1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Fungal Biofilms: Models for Discovery of Anti-Biofilm Drugs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    116.59 Kb
  • HTML
    126.32 Kb
  • PDF
    540.67 Kb
  • Authors: Jeniel E. Nett1, David R. Andes2
  • Editors: Mahmoud Ghannoum3, Matthew Parsek4, Marvin Whiteley5, Pranab Mukherjee6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706; 2: Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin, Madison WI 53706; 3: Case Western Reserve University, Cleveland, OH; 4: University of Washington, Seattle, WA; 5: University of Texas at Austin, Austin, TX; 6: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
  • Received 22 August 2013 Accepted 17 September 2014 Published 26 June 2015
  • David R. Andes, dra@medicine.wisc.edu
image of Fungal Biofilms: <span class="jp-italic">In Vivo</span> Models for Discovery of Anti-Biofilm Drugs
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Fungal Biofilms: Models for Discovery of Anti-Biofilm Drugs, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/MB-0008-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/3/MB-0008-2014-2.gif
  • Abstract:

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is . Animal models have been developed to simulate common device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  • Citation: Nett J, R. Andes D. 2015. Fungal Biofilms: Models for Discovery of Anti-Biofilm Drugs. Microbiol Spectrum 3(3):MB-0008-2014. doi:10.1128/microbiolspec.MB-0008-2014.

