1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Biofilm and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Anne Beauvais1, Jean-Paul Latgé2
  • Editors: Mahmoud Ghannoum3, Matthew Parsek4, Marvin Whiteley5, Pranab Mukherjee6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; 2: Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; 3: Case Western Reserve University, Cleveland, OH; 4: University of Washington, Seattle, WA; 5: University of Texas at Austin, Austin, TX; 6: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
  • Received 19 February 2015 Accepted 03 March 2015 Published 10 July 2015
  • Anne Beauvais, anne.beauvais@pasteur.fr
image of <span class="jp-italic">Aspergillus</span> Biofilm <span class="jp-italic">In Vitro</span> and <span class="jp-italic">In Vivo</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Biofilm and , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/4/MB-0017-2015-1.gif /docserver/preview/fulltext/microbiolspec/3/4/MB-0017-2015-2.gif
  • Abstract:

    grows as a typical biofilm with hyphae covered by an extracellular matrix (ECM) composed of polysaccharides, galactomannan, and galactosaminogalactan. α1,3 glucans and melanin are also constitutive of the ECM in aspergilloma but not in invasive aspergillosis. , two biofilm models were established to mimic the situation. The first model (model 1) uses submerged liquid conditions and is characterized by slow growth, while the second model (model 2) uses agar medium and aerial conditions and is characterized by rapid growth. The composition of the ECM was studied only in the second model and has been shown to be composed of galactomannan, galactosaminogalactan (GAG), and α1,3 glucans, melanin, antigens, and hydrophobins. The presence of extracellular DNA was detected in model 1 biofilm but not in model 2. Transcriptomic analysis employing both biofilm models showed upregulation of genes coding for proteins involved in the biosynthesis of secondary metabolites, adhesion, and drug resistance. However, most data on biofilms have been obtained and should be confirmed using animal models. There is a need for new therapeutic antibiofilm strategies that focus on the use of combination therapy, since biofilm formation poses an important clinical problem due to their resistance to antifungal agents. Furthermore, investigations of biofilms that incorporate the associated microbiota are needed. Such studies will add another layer of complexity to our understanding of the role of biofilm during lung invasion.

  • Citation: Beauvais A, Latgé J. 2015. Biofilm and . Microbiol Spectrum 3(4):MB-0017-2015. doi:10.1128/microbiolspec.MB-0017-2015.

Key Concept Ranking

Antifungal Agents
0.5135607
Fungal Infections
0.47086003
Major Facilitator Superfamily
0.44710228
Chronic Pulmonary Aspergillosis
0.42724463
Confocal Laser Scanning Microscopy
0.40081966
0.5135607

