1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Biofilm Formation by

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    72.63 Kb
  • PDF
    508.88 Kb
  • HTML
    86.09 Kb
  • Authors: Luis R. Martinez1, Arturo Casadevall2
  • Editors: Mahmoud Ghannoum3, Matthew Parsek4, Marvin Whiteley5, Pranab Mukherjee6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: New York Institute of Technology, College of Osteopathic Medicine, Department of Biomedical Sciences, Old Westbury, NY 11568; 2: Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205; 3: Case Western Reserve University, Cleveland, OH; 4: University of Washington, Seattle, WA; 5: University of Texas at Austin, Austin, TX; 6: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0006-2014
  • Received 06 August 2014 Accepted 04 September 2014 Published 05 June 2015
  • Arturo Casadevall, arturo.casadevall@einstein.yu.edu
image of Biofilm Formation by <span class="jp-italic">Cryptococcus neoformans</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Biofilm Formation by , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/MB-0006-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/3/MB-0006-2014-2.gif
  • Abstract:

    The fungus possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into biology.

  • Citation: Martinez L, Casadevall A. 2015. Biofilm Formation by . Microbiol Spectrum 3(3):MB-0006-2014. doi:10.1128/microbiolspec.MB-0006-2014.

Key Concept Ranking

Fungal Pathogenesis
0.6752703
Immune Systems
0.6195103
Infectious Diseases
0.60655785
Chemicals
0.5605802
Microbial Biofilms
0.5314684
Scanning Electron Microscopy
0.48099795
0.6752703