Key Concept Ranking

Catheter-associated urinary tract Infection
0.40369347
0.40369347

References

1. Donlan RM. 2001. Biofilms and device-associated infections. Emerg Infect Dis 7:277–281. [PubMed][CrossRef]
2. Hoyle BD, Jass J, Costerton JW. 1990. The biofilm glycocalyx as a resistance factor. J Antimicrob Chemother 26:1–5. [PubMed][CrossRef]
3. Hawser SP, Baillie GS, Douglas LJ. 1998. Production of extracellular matrix by Candida albicans biofilms. J Med Microbiol 47:253–256. [PubMed][CrossRef]
4. Douglas LJ. 2002. Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19:139–143. [PubMed]
5. Donlan RM. 2001. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–1392. [PubMed][CrossRef]
6. Ramage G, Rajendran R, Sherry L, Williams C. 2012. Fungal biofilm resistance. Int J Microbiol 2012:528521. [PubMed][CrossRef]
7. Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, Kauffmann-Lacroix C, Latge JP, Beauvais A. 2010. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12:405–410. [PubMed][CrossRef]
8. Seidler MJ, Salvenmoser S, Muller FM. 2008. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136. [PubMed][CrossRef]
9. Davis LE, Cook G, Costerton JW. 2002. Biofilm on ventriculo-peritoneal shunt tubing as a cause of treatment failure in coccidioidal meningitis. Emerg Infect Dis 8:376–379. [PubMed][CrossRef]
10. Singh R, Shivaprakash MR, Chakrabarti A. 2011. Biofilm formation by zygomycetes: quantification, structure and matrix composition. Microbiology 157:2611–2618. [PubMed][CrossRef]
11. D’Antonio D, Parruti G, Pontieri E, Di Bonaventura G, Manzoli L, Sferra R, Vetuschi A, Piccolomini R, Romano F, Staniscia T. 2004. Slime production by clinical isolates of Blastoschizomyces capitatus from patients with hematological malignancies and catheter-related fungemia. Eur J Clin Microbiol Infect Dis 23:787–789. [PubMed][CrossRef]
12. Reynolds TB, Fink GR. 2001. Bakers’ yeast, a model for fungal biofilm formation. Science 291:878–881. [PubMed][CrossRef]
13. Cannizzo FT, Eraso E, Ezkurra PA, Villar-Vidal M, Bollo E, Castella G, Cabanes FJ, Vidotto V, Quindos G. 2007. Biofilm development by clinical isolates of Malassezia pachydermatis. Med Mycol 45:357–361. [PubMed][CrossRef]
14. Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R. 2006. Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50:3269–3276. [PubMed][CrossRef]
15. Walsh TJ, Schlegel R, Moody MM, Costerton JW, Salcman M. 1986. Ventriculoatrial shunt infection due to Cryptococcus neoformans: an ultrastructural and quantitative microbiological study. Neurosurgery 18:373–375. [PubMed][CrossRef]
16. Dyavaiah M, Ramani R, Chu DS, Ritterband DC, Shah MK, Samsonoff WA, Chaturvedi S, Chaturvedi V. 2007. Molecular characterization, biofilm analysis and experimental biofouling study of Fusarium isolates from recent cases of fungal keratitis in New York State. BMC Ophthalmol 7:1. [PubMed][CrossRef]
17. Passerini L, Lam K, Costerton JW, King EG. 1992. Biofilms on indwelling vascular catheters. Crit Care Med 20:665–673. [PubMed][CrossRef]
18. Kojic EM, Darouiche RO. 2004. Candida infections of medical devices. Clin Microbiol Rev 17:255–267. [CrossRef]
19. Groeger JS, Lucas AB, Thaler HT, Friedlander-Klar H, Brown AE, Kiehn TE, Armstrong D. 1993. Infectious morbidity associated with long-term use of venous access devices in patients with cancer. Ann Intern Med 119:1168–1174. [PubMed][CrossRef]
20. Richards MJ, Edwards JR, Culver DH, Gaynes RP. 1999. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit Care Med 27:887–892. [PubMed][CrossRef]
21. Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, Wenzel RP. 1999. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29:239–244. [PubMed][CrossRef]
22. Pfaller MA, Diekema DJ. 2007. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163. [PubMed][CrossRef]
23. Shin JH, Kee SJ, Shin MG, Kim SH, Shin DH, Lee SK, Suh SP, Ryang DW. 2002. Biofilm production by isolates of Candida species recovered from nonneutropenic patients: comparison of bloodstream isolates with isolates from other sources. J Clin Microbiol 40:1244–1248. [PubMed][CrossRef]
24. Foxman B, Muraglia R, Dietz JP, Sobel JD, Wagner J. 2013. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an Internet panel survey. J Low Genit Tract Dis 17:340–345. [PubMed][CrossRef]
25. Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. 2009. Characterization of mucosal Candida albicans biofilms. PLoS One 4:e7967. doi:10.1371/journal.pone.0007967. [PubMed][CrossRef]
26. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Jr, Noverr MC. 2010. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 156:3635–3644. [PubMed][CrossRef]
27. Dongari-Bagtzoglou A. 2008. Mucosal biofilms: challenges and future directions. Expert Rev Anti Infect Ther 6:141–144. [PubMed][CrossRef]
28. Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C. 2011. Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol Lett 324:89–97. [PubMed][CrossRef]
29. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394. [PubMed][CrossRef]
30. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828. doi:10.1371/journal.ppat.1000828.
31. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. 2004. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72:6023–6031. [PubMed][CrossRef]
32. Nett JE, Marchillo K, Spiegel CA, Andes DR. 2010. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun 78:3650–3659. [PubMed][CrossRef]
33. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prevost MC, Latge JP. 2007. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600. [PubMed][CrossRef]
34. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Jr, Calandra TF, Edwards JE, Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD. 2009. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535. [PubMed][CrossRef]
35. Hawser SP, Douglas LJ. 1994. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921. [PubMed]
36. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310. [PubMed][CrossRef]
37. O’Toole GA. 2003. To build a biofilm. J Bacteriol 185:2687–2689. [PubMed][CrossRef]
38. Baillie GS, Douglas LJ. 1998. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 42:1900–1905. [PubMed]
39. Lewis RE, Kontoyiannis DP, Darouiche RO, Raad, II, Prince RA. 2002. Antifungal activity of amphotericin B, fluconazole, and voriconazole in an in vitro model of Candida catheter-related bloodstream infection. Antimicrob Agents Chemother 46:3499–3505. [PubMed][CrossRef]
40. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71:4333–4340. [PubMed][CrossRef]
41. Ramage G, VandeWalle K, Bachmann SP, Wickes BL, Lopez-Ribot JL. 2002. In vitro pharmacodynamic properties of three antifungal agents against preformed Candida albicans biofilms determined by time-kill studies. Antimicrob Agents Chemother 46:3634–3636. [PubMed][CrossRef]
42. Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. 2002. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother 46:1773–1780. [PubMed][CrossRef]
43. Ramage G, Bachmann S, Patterson TF, Wickes BL, Lopez-Ribot JL. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49:973–980. [PubMed][CrossRef]
44. Kumamoto CA. 2005. A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci USA 102:5576–5581. [PubMed][CrossRef]
45. Khot PD, Suci PA, Miller RL, Nelson RD, Tyler BJ. 2006. A small subpopulation of blastospores in Candida albicans biofilms exhibit resistance to amphotericin B associated with differential regulation of ergosterol and beta-1,6-glucan pathway genes. Antimicrob Agents Chemother 50:3708–3716. [PubMed][CrossRef]
46. LaFleur MD, Kumamoto CA, Lewis K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846. [PubMed][CrossRef]
47. Perumal P, Mekala S, Chaffin WL. 2007. Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 51:2454–2463. [PubMed][CrossRef]
48. Uppuluri P, Nett J, Heitman J, Andes D. 2008. Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132. [PubMed][CrossRef]
49. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257. doi:10.1371/journal.ppat.1002257. [PubMed]
50. Mukherjee PK, Zhou G, Munyon R, Ghannoum MA. 2005. Candida biofilm: a well-designed protected environment. Med Mycol 43:191–208. [PubMed][CrossRef]
51. Martinez LR, Casadevall A. 2006. Susceptibility of Cryptococcus neoformans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 50:1021–1033. [PubMed][CrossRef]
52. Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. 2008. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother 62:1281–1284. [PubMed][CrossRef]
53. Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. 2013. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12:420–429. [PubMed][CrossRef]
54. Bugli F, Posteraro B, Papi M, Torelli R, Maiorana A, Paroni Sterbini F, Posteraro P, Sanguinetti M, De Spirito M. 2013. In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrob Agents Chemother 57:1275–1282. [PubMed][CrossRef]
55. Katragkou A, Chatzimoschou A, Simitsopoulou M, Georgiadou E, Roilides E. 2011. Additive antifungal activity of anidulafungin and human neutrophils against Candida parapsilosis biofilms. J Antimicrob Chemother 66:588–591. [PubMed][CrossRef]
56. Katragkou A, Simitsopoulou M, Chatzimoschou A, Georgiadou E, Walsh TJ, Roilides E. 2011. Effects of interferon-gamma and granulocyte colony-stimulating factor on antifungal activity of human polymorphonuclear neutrophils against Candida albicans grown as biofilms or planktonic cells. Cytokine 55:330–334. [PubMed][CrossRef]
57. Katragkou A, Kruhlak MJ, Simitsopoulou M, Chatzimoschou A, Taparkou A, Cotten CJ, Paliogianni F, Diza-Mataftsi E, Tsantali C, Walsh TJ, Roilides E. 2010. Interactions between human phagocytes and Candida albicans biofilms alone and in combination with antifungal agents. J Infect Dis 201:1941–1949. [PubMed][CrossRef]
58. Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, Dongari-Bagtzoglou A. 2012. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis 206:1936–1945. [PubMed][CrossRef]
59. Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA. 2007. Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 75:2612–2620. [PubMed][CrossRef]
60. Andes DR, Safdar N, Baddley JW, Playford G, Reboli AC, Rex JH, Sobel JD, Pappas PG, Kullberg BJ. 2012. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis 54:1110–1122. [PubMed][CrossRef]
61. Martinez LR, Casadevall A. 2006. Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 74:6118–6123. [PubMed][CrossRef]
