0018-2015.
172. de Jong NWM, Ramyar KX, Guerra FE, Nijland R, Fevre C, Voyich JM, McCarthy AJ, Garcia BL, van Kessel KPM, van Strijp JAG, Geisbrecht BV, Haas PA. 2017. Immune evasion by a staphylococcal inhibitor of myeloperoxidase. Proc Natl Acad Sci U S A 114:9439–9444 http://dx.doi.org/10.1073/pnas.1707032114. [PubMed]
173. Liu GY, Essex A, Buchanan JT, Datta V, Hoffman HM, Bastian JF, Fierer J, Nizet V. 2005. Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. J Exp Med 202:209–215 http://dx.doi.org/10.1084/jem.20050846. [PubMed]
174. Liu C-I, Liu GY, Song Y, Yin F, Hensler ME, Jeng W-Y, Nizet V, Wang AH-J, Oldfield E. 2008. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science 319:1391–1394 http://dx.doi.org/10.1126/science.1153018. [PubMed]
175. Song Y, Liu CI, Lin FY, No JH, Hensler M, Liu YL, Jeng WY, Low J, Liu GY, Nizet V, Wang AHJ, Oldfield E. 2009. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylococcus aureus: in vitro, in vivo, and crystallographic results. J Med Chem 52:3869–3880 http://dx.doi.org/10.1021/jm9001764. [PubMed]
176. Karavolos MH, Horsburgh MJ, Ingham E, Foster SJ. 2003. Role and regulation of the superoxide dismutases of Staphylococcus aureus. Microbiology 149:2749–2758 http://dx.doi.org/10.1099/mic.0.26353-0. [PubMed]
177. Valderas MW, Hart ME. 2001. Identification and characterization of a second superoxide dismutase gene (sodM) from Staphylococcus aureus. J Bacteriol 183:3399–3407 http://dx.doi.org/10.1128/JB.183.11.3399-3407.2001. [PubMed]
178. Mandell GL. 1975. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal-leukocyte interaction. J Clin Invest 55:561–566 http://dx.doi.org/10.1172/JCI107963. [PubMed]
179. Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. 2001. PerR controls oxidative stress resistance and iron storage proteins and is required for virulence in Staphylococcus aureus. Infect Immun 69:3744–3754 http://dx.doi.org/10.1128/IAI.69.6.3744-3754.2001. [PubMed]
180. Cosgrove K, Coutts G, Jonsson I-M, Tarkowski A, Kokai-Kun JF, Mond JJ, Foster SJ. 2007. Catalase (KatA) and alkyl hydroperoxide reductase (AhpC) have compensatory roles in peroxide stress resistance and are required for survival, persistence, and nasal colonization in Staphylococcus aureus. J Bacteriol 189:1025–1035 http://dx.doi.org/10.1128/JB.01524-06. [PubMed]
181. Guerra FE, Addison CB, de Jong NWM, Azzolino J, Pallister KB, van Strijp JAG, Voyich JM. 2016. Staphylococcus aureus SaeR/S-regulated factors reduce human neutrophil reactive oxygen species production. J Leukoc Biol 100:1005–1010 http://dx.doi.org/10.1189/jlb.4VMAB0316-100RR. [PubMed]
182. Richardson AR, Dunman PM, Fang FC. 2006. The nitrosative stress response of Staphylococcus aureus is required for resistance to innate immunity. Mol Microbiol 61:927–939 http://dx.doi.org/10.1111/j.1365-2958.2006.05290.x. [PubMed]
183. Richardson AR, Libby SJ, Fang FC. 2008. A nitric oxide-inducible lactate dehydrogenase enables Staphylococcus aureus to resist innate immunity. Science 319:1672–1676 http://dx.doi.org/10.1126/science.1155207. [PubMed]
184. Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274:8405–8410 http://dx.doi.org/10.1074/jbc.274.13.8405. [PubMed]
185. Collins LV, Kristian SA, Weidenmaier C, Faigle M, Van Kessel KP, Van Strijp JA, Götz F, Neumeister B, Peschel A. 2002. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186:214–219 http://dx.doi.org/10.1086/341454. [PubMed]
186. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JAG, Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KPM, van Strijp JG. 2001. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med 193:1067–1076 http://dx.doi.org/10.1084/jem.193.9.1067. [PubMed]
