1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Chemical Biology Strategies for Biofilm Control

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Liang Yang1, Michael Givskov3
  • Editors: Mahmoud Ghannoum5, Matthew Parsek6, Marvin Whiteley7, Pranab Mukherjee8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Singapore Center on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; 2: School of Biological Sciences, Nanyang Technological University, Singapore 639798; 3: Singapore Center on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; 4: Costerton Biofilm Center, Department of International Health, Immunology, and Microbiology, University of Copenhagen, 2200 København N, Denmark; 5: Case Western Reserve University, Cleveland, OH; 6: University of Washington, Seattle, WA; 7: University of Texas at Austin, Austin, TX; 8: Case Western Reserve University, Cleveland, OH
  • Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0019-2015
  • Received 02 March 2015 Accepted 03 March 2015 Published 07 August 2015
  • Michael Givskov, mgivskov@sund.ku.dk
image of Chemical Biology Strategies for Biofilm Control
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Chemical Biology Strategies for Biofilm Control, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/4/MB-0019-2015-1.gif /docserver/preview/fulltext/microbiolspec/3/4/MB-0019-2015-2.gif
  • Abstract:

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  • Citation: Yang L, Givskov M. 2015. Chemical Biology Strategies for Biofilm Control. Microbiol Spectrum 3(4):MB-0019-2015. doi:10.1128/microbiolspec.MB-0019-2015.

Key Concept Ranking

Signal Transduction
0.64443296
Signalling Pathway
0.6361311
Signal Molecules
0.635539
Chemicals
0.620791
Quorum Sensing
0.6013027
0.64443296

