1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Metabolism and Fitness of Urinary Tract Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    107.79 Kb
  • XML
    100.32 Kb
  • PDF
    379.61 Kb
  • Authors: Christopher J. Alteri1, Harry L. T. Mobley2
  • Editors: Tyrrell Conway3, Paul Cohen4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; 2: Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; 3: Oklahoma State University, Stillwater, OK; 4: University of Rhode Island, Kingston, RI
  • Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MBP-0016-2015
  • Received 01 May 2015 Accepted 06 May 2015 Published 18 June 2015
  • Harry L.T. Mobley, hmobley@umich.edu
image of Metabolism and Fitness of Urinary Tract Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Metabolism and Fitness of Urinary Tract Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/3/MBP-0016-2015-1.gif /docserver/preview/fulltext/microbiolspec/3/3/MBP-0016-2015-2.gif
  • Abstract:

    Among common infections, urinary tract infections (UTI) are the most frequently diagnosed urologic disease. The majority of UTIs are caused by uropathogenic . The primary niche occupied by is the lower intestinal tract of mammals, where it resides as a beneficial component of the commensal microbiota. Although it is well-known that resides in the human intestine as a harmless commensal, specific strains or pathotypes have the potential to cause a wide spectrum of intestinal and diarrheal diseases. In contrast, extraintestinal pathotypes reside harmlessly in the human intestinal microenvironment but, upon access to sites outside of the intestine, become a major cause of human morbidity and mortality as a consequence of invasive UTI (pyelonephritis, bacteremia, or septicemia). Thus, extraintestinal pathotypes like uropathogenic (UPEC) possess an enhanced ability to cause infection outside of the intestinal tract and colonize the urinary tract, the bloodstream, or cerebrospinal fluid of human hosts. Due to the requirement for these to replicate in and colonize both the intestine and extraintestinal environments, we posit that physiology and metabolism of UPEC strains is paramount. Here we discuss that the ability to survive in the urinary tract depends as much on bacterial physiology and metabolism as it does on the well-considered virulence determinants.

  • Citation: Alteri C, Mobley H. 2015. Metabolism and Fitness of Urinary Tract Pathogens. Microbiol Spectrum 3(3):MBP-0016-2015. doi:10.1128/microbiolspec.MBP-0016-2015.

Key Concept Ranking

Mobile Genetic Elements
0.4750487
Two-Component Signal Transduction Systems
0.41329852
0.4750487