References

1. Jabra-Rizk MA, Falkler WA, Meiller TF. 2004. Fungal biofilms and drug resistance. Emerg Infect Dis 10:14–19. [PubMed][CrossRef]
2. Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. [PubMed][CrossRef]
3. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol 49:711–745. [PubMed][CrossRef]
4. Martinez LR, Casadevall A. 2006. Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 74:6118–6123. [PubMed][CrossRef]
5. Martinez LR, Casadevall A. 2006. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033. [PubMed][CrossRef]
6. Mowat E, Butcher J, Lang S, Williams C, Ramage G. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol 56:1205–1212. [PubMed][CrossRef]
7. Kuhn DM, Ghannoum MA. 2004. Candida biofilms: antifungal resistance and emerging therapeutic options. Curr Opin Investig Drugs 5:186–197. [PubMed]
8. Rasmussen TB, Givskov M. 2006. Quorum-sensing inhibitors as anti-pathogenic drugs. Int J Med Microbiol 296:149–161. [PubMed][CrossRef]
9. Vecchiarelli A. 2000. Immunoregulation by capsular components of Cryptococcus neoformans. Med Mycol 38:407–417. [PubMed][CrossRef]
10. Walsh TJ, Schlegel R, Moody MM, Costerton JW, Salcman M. 1986. Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery 18:373–375. [PubMed][CrossRef]
11. Bach MC, Tally PW, Godofsky EW. 1997. Use of cerebrospinal fluid shunts in patients having acquired immunodeficiency syndrome with cryptococcal meningitis and uncontrollable intracranial hypertension. Neurosurgery 41:1280–1283. [PubMed][CrossRef]
12. Braun DK, Janssen DA, Marcus JR, Kauffman CA. 1994. Cryptococcal infection of a prosthetic dialysis fistula. Am J Kidney Dis 24:864–867. [PubMed][CrossRef]
13. Banerjee U, Gupta K, Venugopal P. 1997. A case of prosthetic valve endocarditis caused by Cryptococcus neoformans var. neoformans. J Med Vet Mycol 35:139–141. [PubMed][CrossRef]
14. Martinez LR, Casadevall A. 2005. Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73:6350–6362. [PubMed][CrossRef]
15. Mittelman MW. 1996. Adhesion to Biomaterials. Wiley-Liss, New York, NY.
16. Martinez LR, Casadevall A. 2007. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601. [PubMed][CrossRef]
17. Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, Friedman AJ, Friedman JM, Nosanchuk JD. 2010. The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 31:669–679. [PubMed][CrossRef]
18. de Beer D, Stoodley P, Lewandowski Z. 1994. Liquid flow in heterogeneous biofilms. Biotechnol Bioeng 44:636–641. [PubMed][CrossRef]
19. Joubert LM, Wolfaardt GM, Botha A. 2006. Microbial exopolymers link predator and prey in a model yeast biofilm system. Microb Ecol 52:187–197. [PubMed][CrossRef]
20. Steenbergen JN, Shuman HA, Casadevall A. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98:15245–15250. [PubMed][CrossRef]
21. Alvarez M, Casadevall A. 2006. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16:2161–2165. [PubMed][CrossRef]
22. Alvarez M, Saylor C, Casadevall A. 2008. Antibody action after phagocytosis promotes Cryptococcus neoformans and Cryptococcus gattii macrophage exocytosis with biofilm-like microcolony formation. Cell Microbiol 10:1622–1633. [PubMed][CrossRef]
23. Albuquerque P, Nicola AM, Nieves E, Paes HC, Williamson PR, Silva-Pereira I, Casadevall A. 2013. Quorum sensing-mediated, cell density-dependent regulation of growth and virulence in Cryptococcus neoformans. MBio 5:e00986-00913. doi:10.1128/mBio.00986-13. [PubMed][CrossRef]
24. Wang L, Tian X, Gyawali R, Lin X. 2013. Fungal adhesion protein guides community behaviors and autoinduction in a paracrine manner. Proc Natl Acad Sci USA 110:11571–11576. [PubMed][CrossRef]
25. Froeliger EH, Fives-Taylor P. 2001. Streptococcus parasanguis fimbria-associated adhesin fap1 is required for biofilm formation. Infect Immun 69:2512–2519. [PubMed][CrossRef]
26. Gavin R, Rabaan AA, Merino S, Tomas JM, Gryllos I, Shaw JG. 2002. Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 43:383–397. [PubMed][CrossRef]
27. Cherniak R, Sundstrom JB. 1994. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun 62:1507–1512. [PubMed]
28. Goldman DL, Lee SC, Casadevall A. 1995. Tissue localization of Cryptococcus neoformans glucuronoxylomannan in the presence and absence of specific antibody. Infect Immun 63:3448–3453. [PubMed]
29. Martinez LR, Moussai D, Casadevall A. 2004. Antibody to Cryptococcus neoformans glucuronoxylomannan inhibits the release of capsular antigen. Infect Immun 72:3674–3679. [PubMed][CrossRef]
30. MacGill TC, MacGill RS, Casadevall A, Kozel TR. 2000. Biological correlates of capsular (quellung) reactions of Cryptococcus neoformans. J Immunol 164:4835–4842. [PubMed][CrossRef]
31. McClelland EE, Nicola AM, Prados-Rosales R, Casadevall A. 2010. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J Clin Invest 120:1355–1361. [PubMed][CrossRef]
32. Theraud M, Bedouin Y, Guiguen C, Gangneux JP. 2004. Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. J Med Microbiol 53:1013–1018. [PubMed][CrossRef]
33. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. 2001. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 80:903–908. [PubMed][CrossRef]