62. Al-Fattani MA, Douglas LJ. 2004. Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48:3291–3297. [PubMed][CrossRef]
63. Al-Fattani MA, Douglas LJ. 2006. Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008. [PubMed][CrossRef]
64. Uppuluri P, Chaturvedi AK, Lopez-Ribot JL. 2009. Design of a simple model of Candida albicans biofilms formed under conditions of flow: development, architecture, and drug resistance. Mycopathologia 168:101–109. [PubMed][CrossRef]
65. Martinez LR, Casadevall A. 2007. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73:4592–4601. [PubMed][CrossRef]
66. Nobile CJ, Mitchell AP. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr Biol 15:1150–1155. [PubMed][CrossRef]
67. Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51:510–520. [PubMed][CrossRef]
68. Francois P, Schrenzel J, Stoerman-Chopard C, Favre H, Herrmann M, Foster TJ, Lew DP, Vaudaux P. 2000. Identification of plasma proteins adsorbed on hemodialysis tubing that promote Staphylococcus aureus adhesion. J Lab Clin Med 135:32–42. [PubMed][CrossRef]
69. Proctor RA. 2000. Toward an understanding of biomaterial infections: a complex interplay between the host and bacteria. J Lab Clin Med 135:14–15. [PubMed][CrossRef]
70. Jenney CR, Anderson JM. 2000. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res 49:435–447. [PubMed][CrossRef]
71. Brash JL, Ten Hove P. 1993. Protein adsorption studies on ‘standard’ polymeric materials. J Biomater Sci Polym Ed 4:591–599. [PubMed][CrossRef]
72. Yanagisawa N, Li DQ, Ljungh A. 2004. Protein adsorption on ex vivo catheters and polymers exposed to peritoneal dialysis effluent. Perit Dial Int 24:264–273. [PubMed]
73. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. 2004. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol 49:789–798. [PubMed][CrossRef]
74. Ronsani MM, Mores Rymovicz AU, Meira TM, Trindade Gregio AM, Guariza Filho O, Tanaka OM, Ribeiro Rosa EA. 2011. Virulence modulation of Candida albicans biofilms by metal ions commonly released from orthodontic devices. Microb Pathog 51:421–425. [PubMed][CrossRef]
75. Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA. 2004. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin B antifungal lock therapy. Antimicrob Agents Chemother 48:1727–1732. [PubMed][CrossRef]
76. Lazzell AL, Chaturvedi AK, Pierce CG, Prasad D, Uppuluri P, Lopez-Ribot JL. 2009. Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemother 64:567–570. [PubMed][CrossRef]
77. Mukherjee PK, Long L, Kim HG, Ghannoum MA. 2009. Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. Int J Antimicrob Agents 33:149–153. [PubMed][CrossRef]
78. Shuford JA, Rouse MS, Piper KE, Steckelberg JM, Patel R. 2006. Evaluation of caspofungin and amphotericin B deoxycholate against Candida albicans biofilms in an experimental intravascular catheter infection model. J Infect Dis 194:710–713. [PubMed][CrossRef]
79. Walraven CJ, Lee SA. 2013. Antifungal lock therapy. Antimicrob Agents Chemother 57:1–8. [PubMed][CrossRef]
80. Raad I, Hanna H, Dvorak T, Chaiban G, Hachem R. 2007. Optimal antimicrobial catheter lock solution, using different combinations of minocycline, EDTA, and 25-percent ethanol, rapidly eradicates organisms embedded in biofilm. Antimicrob Agents Chemother 51:78–83. [PubMed][CrossRef]
81. Sherertz RJ, Boger MS, Collins CA, Mason L, Raad II. 2006. Comparative in vitro efficacies of various catheter lock solutions. Antimicrob Agents Chemother 50:1865–1868. [PubMed][CrossRef]
82. Raad I, Chatzinikolaou I, Chaiban G, Hanna H, Hachem R, Dvorak T, Cook G, Costerton W. 2003. In vitro and ex vivo activities of minocycline and EDTA against microorganisms embedded in biofilm on catheter surfaces. Antimicrob Agents Chemother 47:3580–3585. [PubMed][CrossRef]
83. Shinde RB, Chauhan NM, Raut JS, Karuppayil SM. 2012. Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A. Ann Clin Microbiol Antimicrob 11:27. [PubMed][CrossRef]
84. Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. 1998. Candida-associated denture stomatitis. Aetiology and management: a review. Part 1. Factors influencing distribution of Candida species in the oral cavity. Aust Dent J 43:45–50. [PubMed][CrossRef]
85. Webb BC, Thomas CJ, Willcox MD, Harty DW, Knox KW. 1998. Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species. Aust Dent J 43:160–166. [PubMed][CrossRef]
86. Samaranayake YH, Samaranayake LP. 2001. Experimental oral candidiasis in animal models. Clin Microbiol Rev 14:398–429. [PubMed][CrossRef]
87. Johnson CC, Yu A, Lee H, Fidel PL, Jr, Noverr MC. 2012. Development of a contemporary animal model of Candida albicans-associated denture stomatitis using a novel intraoral denture system. Infect Immun 80:1736–1743. [PubMed][CrossRef]
88. Norris MM, Lamb DJ, Craig GT, Martin MV. 1985. The effect of miconazole on palatal candidosis induced in the Wistar rat. J Dent 13:288–294. [PubMed][CrossRef]
89. Lamb DJ, Martin MV. 1983. An in vitro and in vivo study of the effect of incorporation of chlorhexidine into autopolymerizing acrylic resin plates upon the growth of Candida albicans. Biomaterials 4:205–209. [PubMed][CrossRef]
