1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Review

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    122.09 Kb
  • PDF
    319.05 Kb
  • XML
    110.66 Kb
  • Authors: Dae-Gon Ha1, George A. O'Toole2
  • Editors: Mahmoud Ghannoum3, Matthew Parsek4, Marvin Whiteley5, Pranab Mukherjee6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Microbiology and Immunonology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; 2: Departments of Microbiology and Immunonology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; 3: Case Western Reserve University, Cleveland, OH; 4: University of Washington, Seattle, WA; 5: University of Texas at Austin, Austin, TX; 6: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0003-2014
  • Received 12 September 2014 Accepted 19 November 2014 Published 03 April 2015
  • G. A. O'Toole, georgeo@dartmouth.edu
image of c-di-GMP and its Effects on Biofilm Formation and Dispersion: a <span class="jp-italic">Pseudomonas Aeruginosa</span> Review
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Review, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/2/MB-0003-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/2/MB-0003-2014-2.gif
  • Abstract:

    Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in , the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism . The majority of diguanylate cyclases and phosphodiesterases encoded in the genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn.

  • Citation: Ha D, O'Toole G. 2015. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Review. Microbiol Spectrum 3(2):MB-0003-2014. doi:10.1128/microbiolspec.MB-0003-2014.

Key Concept Ranking

Flagellar Motility
0.5501865
Type IV Pili
0.4715884
Twitching Motility
0.45417532
Swarming Motility
0.435258
0.5501865