References

1. Foxman B, Barlow R, D’Arcy H, Gillespie B, Sobel JD. 2000. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol 10:509–515. [PubMed][CrossRef]
2. Litwin MS, Saigal CS, Yano EM, Avila C, Geschwind SA, Hanley JM, Joyce GF, Madison R, Pace J, Polich SM, Wang M. 2005. Urologic diseases in America Project: analytical methods and principal findings. J Urol 173:933–937. [PubMed][CrossRef]
3. Kaper JB, Nataro JP, Mobley HL. 2004. Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. [PubMed][CrossRef]
4. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EP, Denamur E. 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344. doi:10.1371/journal.ppat.1000344 [PubMed][CrossRef]
5. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, Poudel S, Ussery DW. 2015. Insights from 20 years of bacterial genome sequencing. Funct Integr Genomics 15:141–161. [PubMed][CrossRef]
6. Croxen MA, Finlay BB. 2010. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8:26–38. [PubMed]
7. Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Jimenez de Anta MT, Vila J. 2005. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis 191:46–50. [PubMed][CrossRef]
8. Johnson JR, Russo TA. 2005. Molecular epidemiology of extraintestinal pathogenic (uropathogenic) Escherichia coli. Int J Med Microbiol 295:383–404. [PubMed][CrossRef]
9. Russo TA, Johnson JR. 2003. Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449–456. [PubMed][CrossRef]
10. Chen SL, Hung CS, Pinkner JS, Walker JN, Cusumano CK, Li Z, Bouckaert J, Gordon JI, Hultgren SJ. 2009. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 106:22439–22444. [PubMed][CrossRef]
11. Hommais F, Gouriou S, Amorin C, Bui H, Rahimy MC, Picard B, Denamur E. 2003. The FimH A27V mutation is pathoadaptive for urovirulence in Escherichia coli B2 phylogenetic group isolates. Infect Immun 71:3619–3622. [PubMed][CrossRef]
12. Johnson JR, Russo TA. 2002. Extraintestinal pathogenic Escherichia coli: “the other bad E. coli”. J Lab Clin Med 139:155–162. [PubMed][CrossRef]
13. Alteri CJ, Mobley HL. 2012. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15:3–9. [PubMed][CrossRef]
14. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097. [PubMed][CrossRef]
15. Lloyd AL, Rasko DA, Mobley HL. 2007. Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189:3532–3546. [PubMed][CrossRef]
16. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. 2007. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 24:2373–2384. [PubMed][CrossRef]
17. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. 2010. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J Bacteriol 192:4885–4893. [PubMed][CrossRef]
18. Alteri CJ, Smith SN, Mobley HL. 2009. Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448. doi:10.1371/journal.ppat.1000448 [PubMed][CrossRef]
19. Moller AK, Leatham MP, Conway T, Nuijten PJ, de Haan LA, Krogfelt KA, Cohen PS. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect Immun 71:2142–2152. [PubMed][CrossRef]
20. Meador JP, Caldwell ME, Cohen PS, Conway T. 2014. Escherichia coli pathotypes occupy distinct niches in the mouse intestine. Infect Immun 82:1931–1938. [PubMed][CrossRef]
21. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, Conway T. 2004. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A 101:7427–7432. [PubMed][CrossRef]
22. Fabich AJ, Jones SA, Chowdhury FZ, Cernosek A, Anderson A, Smalley D, McHargue JW, Hightower GA, Smith JT, Autieri SM, Leatham MP, Lins JJ, Allen RL, Laux DC, Cohen PS, Conway T. 2008. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect Immun 76:1143–1152. [PubMed][CrossRef]
23. Martens EC, Roth R, Heuser JE, Gordon JI. 2009. Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem 284:18445–18457. [PubMed][CrossRef]
24. Peekhaus N, Conway T. 1998. What’s for dinner?: Entner-Doudoroff metabolism in Escherichia coli. J Bacteriol 180:3495–3502. [PubMed]
25. Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, Garcia-Ros D, Gamazo C. 2000. The relationship between glycogen synthesis, biofilm formation and virulence in Salmonella enteritidis. FEMS Microbiol Lett 191:31–36. [PubMed][CrossRef]
26. Jones SA, Jorgensen M, Chowdhury FZ, Rodgers R, Hartline J, Leatham MP, Struve C, Krogfelt KA, Cohen PS, Conway T. 2008. Glycogen and maltose utilization by Escherichia coli O157:H7 in the mouse intestine. Infect Immun 76:2531–2540. [PubMed][CrossRef]