187. Oku Y, Kurokawa K, Ichihashi N, Sekimizu K. 2004. Characterization of the Staphylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol. Microbiology 150:45–51 http://dx.doi.org/10.1099/mic.0.26706-0. [PubMed]
188. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J. 2004. Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679 http://dx.doi.org/10.1128/AAC.48.12.4673-4679.2004. [PubMed]
189. Bera A, Herbert S, Jakob A, Vollmer W, Götz F. 2005. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787 http://dx.doi.org/10.1111/j.1365-2958.2004.04446.x. [PubMed]
190. Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F. 2007. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:e102 http://dx.doi.org/10.1371/journal.ppat.0030102. [PubMed]
191. Stapels DA, Ramyar KX, Bischoff M, von Köckritz-Blickwede M, Milder FJ, Ruyken M, Eisenbeis J, McWhorter WJ, Herrmann M, van Kessel KP, Geisbrecht BV, Rooijakkers SH. 2014. Staphylococcus aureus secretes a unique class of neutrophil serine protease inhibitors. Proc Natl Acad Sci U S A 111:13187–13192 http://dx.doi.org/10.1073/pnas.1407616111. [PubMed]
192. Stapels DC, Woehl JL, Milder FJ, Tromp AT, van Batenburg A, de Graaf WC, Broll SC, White NM, Rooijakkers SHM, Geisbrecht BV. 2017. Evidence for multiple modes of neutrophil serine protease recognition by the EAP family of staphylococcal innate immune evasion proteins. Protein Sci 27:509–522. [PubMed]
193. Stapels DA, Kuipers A, von Köckritz-Blickwede M, Ruyken M, Tromp AT, Horsburgh MJ, de Haas CJ, van Strijp JA, van Kessel KP, Rooijakkers SH. 2016. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases. Cell Microbiol 18:536–545 http://dx.doi.org/10.1111/cmi.12528. [PubMed]
194. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. 2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 172:1169–1176 http://dx.doi.org/10.4049/jimmunol.172.2.1169. [PubMed]
195. Wilke GA, Bubeck Wardenburg J. 2010. Role of a disintegrin and metalloprotease 10 in Staphylococcus aureus α-hemolysin-mediated cellular injury. Proc Natl Acad Sci U S A 107:13473–13478 http://dx.doi.org/10.1073/pnas.1001815107. [PubMed]
196. Powers ME, Kim HK, Wang Y, Bubeck Wardenburg J. 2012. ADAM10 mediates vascular injury induced by Staphylococcus aureus α-hemolysin. J Infect Dis 206:352–356 http://dx.doi.org/10.1093/infdis/jis192. [PubMed]
197. Inoshima I, Inoshima N, Wilke GA, Powers ME, Frank KM, Wang Y, Bubeck Wardenburg J. 2011. A Staphylococcus aureus pore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice. Nat Med 17:1310–1314 http://dx.doi.org/10.1038/nm.2451. [PubMed]
198. Valeva A, Walev I, Pinkernell M, Walker B, Bayley H, Palmer M, Bhakdi S. 1997. Transmembrane β-barrel of staphylococcal α-toxin forms in sensitive but not in resistant cells. Proc Natl Acad Sci U S A 94:11607–11611 http://dx.doi.org/10.1073/pnas.94.21.11607. [PubMed]
199. Jayasinghe L, Bayley H. 2005. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci 14:2550–2561 http://dx.doi.org/10.1110/ps.051648505. [PubMed]
200. Koop G, Vrieling M, Storisteanu DML, Lok LSC, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JAG, Harrison EM, Holmes MA. 2017. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 7:40660 http://dx.doi.org/10.1038/srep40660. [PubMed]
201. Vrieling M, Koymans KJ, Heesterbeek DA, Aerts PC, Rutten VP, de Haas CJ, van Kessel KP, Koets AP, Nijland R, van Strijp JA. 2015. Bovine Staphylococcus aureus secretes the leukocidin LukMF’ to kill migrating neutrophils through CCR1. MBio 6:e00335 http://dx.doi.org/10.1128/mBio.00335-15. [PubMed]