References

1. Latgé JP, Steinbach WJ. 2009. A perspective view of Aspergillus fumigatus research for the next ten years, p 549–558. In Latge JP, Steinbach WJ (ed), Aspergillus fumigatus and Aspergillosis. ASM Press, Washington, DC. [CrossRef]
2. Taylor PR, Leal SM, Jr, Sun Y, Pearlman E. 2014. Aspergillus and Fusarium corneal infections are regulated by Th17 cells and IL-17-producing neutrophils. J Immunol 192:3319–3327. [PubMed][CrossRef]
3. Xu Y, Gao C, Li X, He Y, Zhou L, Pang G, Sun S. 2013. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi. J Ocul Pharmacol Ther 29:270–274. [PubMed][CrossRef]
4. Loussert C, Schmitt C, Prevost MC, Balloy V, Fadel E, Philippe B, Kauffmann-Lacroix C, Latgé JP, Beauvais A. 2010. In vivo biofilm composition of Aspergillus fumigatus. Cell Microbiol 12:405–410. [PubMed][CrossRef]
5. Muller FM, Seidler M, Beauvais A. 2011. Aspergillus fumigatus biofilms in the clinical setting. Med Mycol 49(Suppl 1):S96–S100. [PubMed][CrossRef]
6. Fanning, S, Mitchell AP. 2012. Fungal biofilms. PLoS Pathog 8:e1002585. doi:10.1371/journal.ppat.1002585. [PubMed][CrossRef]
7. Chandra J, Pearlman E, Ghannoum MA. 2014. Animal models to investigate fungal biofilm formation. Methods Mol Biol 1147:141–157. [PubMed][CrossRef]
8. Mukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoum MA. 2012. Characterization of fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis. Invest Ophthalmol Vis Sci 53:4450–4457. [PubMed][CrossRef]
9. Kaur S, Singh S. 2013. Biofilm formation by Aspergillus fumigatus. Med Mycol 52:2–9. [PubMed]
10. Mowat E, Butcher J, Lang S, Williams C, Ramage G. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J Med Microbiol 56:1205–1212. [PubMed][CrossRef]
11. Seidler MJ, Salvenmoser S, Muller FM. 2008. Aspergillus fumigatus forms biofilms with reduced antifungal drug susceptibility on bronchial epithelial cells. Antimicrob Agents Chemother 52:4130–4136. doi:10.1128/AAC.00234-08. [PubMed][CrossRef]
12. Shopova I, Bruns S, Thywissen A, Kniemeyer O, Brakhage AA, Hillmann F. 2013. Extrinsic extracellular DNA leads to biofilm formation and colocalizes with matrix polysaccharides in the human pathogenic fungus Aspergillus fumigatus. Front Microbiol 4:141. doi:10.3389/fmicb.2013.00141. [PubMed][CrossRef]
13. Beauvais A, Schmidt C, Guadagnini S, Roux P, Perret E, Henry C, Paris S, Mallet A, Prevost MC, Latgé JP. 2007. An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cell Microbiol 9:1588–1600. [PubMed][CrossRef]
14. Gibbons JG, Beauvais A, Beau R, McGary KL, Latgé JP, Rokas A. 2012. Global transcriptome changes underlying colony growth in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot Cell 11:68–78. [PubMed][CrossRef]
15. Muszkieta L, Beauvais A, Pahtz V, Gibbons JG, Anton Leberre V, Beau R, Shibuya K, Rokas A, Francois JM, Kniemeyer O, Brakhage AA, Latgé JP. 2013. Investigation of Aspergillus fumigatus biofilm formation by various “omics” approaches. Front Microbiol 4:13. [PubMed][CrossRef]
16. Rajendran R, Williams C, Lappin DF, Millington O, Martins M, Ramage G. 2013. Extracellular DNA release acts as an antifungal resistance mechanism in mature Aspergillus fumigatus biofilms. Eukaryot Cell 12:420–429. [PubMed][CrossRef]
17. Leeflang MM, Debets-Ossenkopp YJ, Visser CE, Scholten RJ, Hooft L, Bijlmer HA, Reitsma JB, Bossuyt PM, Vandenbroucke-Grauls CM. 2008. Galactomannan detection for invasive aspergillosis in immunocompromized patients. Cochrane Database Syst Rev Oct 8(4):CD007394. [PubMed]
18. Latgé JP, Beauvais A. 2007. Interactions of Aspergillus fumigatus with its host during invasive pulmonary infections, p 331–358. In Brown GD, Netea MG (ed), Immunology of Fungal Infections. Springer, Dordrecht, The Netherlands. [CrossRef]
19. Bozza S, Clavaud C, Giovannini G, Fontaine T, Beauvais A, Sarfati J, D’Angelo C, Perruccio K, Bonifazi P, Zagarella S, Moretti S, Bistoni F, Latgé JP, Romani L. 2009. Immune sensing of Aspergillus fumigatus proteins, glycolipids, and polysaccharides and the impact on Th immunity and vaccination. J Immunol 183:2407–2414. [PubMed][CrossRef]
20. Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y, Bozza S, Moretti S, Schwarz F, Trichot C, Aebi M, Delepierre M, Elbim C, Romani L, Latgé JP. 2011. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog 7:e1002372. doi:10.1371/journal.ppat.1002372. [PubMed][CrossRef]
21. Gravelat FN, Beauvais A, Liu H, Lee MJ, Snarr BD, Chen D, Xu W, Kravtsov I, Hoareau CM, Vanier G, Urb M, Campoli P, Al Abdallah Q, Lehoux M, Chabot JC, Ouimet MC, Baptista SD, Fritz JH, Nierman WC, Latgé JP, Mitchell AP, Filler SG, Fontaine T, Sheppard DC. 2013. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal beta-glucan from the immune system. PLoS Pathog 9:e1003575. doi:10.1371/journal.ppat.1003575. [CrossRef]
22. Gresnigt MS, Bozza S, Becker KL, Joosten LA, Abdollahi-Roodsaz S, van der Berg WB, Dinarello CA, Netea MG, Fontaine T, De Luca A, Moretti S, Romani L, Latgé JP, van de Veerdonk FL. 2014. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin-1 receptor antagonist. PLoS Pathog 10:e1003936. doi:10.1371/journal.ppat.1003936. [CrossRef]
23. Robinet P, Baychelier F, Fontaine T, Picard C, Debre P, Vieillard V, Latgé JP, Elbim C. 2014. A polysaccharide virulence factor of a human fungal pathogen induces neutrophil apoptosis via NK cells. J Immunol 192:5332–5342. [PubMed][CrossRef]
24. Fontaine T, Beauvais A, Loussert C, Thevenard B, Fulgsang CC, Ohno N, Clavaud C, Prevost MC, Latgé JP. 2010. Cell wall alpha1-3 glucans induce the aggregation of germinating conidia of Aspergillus fumigatus. Fungal Genet Biol 47:707–712. [PubMed][CrossRef]
25. Beauvais A, Bozza S, Kniemeyer O, Formosa C, Balloy V, Henry C, Roberson RW, Dague E, Chignard M, Brakhage AA, Romani L, Latgé JP. 2013. Deletion of the alpha-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog 9:e1003716. doi:10.1371/journal.ppat.1003716. [PubMed][CrossRef]
26. Eisenman HC, Casadevall A. 2012. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 93:931–940. [PubMed][CrossRef]
27. Schmaler-Ripcke J, Sugareva V, Gebhardt P, Winkler R, Kniemeyer O, Heinekamp T, Brakhage AA. 2009. Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. Appl Environ Microbiol 75:493–503. [PubMed][CrossRef]
28. Youngchim S, Morris-Jones R, Hay RJ, Hamilton AJ. 2004. Production of melanin by Aspergillus fumigatus. J Med Microbiol 53:175–181. [PubMed][CrossRef]
29. Heinekamp T, Thywissen A, Macheleidt J, Keller S, Valiante V, Brakhage AA. 2013. Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Front Microbiol 3:440. doi:10.3389/fmicb.2012.00440. [PubMed][CrossRef]
30. Langfelder K, Philippe B, Jahn B, Latgé JP, Brakhage AA. 2001. Differential expression of the Aspergillus fumigatus pksP gene detected in vitro and in vivo with green fluorescent protein. Infect Immun 69:6411–6418. [PubMed][CrossRef]
31. Sarfati J, Boucias DG, Latgé JP. 1995. Antigens of Aspergillus fumigatus produced in vivo. J Med Vet Mycol 33:9–14. [PubMed][CrossRef]
32. Beauvais A, Monod M, Debeaupuis JP, Diaquin M, Kobayashi H, Latgé JP. 1997. Biochemical and antigenic characterization of a new dipeptidyl-peptidase isolated from Aspergillus fumigatus. J Biol Chem 272:6238–6244. [PubMed][CrossRef]
33. Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, Brakhage AA, Kniemeyer O, Muller FM. 2010. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10:3097–3107. [PubMed][CrossRef]
34. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50. [PubMed][CrossRef]
35. Levdansky E, Kashi O, Sharon H, Shadkchan Y, Osherov N. 2010. The Aspergillus fumigatus cspA gene encoding a repeat-rich cell wall protein is important for normal conidial cell wall architecture and interaction with host cells. Eukaryot Cell 9:1403–1415. [PubMed][CrossRef]
36. Perez A, Ramage G, Blanes R, Murgui A, Casanova M, Martinez JP. 2011. Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Res 11:273–284. [PubMed][CrossRef]
37. Vaknin Y, Shadkchan Y, Levdansky E, Morozov M, Romano J, Osherov N. 2014. The three Aspergillus fumigatus CFEM-domain GPI-anchored proteins (CfmA-C) affect cell-wall stability but do not play a role in fungal virulence. Fungal Genet Biol 63:55–64. [PubMed][CrossRef]