References

1. Sutherland IW. 2001. The biofilm matrix: an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227. [PubMed][CrossRef]
2. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. 2006. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 72:5027–5036. [PubMed][CrossRef]
3. Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM. 2006. An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci USA 103:2833–2838. [PubMed][CrossRef]
4. Palmer KL, Aye LM, Whiteley M. 2007. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087. [PubMed][CrossRef]
5. Palmer KL, Mashburn LM, Singh PK, Whiteley M. 2005. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277. [PubMed][CrossRef]
6. Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, Morrison HG, Paster BJ, O'Toole GA. 2012. Prevalence of streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol 194:4709–4717. [PubMed][CrossRef]
7. Dubern JF, Diggle SP. 2008. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4:882–888. [PubMed][CrossRef]
8. Kirisits MJ, Parsek MR. 2006. Does Pseudomonas aeruginosa use intercellular signalling to build biofilm communities? Cell Microbiol 8:1841–1849. [PubMed][CrossRef]
9. Ng WL, Bassler BL. 2009. Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222. [PubMed][CrossRef]
10. Partridge JD, Harshey RM. 2013. Swarming: flexible roaming plans. J Bacteriol 195:909–918. [PubMed][CrossRef]
11. Kearns DB. 2010. A field guide to bacterial swarming motility. Nat Rev Microbiol 8:634–644. [PubMed][CrossRef]
12. Haussler S, Fuqua C. 2013. Biofilms 2012: new discoveries and significant wrinkles in a dynamic field. J Bacteriol 195:2947–2958. [PubMed][CrossRef]
13. Berleman JE, Kirby JR. 2009. Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 33:942–957. [PubMed][CrossRef]
14. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. [PubMed][CrossRef]
15. Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci USA 103:2839–2844. [PubMed][CrossRef]
16. Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM. 2009. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 11:1126–1136. [PubMed][CrossRef]
17. Galperin MY. 2004. Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6:552–567. [PubMed][CrossRef]
18. Galperin MY, Nikolskaya AN, Koonin EV. 2001. Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203:11–21. [PubMed][CrossRef]
19. An S, Wu J, Zhang LH. 2010. Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 76:8160–8173. [PubMed][CrossRef]
20. Roy AB, Petrova OE, Sauer K. 2012. The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion. J Bacteriol 194:2904–2915. [PubMed][CrossRef]
21. Alm RA, Bodero AJ, Free PD, Mattick JS. 1996. Identification of a novel gene, pilZ, essential for type 4 fimbrial biogenesis in Pseudomonas aeruginosa. J Bacteriol 178:46–53. [PubMed]
22. Byrd MS, Sadovskaya I, Vinogradov E, Lu H, Sprinkle AB, Richardson SH, Ma L, Ralston B, Parsek MR, Anderson EM, Lam JS, Wozniak DJ. 2009. Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Mol Microbiol 73:622–638. [PubMed][CrossRef]
23. Dow JM, Fouhy Y, Lucey JF, Ryan RP. 2006. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19:1378–1384. [PubMed][CrossRef]
24. Fang X, Gomelsky M. 2010. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76:1295–1305. [PubMed][CrossRef]
25. Huang B, Whitchurch CB, Mattick JS. 2003. FimX, a multidomain protein connecting environmental signals to twitching motility in Pseudomonas aeruginosa. J Bacteriol 185:7068–7076. [PubMed][CrossRef]
26. Hurley JH. 2003. GAF domains: cyclic nucleotides come full circle. Sci STKE 2003:PE1. [PubMed][CrossRef]
27. Jain R, Behrens AJ, Kaever V, Kazmierczak BI. 2012. Type IV pilus assembly in Pseudomonas aeruginosa over a broad range of cyclic di-GMP concentrations. J Bacteriol 194:4285–4294. [PubMed][CrossRef]
28. Kazmierczak BI, Lebron MB, Murray TS. 2006. Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa. Mol Microbiol 60:1026–1043. [PubMed][CrossRef]
29. Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7:263–273. [PubMed][CrossRef]
30. Caiazza NC, Merritt JH, Brothers KM, O'Toole GA. 2007. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:3603–3612. [PubMed][CrossRef]
31. O'Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304. [PubMed][CrossRef]
32. Toutain CM, Caizza NC, Zegans ME, O'Toole GA. 2007. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol 158:471–477. [PubMed][CrossRef]
33. Friedman L, Kolter R. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690. [PubMed][CrossRef]
34. Friedman L, Kolter R. 2004. Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186:4457–4465. [PubMed][CrossRef]
35. Liang Y, Hilal N, Langston P, Starov V. 2007. Interaction forces between colloidal particles in liquid: theory and experiment. Adv Colloid Interface Sci 134–135:151–166. [PubMed][CrossRef]
36. Dasgupta N, Ramphal R. 2001. Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 183:6636–6644. [PubMed][CrossRef]
37. Dasgupta N, Arora SK, Ramphal R. 2000. fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 182:357–364. [PubMed][CrossRef]
38. Hickman JW, Harwood CS. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69:376–389. [PubMed][CrossRef]
39. Baraquet C, Harwood CS. 2013. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci USA 110:18478–18483. [PubMed][CrossRef]
40. Ryjenkov DA, Simm R, Romling U, Gomelsky M. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281:30310–30314. [PubMed][CrossRef]
41. Zorraquino V, Garcia B, Latasa C, Echeverz M, Toledo-Arana A, Valle J, Lasa I, Solano C. 2013. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 195:417–428. [PubMed][CrossRef]
42. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–116. [PubMed][CrossRef]
43. Ko M, Park C. 2000. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol 303:371–382. [PubMed][CrossRef]
44. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell 38:128–139. [PubMed][CrossRef]
45. Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Gonzalez de Heredia E, Baena I, Martin-Martin I, Rivilla R, Martin M. 2014. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS One 9:e87608. doi:10.1371/journal.pone.0087608. [PubMed][CrossRef]
46. Ko J, Ryu KS, Kim H, Shin JS, Lee JO, Cheong C, Choi BS. 2010. Structure of PP4397 reveals the molecular basis for different c-di-GMP binding modes by PilZ domain proteins. J Mol Biol 398:97–110. [PubMed][CrossRef]
47. Zhao K, Tseng BS, Beckerman B, Jin F, Gibiansky ML, Harrison JJ, Luijten E, Parsek MR, Wong GC. 2013. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms. Nature 497:388–391. [PubMed][CrossRef]
48. Jin F, Conrad JC, Gibiansky ML, Wong GC. 2011. Bacteria use type-IV pili to slingshot on surfaces. Proc Natl Acad Sci USA 108:12617–12622. [PubMed][CrossRef]
49. Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GC. 2011. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J 100:1608–1616. [PubMed][CrossRef]
50. Gibiansky ML, Conrad JC, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GC. 2010. Bacteria use type IV pili to walk upright and detach from surfaces. Science 330:197. [PubMed][CrossRef]
51. Monds RD, O'Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87. [PubMed][CrossRef]
52. Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA. 2007. BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol 189:8165–8178. [PubMed][CrossRef]
53. Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. 2007. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 189:8154–8164. [PubMed][CrossRef]
54. Bradley DE. 1980. A function of Pseudomonas aeruginosa PAO polar pili: twitching motility. Can J Microbiol 26:146–154. [PubMed][CrossRef]
55. Mattick JS. 2002. Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314. [PubMed][CrossRef]
56. Navarro MV, De N, Bae N, Wang Q, Sondermann H. 2009. Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure 17:1104–1116. [PubMed][CrossRef]
57. Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S. 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 65:876–895. [PubMed][CrossRef]
58. Barken KB, Pamp SJ, Yang L, Gjermansen M, Bertrand JJ, Klausen M, Givskov M, Whitchurch CB, Engel JN, Tolker-Nielsen T. 2008. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol 10:2331–2343. [PubMed][CrossRef]
59. Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR. 2012. The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14:1913–1928. [PubMed][CrossRef]
60. Zegans ME, Wozniak D, Griffin E, Toutain-Kidd CM, Hammond JH, Garfoot A, Lam JS. 2012. Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 56:4112–4122. [PubMed][CrossRef]
61. Boyd CD, O'Toole GA. 2012. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu Rev Cell Dev Biol 28:439–462. [PubMed][CrossRef]
62. Overhage J, Schemionek M, Webb JS, Rehm BH. 2005. Expression of the psl operon in Pseudomonas aeruginosa PAO1 biofilms: PslA performs an essential function in biofilm formation. Appl Environ Microbiol 71:4407–4413. [PubMed][CrossRef]
63. Baraquet C, Murakami K, Parsek MR, Harwood CS. 2012. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40:7207–7218. [PubMed][CrossRef]
64. Whitney JC, Colvin KM, Marmont LS, Robinson H, Parsek MR, Howell PL. 2012. Structure of the cytoplasmic region of PelD, a degenerate diguanylate cyclase receptor that regulates exopolysaccharide production in Pseudomonas aeruginosa. J Biol Chem 287:23582–23593. [PubMed][CrossRef]
65. Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65:1474–1484. [PubMed][CrossRef]
66. Li Z, Chen JH, Hao Y, Nair SK. 2012. Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1. J Biol Chem 287:30191–30204. [PubMed][CrossRef]
67. Merritt JH, Ha DG, Cowles KN, Lu W, Morales DK, Rabinowitz J, Gitai Z, O'Toole GA. 2010. Specific control of Pseudomonas aeruginosa surface-associated behaviors by two c-di-GMP diguanylate cyclases. MBio 1:e00183-10. doi:10.1128/mBio.00183-10. [PubMed][CrossRef]
68. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:1295–1297. [PubMed][CrossRef]
69. Choy WK, Zhou L, Syn CK, Zhang LH, Swarup S. 2004. MorA defines a new class of regulators affecting flagellar development and biofilm formation in diverse Pseudomonas species. J Bacteriol 186:7221–7228. [PubMed][CrossRef]
70. Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Romling U, Haussler S. 2007. Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9:2475–2485. [PubMed][CrossRef]
71. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487. [PubMed][CrossRef]
72. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59:1114–1128. [PubMed][CrossRef]
73. Kuchma SL, Ballok AE, Merritt JH, Hammond JH, Lu W, Rabinowitz JD, O'Toole GA. 2010. Cyclic-di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa: the pilY1 gene and its impact on surface-associated behaviors. J Bacteriol 192:2950–2964. [PubMed][CrossRef]
74. Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O'Toole GA, Parsek MR. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 100:7907–7912. [PubMed][CrossRef]
75. Davies DG, Geesey GG. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61:860–867. [PubMed]
76. Hay ID, Remminghorst U, Rehm BH. 2009. MucR, a novel membrane-associated regulator of alginate biosynthesis in Pseudomonas aeruginosa. Appl Environ Microbiol 75:1110–1120. [PubMed][CrossRef]
77. Oglesby LL, Jain S, Ohman DE. 2008. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology 154:1605–1615. [PubMed][CrossRef]
78. Hickman JW, Tifrea DF, Harwood CS. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102:14422–14427. [PubMed][CrossRef]
79. Huangyutitham V, Guvener ZT, Harwood CS. 2013. Subcellular clustering of the phosphorylated WspR response regulator protein stimulates its diguanylate cyclase activity. MBio 4:e00242-00213. doi:10.1128/mBio.00242-13. [PubMed][CrossRef]
80. Guvener ZT, Harwood CS. 2007. Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces. Mol Microbiol 66:1459–1473. [PubMed][CrossRef]
81. Irie Y, Borlee BR, O'Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR. 2012. Self-produced exopolysaccharide is a signal that stimulates biofilm formation in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 109:20632–20636. [PubMed][CrossRef]
82. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842. [PubMed][CrossRef]
83. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354. doi:10.1371/journal.ppat.1000354. [PubMed][CrossRef]
84. Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-Meyer K, Stewart PS. 2007. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233. [PubMed][CrossRef]
85. Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS. 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196. [PubMed][CrossRef]
86. Davey ME, Caiazza NC, O'Toole GA. 2003. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036. [PubMed][CrossRef]
87. Yoon SS, Hennigan RF, Hilliard GM, Ochsner UA, Parvatiyar K, Kamani MC, Allen HL, DeKievit TR, Gardner PR, Schwab U, Rowe JJ, Iglewski BH, McDermott TR, Mason RP, Wozniak DJ, Hancock RE, Parsek MR, Noah TL, Boucher RC, Hassett DJ. 2002. Pseudomonas aeruginosa anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. Dev Cell 3:593–603. [PubMed][CrossRef]
88. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592. [PubMed][CrossRef]
89. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353. [PubMed][CrossRef]
90. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342. [PubMed][CrossRef]
91. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P. 2004. Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326. [PubMed][CrossRef]
92. Li Y, Xia H, Bai F, Xu H, Yang L, Yao H, Zhang L, Zhang X, Bai Y, Saris PE, Tolker-Nielsen T, Qiao M. 2007. Identification of a new gene PA5017 involved in flagella-mediated motility, chemotaxis and biofilm formation in Pseudomonas aeruginosa. FEMS Microbiol Lett 272:188–195. [PubMed][CrossRef]
93. Morgan R, Kohn S, Hwang SH, Hassett DJ, Sauer K. 2006. BdlA, a chemotaxis regulator essential for biofilm dispersion in Pseudomonas aeruginosa. J Bacteriol 188:7335–7343. [PubMed][CrossRef]
94. Petrova OE, Sauer K. 2012. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci USA 109:16690–16695. [PubMed][CrossRef]
95. Ross P, Aloni Y, Weinhouse H, Michaeli D, Weinbergerohana P, Mayer R, Benziman M. 1986. Control of cellulose synthesis in Acetobacter xylinum: a unique guanyl oligonucleotide is the immediate activator of the cellulose synthase. Carbohyd Res 149:101–117. [CrossRef]
96. Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, Benziman M. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281. [PubMed][CrossRef]
97. Ghannoum MA, O'Toole GA. 2004. Microbial Biofilms. ASM Press, Washington, DC.
microbiolspec.MB-0003-2014.citations
cm/3/2
content/journal/microbiolspec/10.1128/microbiolspec.MB-0003-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MB-0003-2014
2015-04-03
2017-10-20