202. Alonzo F III, Torres VJ. 2014. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 78:199–230 http://dx.doi.org/10.1128/MMBR.00055-13. [PubMed]
203. Spaan AN, van Strijp JAG, Torres VJ. 2017. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 15:435–447 http://dx.doi.org/10.1038/nrmicro.2017.27. [PubMed]
204. Spaan AN, Reyes-Robles T, Badiou C, Cochet S, Boguslawski KM, Yoong P, Day CJ, de Haas CJC, van Kessel KPM, Vandenesch F, Jennings MP, Le Van Kim C, Colin Y, van Strijp JA, Henry T, Torres VJ. 2015. Staphylococcus aureus targets the Duffy antigen receptor for chemokines (DARC) to lyse erythrocytes. Cell Host Microbe 18:363–370 http://dx.doi.org/10.1016/j.chom.2015.08.001. [PubMed]
205. DuMont AL, Yoong P, Surewaard BGJ, Benson MA, Nijland R, van Strijp JA, Torres VJ. 2013. Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun 81:1830–1841 http://dx.doi.org/10.1128/IAI.00095-13. [PubMed]
206. Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C, Danila RN, Lynfield R. 2003. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290:2976–2984 http://dx.doi.org/10.1001/jama.290.22.2976. [PubMed]
207. Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514 http://dx.doi.org/10.1038/nm1656. [PubMed]
208. Surewaard BGJ, Nijland R, Spaan AN, Kruijtzer JA, de Haas CJ, van Strijp JA. 2012. Inactivation of staphylococcal phenol soluble modulins by serum lipoprotein particles. PLoS Pathog 8:e1002606 http://dx.doi.org/10.1371/journal.ppat.1002606. [PubMed]
209. Surewaard BGJ, de Haas CJC, Vervoort F, Rigby KM, DeLeo FR, Otto M, van Strijp JA, Nijland R. 2013. Staphylococcal alpha-phenol soluble modulins contribute to neutrophil lysis after phagocytosis. Cell Microbiol 15:1427–1437 http://dx.doi.org/10.1111/cmi.12130. [PubMed]
210. Lina G, Bohach GA, Nair SP, Hiramatsu K, Jouvin-Marche E, Mariuzza R, International Nomenclature Committee for Staphylococcal Superantigens. 2004. Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis 189:2334–2336 http://dx.doi.org/10.1086/420852. [PubMed]
211. Fraser JD, Proft T. 2008. The bacterial superantigen and superantigen-like proteins. Immunol Rev 225:226–243 http://dx.doi.org/10.1111/j.1600-065X.2008.00681.x. [PubMed]
212. Finlay BB, McFadden G. 2006. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124:767–782 http://dx.doi.org/10.1016/j.cell.2006.01.034. [PubMed]
213. Verkaik NJ, Lebon A, de Vogel CP, Hooijkaas H, Verbrugh HA, Jaddoe VW, Hofman A, Moll HA, van Belkum A, van Wamel WJ. 2010. Induction of antibodies by Staphylococcus aureus nasal colonization in young children. Clin Microbiol Infect 16:1312–1317 http://dx.doi.org/10.1111/j.1469-0691.2009.03073.x. [PubMed]
214. Schmidt F, Meyer T, Sundaramoorthy N, Michalik S, Surmann K, Depke M, Dhople V, Gesell Salazar M, Holtappels G, Zhang N, Bröker BM, Bachert C, Völker U. 2017. Characterization of human and Staphylococcus aureus proteins in respiratory mucosa by in vivo- and immunoproteomics. J Proteomics 155:31–39 http://dx.doi.org/10.1016/j.jprot.2017.01.008. [PubMed]
215. Lo H, Tang CM, Exley RM. 2009. Mechanisms of avoidance of host immunity by Neisseria meningitidis and its effect on vaccine development. Lancet Infect Dis 9:418–427 http://dx.doi.org/10.1016/S1473-3099(09)70132-X.
216. Stollerman GH, Dale JB. 2008. The importance of the group a Streptococcus capsule in the pathogenesis of human infections: a historical perspective. Clin Infect Dis 46:1038–1045 http://dx.doi.org/10.1086/529194. [PubMed]
217. Pozzi C, Olaniyi R, Liljeroos L, Galgani I, Rappuoli R, Bagnoli F. 2016. Vaccines for Staphylococcus aureus and target populations. Curr Top Microbiol Immunol 6:23–27.