38. Upadhyay SK, Mahajan L, Ramjee S, Singh Y, Basir SF, Madan T. 2009. Identification and characterization of a laminin-binding protein of Aspergillus fumigatus: extracellular thaumatin domain protein (AfCalAp). J Med Microbiol 58:714–722. [PubMed][CrossRef]
39. Jensen BG, Andersen MR, Pedersen MH, Frisvad JC, Sondergaard I. 2010. Hydrophobins from Aspergillus species cannot be clearly divided into two classes. BMC Res Notes 3:344. [PubMed][CrossRef]
40. Sunde M, Kwan AH, Templeton MD, Beever RE, Mackay JP. 2008. Structural analysis of hydrophobins. Micron 39:773–784. [PubMed][CrossRef]
41. Littlejohn KA, Hooley P, Cox PW. 2012. Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocolloids 27:503–516. [CrossRef]
42. Kershaw MJ, Talbot NJ. 1998. Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33. [PubMed][CrossRef]
43. Aimanianda V, Bayry J, Bozza S, Kniemeyer O, Perruccio K, Elluru SR, Clavaud C, Paris S, Brakhage AA, Kaveri SV, Romani L, Latgé JP. 2009. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460:1117–1121. [PubMed][CrossRef]
44. Gloag ES, Turnbull L, Huang A, Vallotton P, Wang H, Nolan LM, Mililli L, Hunt C, Lu J, Osvath SR, Monahan LG, Cavaliere R, Charles IG, Wand MP, Gee ML, Prabhakar R, Whitchurch CB. 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci USA 110:11541–11546. doi:10.1073/pnas.1218898110. [PubMed][CrossRef]
45. Bruns S, Kniemeyer O, Hasenberg M, Aimanianda V, Nietzsche S, Thywissen A, Jeron A, Latgé JP, Brakhage AA, Gunzer M. 2010. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog 6:e1000873. doi:10.1371/journal.ppat.1000873. [CrossRef]
46. White PL, Perry MD, Barnes RA. 2009. An update on the molecular diagnosis of invasive fungal disease. FEMS Microbiol Lett 296:1–10. [PubMed][CrossRef]
47. Mowat E, Lang S, Williams C, McCulloch E, Jones B, Ramage G. 2008. Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. J Antimicrob Chemother 62:1281–1284. [PubMed][CrossRef]
48. Ramage G, Rajendran R, Sherry L, Williams C. 2012. Fungal biofilm resistance. Int J Microbiol 2012:528521. [PubMed][CrossRef]
49. Rajendran R, Mowat E, McCulloch E, Lappin DF, Jones B, Lang S, Majithiya JB, Warn P, Williams C, Ramage G. 2011. Azole resistance of Aspergillus fumigatus biofilms is partly associated with efflux pump activity. Antimicrob Agents Chemother 55:2092–2097. [PubMed][CrossRef]
50. Delattin N, Cammue BP, Thevissen K. 2014. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms. Future Med Chem 6:77–90. [PubMed][CrossRef]
51. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7:e1002257. doi:10.1371/journal.ppat.1002257. [PubMed][CrossRef]
52. d’Enfert C. 2006. Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–470. [PubMed][CrossRef]
53. Liao J, Schurr MJ, Sauer K. 2013. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363. [PubMed][CrossRef]
54. Lafleur MD, Qi Q, Lewis K. 2010. Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54:39–44. [PubMed][CrossRef]
55. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. 2009. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:396–401. [PubMed][CrossRef]
56. Beauvais A, Müller FM. 2009. Biofilm formation in Aspergillus fumigatus, p 149–158. In Latgé JP, Steinbach WJ (ed), Aspergillus fumigatus and Aspergillosis. ASM Press, Washington DC.
57. Baxter CG, Rautemaa R, Jones AM, Webb AK, Bull M, Mahenthiralingam E, Denning DW. 2013. Intravenous antibiotics reduce the presence of Aspergillus in adult cystic fibrosis sputum. Thorax 68:652–657. [PubMed][CrossRef]
58. Paugam A, Baixench MT, Demazes-Dufeu N, Burgel PR, Sauter E, Kanaan R, Dusser D, Dupouy-Camet J, Hubert D. 2010. Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol 48(Suppl 1):S32–S36. [PubMed][CrossRef]
59. Kraemer R, Delosea N, Ballinari P, Gallati S, Crameri R. 2006. Effect of allergic bronchopulmonary aspergillosis on lung function in children with cystic fibrosis. Am J Respir Crit Care Med 174:1211–1220. [PubMed][CrossRef]
microbiolspec.MB-0017-2015.citations
cm/3/4
content/journal/microbiolspec/10.1128/microbiolspec.MB-0017-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MB-0017-2015
2015-07-10
2017-11-21