References

1. Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. [PubMed][CrossRef]
2. Parsek MR, Greenberg EP. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33. [PubMed][CrossRef]
3. Romling U, Gomelsky M, Galperin MY. 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57:629–639. [PubMed][CrossRef]
4. Chambers JR, Sauer K. 2013. Small RNAs and their role in biofilm formation. Trends Microbiol 21:39–49. [PubMed][CrossRef]
5. Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, Manefield M, Costerton JW, Molin S, Eberl L, Steinberg P, Kjelleberg S, Hoiby N, Givskov M. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815. [PubMed][CrossRef]
6. Ng WL, Perez L, Cong J, Semmelhack MF, Bassler BL. 2012. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios. PLoS Pathog 8:e1002767. doi:10.1371/journal.ppat.1002767. [PubMed][CrossRef]
7. Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. 2011. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661. [PubMed][CrossRef]
8. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S. 1996. Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618–6622. [PubMed]
9. Schaefer AL, Hanzelka BL, Eberhard A, Greenberg EP. 1996. Quorum sensing in Vibrio fischeri: probing autoinducer-LuxR interactions with autoinducer analogs. J Bacteriol 178:2897–2901. [PubMed]
10. Rasmussen TB, Bjarnsholt T, Skindersoe ME, Hentzer M, Kristoffersen P, Kote M, Nielsen J, Eberl L, Givskov M. 2005. Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814. [PubMed][CrossRef]
11. Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon JS, Hwang I, Rhee S. 2011. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proc Natl Acad Sci USA 108:12089–12094. [PubMed][CrossRef]
12. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH. 2001. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817. [PubMed][CrossRef]
13. Perez-Martinez I, Haas D. 2011. Azithromycin inhibits expression of the GacA-dependent small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55:3399–3405. [PubMed][CrossRef]
14. Hentzer M, Givskov M. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307. [PubMed][CrossRef]
15. Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C. 2002. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480. [PubMed][CrossRef]
16. Deziel E, Lepine F, Milot S, He J, Mindrinos MN, Tompkins RG, Rahme LG. 2004. Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. Proc Natl Acad Sci USA 101:1339–1344. [PubMed][CrossRef]
17. Ilangovan A, Fletcher M, Rampioni G, Pustelny C, Rumbaugh K, Heeb S, Camara M, Truman A, Chhabra SR, Emsley J, Williams P. 2013. Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR). PLoS Pathog 9:e1003508. doi:10.1371/journal.ppat.1003508. [PubMed][CrossRef]
18. McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GS, Williams P. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143:3703–3711. [PubMed][CrossRef]
19. Muh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP. 2006. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother 50:3674–3679. [PubMed][CrossRef]
20. Wu H, Song Z, Hentzer M, Andersen JB, Molin S, Givskov M, Hoiby N. 2004. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J Antimicrob Chemother 53:1054–1061. [PubMed][CrossRef]
21. Yang L, Rybtke MT, Jakobsen TH, Hentzer M, Bjarnsholt T, Givskov M, Tolker-Nielsen T. 2009. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 53:2432–2443. [PubMed][CrossRef]
22. Tan SY, Chua SL, Chen Y, Rice SA, Kjelleberg S, Nielsen TE, Yang L, Givskov M. 2013. Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrob Agents Chemother 57:5629–5641. [PubMed][CrossRef]
23. Christensen QH, Grove TL, Booker SJ, Greenberg EP. 2013. A high-throughput screen for quorum-sensing inhibitors that target acyl-homoserine lactone synthases. Proc Natl Acad Sci USA 110:13815–13820. [PubMed][CrossRef]
24. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Lusis AJ, Greenberg EP, Zabner J. 2005. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 253:29–37. [PubMed][CrossRef]
25. Kravchenko VV, Kaufmann GF, Mathison JC, Scott DA, Katz AZ, Grauer DC, Lehmann M, Meijler MM, Janda KD, Ulevitch RJ. 2008. Modulation of gene expression via disruption of NF-kappaB signaling by a bacterial small molecule. Science 321:259–263. [PubMed][CrossRef]
26. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K. 2003. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793. [PubMed][CrossRef]
27. Valentine CD, Zhang H, Phuan PW, Nguyen J, Verkman AS, Haggie PM. 2013. Small molecule screen yields inhibitors of pseudomonas homoserine lactone-induced host responses. Cell Microbiol. [Epub ahead of print.] doi:10.1111/cmi.12176. [PubMed][CrossRef]
28. Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445. [PubMed][CrossRef]
29. Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D. 2006. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol 188:6026–6033. [PubMed][CrossRef]
30. Sonnleitner E, Abdou L, Haas D. 2009. Small RNA as global regulator of carbon catabolite repression in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 106:21866–21871. [PubMed][CrossRef]
31. Zhang L, Gao Q, Chen W, Qin H, Hengzhuang W, Chen Y, Yang L, Zhang G. 2013. Regulation of pqs quorum sensing via catabolite repression control in Pseudomonas aeruginosa. Microbiology 159:1931–1936. [PubMed][CrossRef]
32. Oglesby AG, Farrow JM, 3rd, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, Vasil ML. 2008. The influence of iron on Pseudomonas aeruginosa physiology: a regulatory link between iron and quorum sensing. J Biol Chem 283:15558–15567. [PubMed][CrossRef]
33. Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Huttenhofer A, Haas D, Blasi U. 2011. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 80:868–885. [PubMed][CrossRef]
34. Bjarnsholt T, Jensen PO, Jakobsen TH, Phipps R, Nielsen AK, Rybtke MT, Tolker-Nielsen T, Givskov M, Hoiby N, Ciofu O. 2010. Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5:e10115. doi:10.1371/journal.pone.0010115. [PubMed][CrossRef]
35. D’Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Deziel E, Smith EE, Nguyen H, Ernst RK, Larson Freeman TJ, Spencer DH, Brittnacher M, Hayden HS, Selgrade S, Klausen M, Goodlett DR, Burns JL, Ramsey BW, Miller SI. 2007. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64:512–533. [PubMed][CrossRef]
36. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. 2006. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103:8487–8492. [PubMed][CrossRef]
37. Mellbye B, Schuster M. 2011. The sociomicrobiology of antivirulence drug resistance: a proof of concept. MBio 2:e00131-11. doi:10.1128/mBio.00131-11. [PubMed][CrossRef]
38. Kohler T, Perron GG, Buckling A, van Delden C. 2010. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 6:e1000883. doi:10.1371/journal.ppat.1000883. [PubMed][CrossRef]
39. Lee J, Wu J, Deng Y, Wang J, Wang C, Chang C, Dong Y, Williams P, Zhang LH. 2013. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9:339–343. [PubMed][CrossRef]
40. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413. [PubMed][CrossRef]
41. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:1295–1297. [PubMed][CrossRef]
42. Ho CL, Chong KSJ, Oppong JA, Chuah MLC, Tan SM, Liang ZX. 2013. Visualizing the perturbation of cellular cyclic di-GMP levels in bacterial cells. J Am Chem Soc 135:566–569. [PubMed][CrossRef]
43. Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T. 2012. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa. Appl Environ Microbiol 78:5060–5069. [PubMed][CrossRef]
44. Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75:827–842. [PubMed][CrossRef]
45. Ching SM, Tan WJ, Chua KL, Lam Y. 2010. Synthesis of cyclic di-nucleotidic acids as potential inhibitors targeting diguanylate cyclase. Bioorg Med Chem 18:6657–6665. [PubMed][CrossRef]
46. Zhou J, Watt S, Wang J, Nakayama S, Sayre DA, Lam YF, Lee VT, Sintim HO. 2013. Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2'-F-c-di-GMP. Bioorg Med Chem 21:4396–4404. [PubMed][CrossRef]
47. Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE, Semmelhack MF, Neiditch MB, Waters CM. 2012. Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211. [PubMed][CrossRef]
48. Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ. 2013. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling. [Epub ahead of print.] doi:10.1080/08927014.2013.832224. [PubMed][CrossRef]
49. Ohana P, Delmer DP, Volman G, Benziman M. 1998. Glycosylated triterpenoid saponin: a specific inhibitor of diguanylate cyclase from Acetobacter xylinum. Biological activity and distribution. Plant Cell Physiol 39:153–159. [CrossRef]
50. Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzola F, Landini P. 2013. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 97:7325–7336. [PubMed][CrossRef]
51. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS. 2006. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353. [PubMed][CrossRef]
52. Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342. [PubMed][CrossRef]
53. Barraud N, Kardak BG, Yepuri NR, Howlin RP, Webb JS, Faust SN, Kjelleberg S, Rice SA, Kelso MJ. 2012. Cephalosporin-3’-diazeniumdiolates: targeted NO-donor prodrugs for dispersing bacterial biofilms. Angew Chem Int Ed Engl 51:9057–9060. [PubMed][CrossRef]
54. Christensen LD, van Gennip M, Rybtke MT, Wu H, Chiang WC, Alhede M, Hoiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. 2013. Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria. Infect Immun 81:2705–2713. [PubMed][CrossRef]
microbiolspec.MB-0019-2015.citations
cm/3/4
content/journal/microbiolspec/10.1128/microbiolspec.MB-0019-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MB-0019-2015
2015-08-07
2017-11-21