90. Budtz-Jorgensen E. 1971. Denture stomatitis. IV. An experimental model in monkeys. Acta Odontol Scand 29:513–526. [PubMed][CrossRef]
91. Lee H, Yu A, Johnson CC, Lilly EA, Noverr MC, Fidel PL, Jr. 2011. Fabrication of a multi-applicable removable intraoral denture system for rodent research. J Oral Rehabil 38:686–690. [PubMed][CrossRef]
92. Chen YL, Brand A, Morrison EL, Silao FG, Bigol UG, Malbas FF, Jr, Nett JE, Andes DR, Solis NV, Filler SG, Averette A, Heitman J. 2011. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryot Cell 10:803–819. [PubMed][CrossRef]
93. Zumbuehl A, Ferreira L, Kuhn D, Astashkina A, Long L, Yeo Y, Iaconis T, Ghannoum M, Fink GR, Langer R, Kohane DS. 2007. Antifungal hydrogels. Proc Natl Acad Sci USA 104:12994–12998. [PubMed][CrossRef]
94. Ricicova M, Kucharikova S, Tournu H, Hendrix J, Bujdakova H, Van Eldere J, Lagrou K, Van Dijck P. 2010. Candida albicans biofilm formation in a new in vivo rat model. Microbiology 156:909–919. [PubMed][CrossRef]
95. Bink A, Kucharikova S, Neirinck B, Vleugels J, Van Dijck P, Cammue BP, Thevissen K. 2012. The nonsteroidal antiinflammatory drug diclofenac potentiates the in vivo activity of caspofungin against Candida albicans biofilms. J Infect Dis 206:1790–1797. [PubMed][CrossRef]
96. Alem MA, Douglas LJ. 2005. Prostaglandin production during growth of Candida albicans biofilms. J Med Microbiol 54:1001–1005. [PubMed][CrossRef]
97. Ghalehnoo ZR, Rashki A, Najimi M, Dominguez A. 2010. The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microb Pathog 48:110–115. [PubMed][CrossRef]
98. Wang X, Fries BC. 2011. A murine model for catheter-associated candiduria. J Med Microbiol 60:1523–1529. [PubMed][CrossRef]
99. Sobel JD, Faro S, Force RW, Foxman B, Ledger WJ, Nyirjesy PR, Reed BD, Summers PR. 1998. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. Am J Obstet Gynecol 178:203–211. [PubMed][CrossRef]
100. Graybill JR, Vazquez J, Darouiche RO, Morhart R, Greenspan D, Tuazon C, Wheat LJ, Carey J, Leviton I, Hewitt RG, MacGregor RR, Valenti W, Restrepo M, Moskovitz BL. 1998. Randomized trial of itraconazole oral solution for oropharyngeal candidiasis in HIV/AIDS patients. Am J Med 104:33–39. [CrossRef]
101. Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY, Jacobson LM, Crowell CS, Sneed RS, Lewis FM, Schaffzin JK, Kainer MA, Genese CA, Alfonso EC, Jones DB, Srinivasan A, Fridkin SK, Park BJ, Fusarium Keratitis Investigation Team. 2006. Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–963. [PubMed][CrossRef]
102. Sun Y, Chandra J, Mukherjee P, Szczotka-Flynn L, Ghannoum MA, Pearlman E. 2010. A murine model of contact lens-associated Fusarium keratitis. Invest Ophthalmol Vis Sci 51:1511–1516. [PubMed][CrossRef]
103. Zhang H, Wang L, Li Z, Liu S, Xie Y, He S, Deng X, Yang B, Liu H, Chen G, Zhao H, Zhang J. 2013. A novel murine model of Fusarium solani keratitis utilizing fluorescent labeled fungi. Exp Eye Res 110:107–112. [PubMed][CrossRef]
104. Nett J, Lincoln L, Marchillo K, Andes D. 2007. Beta -1,3 glucan as a test for central venous catheter biofilm infection. J Infect Dis 195:1705–1712. [PubMed][CrossRef]
105. Lafleur MD, Sun L, Lister I, Keating J, Nantel A, Long L, Ghannoum M, North J, Lee RE, Coleman K, Dahl T, Lewis K. 2013. Potentiation of azole antifungals by 2-adamantanamine. Antimicrob Agents Chemother 57:3585–3592. [PubMed][CrossRef]
106. Sherry L, Jose A, Murray C, Williams C, Jones B, Millington O, Bagg J, Ramage G. 2012. Carbohydrate derived fulvic acid: an in vitro investigation of a novel membrane active antiseptic agent against Candida albicans biofilms. Front Microbiol 3:116. [PubMed][CrossRef]
107. Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E. 2010. Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 5:321–332. [PubMed][CrossRef]
108. Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. 2012. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses 55:80–85. [PubMed][CrossRef]
109. Frederiksen B, Pressler T, Hansen A, Koch C, Hoiby N. 2006. Effect of aerosolized rhDNase (Pulmozyme) on pulmonary colonization in patients with cystic fibrosis. Acta Paediatr 95:1070–1074. [PubMed][CrossRef]
110. Hudson SP, Langer R, Fink GR, Kohane DS. 2010. Injectable in situ cross-linking hydrogels for local antifungal therapy. Biomaterials 31:1444–1452. [PubMed][CrossRef]
111. Schmidt CS, White CJ, Ibrahim AS, Filler SG, Fu Y, Yeaman MR, Edwards JE, Jr, Hennessey JP, Jr. 2012. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine 30:7594–7600. [PubMed][CrossRef]
112. Luo G, Ibrahim AS, Spellberg B, Nobile CJ, Mitchell AP, Fu Y. 2010. Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis 201:1718–1728. [PubMed][CrossRef]
113. Cassone A. 2013. Development of vaccines for Candida albicans: fighting a skilled transformer. Nat Rev Microbiol 11:884–891. [PubMed][CrossRef]
114. Nett JE, Marchillo K, Andes DR. 2012. Modeling of fungal biofilms using a rat central vein catheter. Methods Mol Biol 845:547–556. [PubMed][CrossRef]
microbiolspec.MB-0008-2014.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.MB-0008-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MB-0008-2014
2015-06-26
2017-08-21