34. Ajesh K, Sudarslal S, Arunan C, Sreejith K. 2013. Kannurin, a novel lipopeptide from Bacillus cereus strain AK1: isolation, structural evaluation and antifungal activities. J Appl Microbiol 115:1287–1296. [PubMed][CrossRef]
35. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555. [PubMed][CrossRef]
36. Mukherjee J, Zuckier LS, Scharff MD, Casadevall A. 1994. Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother 38:580–587. [PubMed][CrossRef]
37. Dromer F, Charreire J. 1991. Improved amphotericin B activity by a monoclonal anti-Cryptococcus neoformans antibody: study during murine cryptococcosis and mechanisms of action. J Infect Dis 163:1114–1120. [PubMed][CrossRef]
38. Nooney L, Matthews RC, Burnie JP. 2005. Evaluation of Mycograb, amphotericin B, caspofungin, and fluconazole in combination against Cryptococcus neoformans by checkerboard and time-kill methodologies. Diagn Microbiol Infect Dis 51:19–29. [PubMed][CrossRef]
39. Martinez LR, Christaki E, Casadevall A. 2006. Specific antibody to Cryptococcus neoformans glucurunoxylomannan antagonizes antifungal drug action against cryptococcal biofilms in vitro. J Infect Dis 194:261–266. [PubMed][CrossRef]
40. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, Singh PK, Chopp DL, Packman AI, Parsek MR. 2013. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ Microbiol 15:2865–2878. [PubMed]
41. Resch A, Rosenstein R, Nerz C, Gotz F. 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676. [PubMed][CrossRef]
42. Martinez LR, Ibom DC, Casadevall A, Fries BC. 2008. Characterization of phenotypic switching in Cryptococcus neoformans biofilms. Mycopathologia 166:175–180. [PubMed][CrossRef]
43. Santi L, Beys-da-Silva WO, Berger M, Calzolari D, Guimaraes JA, Moresco JJ, Yates JR, 3rd. 2014. Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J Proteome Res 13:1545–1559. [PubMed][CrossRef]
44. Pettit RK, Repp KK, Hazen KC. 2010. Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol 48:421–426. [PubMed][CrossRef]
45. LaFleur MD, Kumamoto CA, Lewis K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846. [PubMed][CrossRef]
46. Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. 2005. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175. [PubMed][CrossRef]
47. Martinez LR, Bryan RA, Apostolidis C, Morgenstern A, Casadevall A, Dadachova E. 2006. Antibody-guided alpha radiation effectively damages fungal biofilms. Antimicrob Agents Chemother 50:2132–2136. [PubMed][CrossRef]
48. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465. [PubMed][CrossRef]
49. Miyake Y, Tsunoda T, Minagi S, Akagawa Y, Tsuru H, Suginaka H. 1990. Antifungal drugs affect adherence of Candida albicans to acrylic surfaces by changing the zeta-potential of fungal cells. FEMS Microbiol Lett 57:211–214. [PubMed][CrossRef]
50. Savard T, Beaulieu C, Boucher I, Champagne CP. 2002. Antimicrobial action of hydrolyzed chitosan against spoilage yeasts and lactic acid bacteria of fermented vegetables. J Food Prot 65:828–833. [PubMed]
51. Sudarshan NR, Hoover DG, Knorr D. 1992. Antibacterial action of chitosan. Food Biotechnol 6:257–272. [CrossRef]
52. Jung B, Kim C, Choi K, Lee YM, Kim J. 1999. Preparation of amphiphilic chitosan and their antimicrobial activities. J App Polym Sci 72:1713–1719. [CrossRef]
53. de Aguiar Cordeiro R, Mourao CI, Rocha MF, de Farias Marques FJ, Teixeira CE, de Oliveira Miranda DF, Neto LV, Brilhante RS, de Jesus Pinheiro Gomes Bandeira T, Sidrim JJ. 2013. Antifolates inhibit Cryptococcus biofilms and enhance susceptibility of planktonic cells to amphotericin B. Eur J Clin Microbiol Infect Dis 32:557–564. [PubMed][CrossRef]
54. Robertson EJ, Wolf JM, Casadevall A. 2012. EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl Environ Microbiol 78:7977–7984. [PubMed][CrossRef]
55. Sekhavat A, Sun JM, Davie JR. 2007. Competitive inhibition of histone deacetylase activity by trichostatin A and butyrate. Biochem Cell Biol 85:751–758. [PubMed][CrossRef]
56. Nguyen LN, Lopes LC, Cordero RJ, Nosanchuk JD. 2011. Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. J Antimicrob Chemother 66:2573–2580. [PubMed][CrossRef]
57. Moranova Z, Kawamoto S, Raclavsky V. 2009. Hypoxia sensing in Cryptococcus neoformans: biofilm-like adaptation for dormancy? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 153:189–193. [PubMed][CrossRef]
58. Patel D, Desai GM, Frases S, Cordero RJ, DeLeon-Rodriguez CM, Eugenin EA, Nosanchuk JD, Martinez LR. 2013. Methamphetamine enhances Cryptococcus neoformans pulmonary infection and dissemination to the brain. MBio 4. doi:10.1128/mBio.00400-13. [PubMed][CrossRef]
59. Lei G, Chen M, Li H, Niu JL, Wu S, Mao L, Lu A, Wang H, Chen W, Xu B, Leng Q, Xu C, Yang G, An L, Zhu LP, Meng G. 2013. Biofilm from a clinical strain of Cryptococcus neoformans activates the NLRP3 inflammasome. Cell Res 23:965–968. [PubMed][CrossRef]
microbiolspec.MB-0006-2014.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.MB-0006-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MB-0006-2014
2015-06-05
2017-09-23