218. Bagnoli F, Bertholet S, Grandi G. 2012. Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2:16 http://dx.doi.org/10.3389/fcimb.2012.00016. [PubMed]
219. Skurnik D, Kropec A, Roux D, Theilacker C, Huebner J, Pier GB. 2012. Natural antibodies in normal human serum inhibit Staphylococcus aureus capsular polysaccharide vaccine efficacy. Clin Infect Dis 55:1188–1197 http://dx.doi.org/10.1093/cid/cis624. [PubMed]
220. Fowler VG, Allen KB, Moreira ED, Moustafa M, Isgro F, Boucher HW, Corey GR, Carmeli Y, Betts R, Hartzel JS, Chan ISF, McNeely TB, Kartsonis NA, Guris D, Onorato MT, Smugar SS, DiNubile MJ, Sobanjo-ter Meulen A. 2013. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 309:1368–1378 http://dx.doi.org/10.1001/jama.2013.3010. [PubMed]
221. Alonzo F III, Kozhaya L, Rawlings SA, Reyes-Robles T, DuMont AL, Myszka DG, Landau NR, Unutmaz D, Torres VJ. 2013. CCR5 is a receptor for Staphylococcus aureus leukotoxin ED. Nature 493:51–55 http://dx.doi.org/10.1038/nature11724. [PubMed]
222. Hua L, Hilliard JJ, Shi Y, Tkaczyk C, Cheng LI, Yu X, Datta V, Ren S, Feng H, Zinsou R, Keller A, O’Day T, Du Q, Cheng L, Damschroder M, Robbie G, Suzich J, Stover CK, Sellman BR. 2014. Assessment of an anti-alpha-toxin monoclonal antibody for prevention and treatment of Staphylococcus aureus-induced pneumonia. Antimicrob Agents Chemother 58:1108–1117 http://dx.doi.org/10.1128/AAC.02190-13. [PubMed]
223. Sause WE, Buckley PT, Strohl WR, Lynch AS, Torres VJ. 2016. Antibody-based biologics and their promise to combat Staphylococcus aureus infections. Trends Pharmacol Sci 37:231–241 http://dx.doi.org/10.1016/j.tips.2015.11.008. [PubMed]
224. Hoekstra H, Romero Pastrana F, Bonarius HPJ, van Kessel KPM, Elsinga GS, Kooi N, Groen H, van Dijl JM, Buist G. 2017. A human monoclonal antibody that specifically binds and inhibits the staphylococcal complement inhibitor protein SCIN. Virulence 9:70–82. [PubMed]
225. François B, Barraud O, Jafri HS. 2017. Antibody-based therapy to combat Staphylococcus aureus infections. Clin Microbiol Infect 23:219–221 http://dx.doi.org/10.1016/j.cmi.2017.02.035. [PubMed]
226. Koymans KJ, Vrieling M, Gorham RD, van Strijp JAG. 2016. Staphylococcal immune evasion proteins: structure, function, and host adaptation. Curr Top Microbiol Immunol 6:23–27.
227. Du C, Xie X. 2012. G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 22:1108–1128 http://dx.doi.org/10.1038/cr.2012.87. [PubMed]
228. Ricklin D, Lambris JD. 2013. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190:3831–3838 http://dx.doi.org/10.4049/jimmunol.1203487. [PubMed]
229. Liu Y, Yin H, Zhao M, Lu Q. 2014. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol 47:136–147 http://dx.doi.org/10.1007/s12016-013-8402-y. [PubMed]
230. Summers BJ, Garcia BL, Woehl JL, Ramyar KX, Yao X, Geisbrecht BV. 2015. Identification of peptidic inhibitors of the alternative complement pathway based on Staphylococcus aureus SCIN proteins. Mol Immunol 67(2 Pt B) :193–205 http://dx.doi.org/10.1016/j.molimm.2015.05.012. [PubMed]
231. Boer JC, Domanska UM, Timmer-Bosscha H, Boer IGJ, de Haas CJC, Joseph JV, Kruyt FA, de Vries EG, den Dunnen WF, van Strijp JA, Walenkamp AM. 2013. Inhibition of formyl peptide receptor in high-grade astrocytoma by CHemotaxis Inhibitory Protein of S. aureus. Br J Cancer 108:587–596 http://dx.doi.org/10.1038/bjc.2012.603. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.GPP3-0061-2019
2019-03-29
2019-05-21

Abstract:

has become a serious threat to human health. In addition to having increased antibiotic resistance, the bacterium is a master at adapting to its host by evading almost every facet of the immune system, the so-called immune evasion proteins. Many of these immune evasion proteins target neutrophils, the most important immune cells in clearing infections. The neutrophil attacks pathogens via a plethora of strategies. Therefore, it is no surprise that has evolved numerous immune evasion strategies at almost every level imaginable. In this review we discuss step by step the aspects of neutrophil-mediated killing of , such as neutrophil activation, migration to the site of infection, bacterial opsonization, phagocytosis, and subsequent neutrophil-mediated killing. After each section we discuss how evasion molecules are able to resist the neutrophil attack of these different