Abstract:

During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is . Animal models have been developed to simulate common device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/MB-0008-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MB-0008-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Host factors influence fungal biofilm formation. This schematic depicts host conditions that may impact fungal biofilm formation and architecture. animal models can closely mimic biofilm infection niches, incorporating many of these host and environmental conditions. doi:10.1128/microbiolspec.MB-0008-2014.f1

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Animal models of fungal biofilm infection. (A) Rabbit venous catheter–associated biofilm infection ( 75 ). (B) Rat venous catheter–associated biofilm infection ( 31 ). (C) Mouse contact lens–associated biofilm model ( 102 ). (D) Mouse urinary catheter–associated biofilm infection ( 98 ). (E) Rat denture-associated biofilm infection (removable intraoral device) ( 87 ). (F) Rat denture-associated biofilm infection ( 32 ). Images adapted from prior publications ( 32 , 75 , 87 , 98 , 102 , 114 ). doi:10.1128/microbiolspec.MB-0008-2014.f2

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

biofilm infection of rat jugular venous catheter. was instilled in the lumen of a subcutaneously tunneled jugular venous catheter and allowed to dwell for 6 hours. After a growth period of 24 hours, the catheter was harvested, fixed, and dehydrated. Catheter segments were imaged by scanning electron microscopy on a JEOL JSM-6100 at 10 kV (50x and 1,000x). The biofilm is composed of both yeast and hyphae encased in an extracellular matrix. Host components, including red blood cells, appear to associate with the biofilm. doi:10.1128/microbiolspec.MB-0008-2014.f3

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

biofilm infection in a rat denture model. was inoculated between the hard palate and an acrylic device secured with orthodontic wire. After a growth period of 48 hours, the denture was harvested, fixed, and dehydrated. Oral devices were imaged by scanning electron microscopy on a JEOL JSM-6100 at 10 kV (50x and 1,000x). The biofilm is composed of both yeast and hyphae encased in an extracellular matrix. Larger host cells were observed as well. Microbiologic evaluation identified a polymicrobial infection consisting of and various bacteria. doi:10.1128/microbiolspec.MB-0008-2014.f4

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Medically important fungi forming biofilms

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Generic image for table

Click to view

TABLE 2

Animal models of biofilm infection

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014
Generic image for table

Click to view

TABLE 3

Strategies for treatment of biofilms with demonstrated efficacy in animal models

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MB-0008-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error