Abstract:

The fungus possesses a polysaccharide capsule and can form biofilms on medical devices. The increasing use of ventriculoperitoneal shunts to manage intracranial hypertension associated with cryptococcal meningoencephalitis highlights the importance of investigating the biofilm-forming properties of this organism. Like other microbe-forming biofilms, biofilms are resistant to antimicrobial agents and host defense mechanisms, causing significant morbidity and mortality. This chapter discusses the recent advances in the understanding of cryptococcal biofilms, including the role of its polysaccharide capsule in adherence, gene expression, and quorum sensing in biofilm formation. We describe novel strategies for the prevention or eradication of cryptococcal colonization of medical prosthetic devices. Finally, we provide fresh thoughts on the diverse but interesting directions of research in this field that may result in new insights into biology.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/MB-0006-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MB-0006-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Images of a mature biofilm grown on polystyrene plates reveal a highly organized architecture. (A) Scanning electron microscopy image of a biofilm shows fungal cells (white arrow) surrounded by large amounts of EPM. Scale bar: 10 μm. This scanning electron microscopy image was originally published elsewhere ( 17 ). (B) Confocal microscopy image of a cryptococcal biofilm demonstrates a complex structure with internal regions of metabolically active cells interwoven with extracellular polysaccharide material. The thickness of a mature biofilm is approximately 55 μm. This confocal microscopy image was originally published elsewhere ( 14 ). doi:10.1128/microbiolspec.MB-0006-2014.f1

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Model of antibody-mediated inhibition of biofilm formation. In the absence of mAb, cells release capsular polysaccharide which is involved in attachment to the plastic surface. In the presence of a mAb specific to polysaccharide capsule, the immunoglobulin prevents capsular polysaccharide release, which blocks the adhesion of the yeast cells to the surface. Light microscopic images of spots formed by during ELISA spot assay. Images were obtained after 2 h of incubation of fungal cells in the absence and presence of GXM-binding mAb in a polystyrene microtiter plates. Scale bar: 50 μm. The model and light microscopy images in this figure were originally published elsewhere ( 14 ). doi:10.1128/microbiolspec.MB-0006-2014.f2

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Light microscopy images of the EPM of a mature biofilm stained with GXM-specific mAb. Images of a mature biofilm show that capsular-binding mAb binds and darkly stains shed capsular polysaccharide. (A) Picture was taken using a 10× power field. Scale bar: 50 μm. (B) Picture was taken using a 40× power field. Scale bar: 10 μm. Black and white arrows denote yeast cells and EPM, respectively. These light microscopy images were originally published elsewhere ( 16 ). doi:10.1128/microbiolspec.MB-0006-2014.f3

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Schematic of radioimmunotherapy of a biofilm with an antibody labeled with alpha-emitting radionuclide. The “direct hit” effect is the killing of a cell by radiation emanating from a radiolabeled antibody molecule bound to this cell. “Cross-fire” is the killing of a cell by radiation emanating from a radiolabeled antibody bound to an adjacent or a distant cell. “Bystander” denotes the death of an unirradiated cell through the signaling from irradiated cells. doi:10.1128/microbiolspec.MB-0006-2014.f4

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0006-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error