steps. To date, around 40 immune evasion molecules of are known, but its repertoire is still expanding due to the discovery of new evasion proteins and the addition of new functions to already identified evasion proteins. Interestingly, because the different parts of neutrophil attack are redundant, the evasion molecules display redundant functions as well. Knowing how and with which proteins is evading the immune system is important in understanding the pathophysiology of this pathogen. This knowledge is crucial for the development of therapeutic approaches that aim to clear staphylococcal infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Evading neutrophil extravasation to the infection site. Mechanisms by which evades the steps in neutrophil extravasation. Neutrophils start to roll on the activated endothelium, which leads to firm adhesion and subsequently to transmigration through the endothelium. Red boxes indicate staphylococcal proteins, and blue boxes indicate host proteins. Abbreviations: PSGL-1, P-selectin glycoprotein 1; SSL, staphylococcal superantigen-like protein; ICAM-1, intracellular adhesion molecule 1; Eap, extracellular adherence protein; SElX, staphylococcal enterotoxin-like X. The figure was adapted from Servier Medical Art.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic overview of how evades priming, chemotaxis, and activation of neutrophils. Red boxes indicate staphylococcal proteins, and proteins shown in blue indicate host proteins. Abbreviations: TLR, Toll-like receptor; CXCR, chemokine receptor; ScpA, staphopain A; SSL, staphylococcal superantigen-like protein; FPR, formyl peptide receptor; FLIPr, FPR2 inhibitory protein; C5aR, C5a receptor; CHIPS, chemotaxis inhibitory protein of ; MMP, matrix metalloproteinase. The figure was adapted from Servier Medical Art.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Diagram of the main pathways and components of the human complement system 3a and a schematic representation of evading opsonization and phagocytic uptake by neutrophil 3b. Red boxes indicate staphylococcal proteins, and blue boxes indicate host proteins. Abbreviations: IgG, immunoglobulin G; SpA, staphylococcal protein A; Sbi, staphylococcal binding of IgG; SCIN, staphylococcal complement inhibitor; SAK, staphylokinase; Aur, aureolysin; SSL, staphylococcal superantigen-like protein; Efb, extracellular fibrinogen-binding protein; Ecb, extracellular complement-binding protein. The figure was adapted from Servier Medical Art.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Overview of evasion proteins that are involved in evading neutrophil killing. Enlargement of the phagosome is shown on the right. Red boxes indicate staphylococcal proteins, and blue boxes indicate host proteins. Staphyloxanthin provides a protective shield, KatA neutralizes hydrogen peroxide (HO) into water (HO) and oxygen (O), and SPIN inhibits MPO activity. MprF and the Dlt operon lead to an increase in positive charge of the bacterial surface. Abbreviations: SOD, superoxide dismutase; SAK, staphylokinase; KatA, catalase; MPO, myeloperoxidase; SPIN, staphylococcal peroxidase inhibitor; Aur, aureolysin; Hmp, flavohemoglobin; Ldh, -lactate dehydrogenase; Eap, extracellular adherence protein; EapH, extracellular adherence protein homologue; PR3, proteinase 3; CG, cathepsin G; NE, neutrophil elastase. The figure was adapted from Servier Medical Art.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Evasion by staphylococcal toxins. Various leukocidins bind specific GPCRs, after which they form a pore and lyse host cells. PSMs are released inside the phagosome and can bind via FPR2. SAgs cross-link major histocompatibility complex class II and T-cell receptors. Abbreviations: GPCR, G-protein-coupled receptor; FPR, formyl protein receptor; PSMs, phenol-soluble modulins; Hla, hemolysin-alpha; SAgs, superantigens; MHC II, major histocompatibility complex II; TCR, T-cell receptor. The figure was adapted from Servier Medical Art.

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Abbreviations of staphylococcal immune evasion proteins, what they evade, and on which MGE or paralogous gene cluster they are located

Source: microbiolspec March 2019 vol. 7 no. 2 doi:10.1128/microbiolspec.GPP3-0061-2019

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error