Abstract:

grows as a typical biofilm with hyphae covered by an extracellular matrix (ECM) composed of polysaccharides, galactomannan, and galactosaminogalactan. α1,3 glucans and melanin are also constitutive of the ECM in aspergilloma but not in invasive aspergillosis. , two biofilm models were established to mimic the situation. The first model (model 1) uses submerged liquid conditions and is characterized by slow growth, while the second model (model 2) uses agar medium and aerial conditions and is characterized by rapid growth. The composition of the ECM was studied only in the second model and has been shown to be composed of galactomannan, galactosaminogalactan (GAG), and α1,3 glucans, melanin, antigens, and hydrophobins. The presence of extracellular DNA was detected in model 1 biofilm but not in model 2. Transcriptomic analysis employing both biofilm models showed upregulation of genes coding for proteins involved in the biosynthesis of secondary metabolites, adhesion, and drug resistance. However, most data on biofilms have been obtained and should be confirmed using animal models. There is a need for new therapeutic antibiofilm strategies that focus on the use of combination therapy, since biofilm formation poses an important clinical problem due to their resistance to antifungal agents. Furthermore, investigations of biofilms that incorporate the associated microbiota are needed. Such studies will add another layer of complexity to our understanding of the role of biofilm during lung invasion.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Ultrastructure of a human aspergilloma (A) and IA in mouse lung (B) showing the network of hyphae embedded in an ECM. doi:10.1128/microbiolspec.MB-0017-2015.f1

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Immunolabeling of α1,3 glucan on an ultrathin section of an aspergilloma (A) and invasive aspergillosis in mouse lung (B) with a polyclonal rabbit antibody against anti-α1,3 glucan (1/50 diluted; kind gift of Dr. Ohno, Tokyo University of Pharmacy and Life Science, Japan) and an anti-IgG (whole molecule) conjugated with gold 10 nm. doi:10.1128/microbiolspec.MB-0017-2015.f2

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of model 1 and 2 biofilms. Model 1 is in liquid medium, and model 2 is in solid agar medium. Both models are static. Maturation is achieved in 72 h in model 1 and 16 h in model 2 at 37°C. doi:10.1128/microbiolspec.MB-0017-2015.f3

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Biomass of hydrophobin mutants in model 2 biofilm conditions showing the lower biomass of ΔrodD and ΔrodF mutants. *, P < 0.05. doi:10.1128/microbiolspec.MB-0017-2015.f4

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Composition of the extracellular matrix and in model 2 biofilm conditions

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015
Generic image for table
TABLE 2

DHN melanin ( to rows), pyomelanin ( to rows) and hydrophobin ( to rows) gene expression profiles obtained by RNAseq analysis in various conditions

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0017-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error