Abstract:

Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Example of three QSIS systems. (A) In QSIS1, an engineered vector expressing the gene that encodes the toxic gene product under the control of LuxR was transformed to . (B) In QSIS2, the LasR-regulated promoter controls the expression of the gene, expression of which leads to cell death in the presence of sucrose. (C) The QSIS3 system is also based on LuxR regulation. The and genes, conferring kanamycin resistance and green fluorescence, respectively, are controlled by the repressor, which in turn is regulated by QS through the promoter. The system was established in . Figure adapted from Rasmussen et al. ( 10 ) with permission of the publisher. doi:10.1128/microbiolspec.MB-0019-2015.f1

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0019-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Design and characterization of c-di-GMP biosensors. (a) Principle of synthesis and degradation of c-di-GMP by DGCs and PDEs. (b) Construction of the genetically encoded FRET-based biosensors for c-di-GMP using MrkH and VCA0042. Both proteins contain a c-di-GMP binding PilZ domain and an N-terminal domain (NTD). (c, d) Fluorescence titration curves for cdg-S1 and cdg-S2. (e) Schematic illustration of the conformational change induced by binding c-di-GMP to cdg-S1 and cdg-S2. Figure adapted from Ho et al. ( 42 ) with permission of the publisher. doi:10.1128/microbiolspec.MB-0019-2015.f2

Source: microbiolspec August 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MB-0019-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error