Abstract:

Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in , the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism . The majority of diguanylate cyclases and phosphodiesterases encoded in the genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/2/MB-0003-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MB-0003-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

c-di-GMP: A central regulator of biofilms. The structure of c-di-GMP is shown (center). This molecule is synthesized from two molecules of GTP by enzymes known as diguanylate cyclases (DGCs), which carry a conserved GGDEF domain. c-di-GMP can be degraded by two families of phosphodiesterases (PDEs); those with an EAL domain linearize the molecule to produce pGpG, and proteins with an HD-GYP domain generate two molecules of GMP from the signal. Illustration ©2014 William Scavone, Kestrel Studio, reprinted with permission. doi:10.1128/microbiolspec.MB-0003-2014.f1

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

A model for biofilm formation and dispersion in . The steps of biofilm formation, as described in this article are (1) reversible attachment, likely via the flagellar pole, (2) irreversible attachment via the long axis of the cell, resulting in a monolayer of cells, (3) microcolony formation, (4) macrocolony formation, and (5) dispersion. See the text for more detailed explanations of each step, which are based largely on laboratory studies. Illustration ©2014 William Scavone, Kestrel Studio, reprinted with permission. doi:10.1128/microbiolspec.MB-0003-2014.f2

Source: microbiolspec April 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MB-0003-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error