27. Miranda RL, Conway T, Leatham MP, Chang DE, Norris WE, Allen JH, Stevenson SJ, Laux DC, Cohen PS. 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect Immun 72:1666–1676. [PubMed][CrossRef]
28. Nowrouzian FL, Wold AE, Adlerberth I. 2005. Escherichia coli strains belonging to phylogenetic group B2 have superior capacity to persist in the intestinal microflora of infants. J Infect Dis 191:1078–1083. [PubMed][CrossRef]
29. Nowrouzian FL, Adlerberth I, Wold AE. 2006. Enhanced persistence in the colonic microbiota of Escherichia coli strains belonging to phylogenetic group B2: role of virulence factors and adherence to colonic cells. Microbes Infect 8:834–840. [PubMed][CrossRef]
30. Schouler C, Taki A, Chouikha I, Moulin-Schouleur M, Gilot P. 2009. A genomic island of an extraintestinal pathogenic Escherichia coli strain enables the metabolism of fructooligosaccharides, which improves intestinal colonization. J Bacteriol 191:388–393. [PubMed][CrossRef]
31. Porcheron G, Kut E, Canepa S, Maurel MC, Schouler C. 2011. Regulation of fructooligosaccharide metabolism in an extra-intestinal pathogenic Escherichia coli strain. Mol Microbiol 81:717–733. [PubMed][CrossRef]
32. Rouquet G, Porcheron G, Barra C, Répérant M, Chanteloup NK, Schouler C, Gilot P. 2009. A metabolic operon in extraintestinal pathogenic Escherichia coli promotes fitness under stressful conditions and invasion of eukaryotic cells. J Bacteriol 191:4427–4440. [PubMed][CrossRef]
33. Hagberg L, Engberg I, Freter R, Lam J, Olling S, Svanborg Edén C. 1983. Ascending, unobstructed urinary tract infection in mice caused by pyelonephritogenic Escherichia coli of human origin. Infect Immun 40:273–283. [PubMed]
34. Alteri CJ, Mobley HL. 2007. Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect Immun 75:2679–2688. [PubMed][CrossRef]
35. Asscher AW, Sussman M, Waters WE, Davis RH, Chick S. 1966. Urine as a medium for bacterial growth. Lancet 2:1037–1041. [PubMed][CrossRef]
36. Russo TA, Jodush ST, Brown JJ, Johnson JR. 1996. Identification of two previously unrecognized genes (guaA and argC) important for uropathogenesis. Mol Microbiol 22:217–229. [PubMed][CrossRef]
37. Brooks T, Keevil CW. 1997. A simple artificial urine for the growth of urinary pathogens. Lett Appl Microbiol 24:203–206. [PubMed][CrossRef]
38. Aubron C, Glodt J, Matar C, Huet O, Borderie D, Dobrindt U, Duranteau J, Denamur E, Conti M, Bouvet O. 2012. Variation in endogenous oxidative stress in Escherichia coli natural isolates during growth in urine. BMC Microbiol 12:120. [PubMed][CrossRef]
39. Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, Johnson DE, Donnenberg MS, Welch RA, Mobley HL. 2004. Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–6381. [PubMed][CrossRef]
40. Hancock V, Vejborg RM, Klemm P. 2010. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284:437–454. [PubMed][CrossRef]
41. Vejborg RM, de Evgrafov MR, Phan MD, Totsika M, Schembri MA, Hancock V. 2012. Identification of genes important for growth of asymptomatic bacteriuria Escherichia coli in urine. Infect Immun 80:3179–3188. [PubMed][CrossRef]
42. Alteri CJ, Hagan EC, Sivick KE, Smith SN, Mobley HL. 2009. Mucosal immunization with iron receptor antigens protects against urinary tract infection. PLoS Pathog 5:e1000586. doi:10.1371/journal.ppat.1000586 [PubMed][CrossRef]
43. Alteri CJ, Himpsl SD, Mobley HL. 2015. Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection. PLoS Pathog 11:e1004601. doi:10.1371/journal.ppat.1004601 [PubMed][CrossRef]
44. Roesch PL, Redford P, Batchelet S, Moritz RL, Pellett S, Haugen BJ, Blattner FR, Welch RA. 2003. Uropathogenic Escherichia coli use d-serine deaminase to modulate infection of the murine urinary tract. Mol Microbiol 49:55–67. [PubMed][CrossRef]
45. Bahrani-Mougeot FK, Buckles EL, Lockatell CV, Hebel JR, Johnson DE, Tang CM, Donnenberg MS. 2002. Type 1 fimbriae and extracellular polysaccharides are preeminent uropathogenic Escherichia coli virulence determinants in the murine urinary tract. Mol Microbiol 45:1079–1093. [PubMed][CrossRef]
46. Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HL. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog 6:e1001187. doi:10.1371/journal.ppat.1001187 [PubMed][CrossRef]
47. Bielecki P, Muthukumarasamy U, Eckweiler D, Bielecka A, Pohl S, Schanz A, Niemeyer U, Oumeraci T, von Neuhoff N, Ghigo JM, Häussler S. 2014. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles. MBio 5:e01075-01014. doi:10.1128/mBio.01075-14 [CrossRef]
48. Subashchandrabose S, Hazen TH, Brumbaugh AR, Himpsl SD, Smith SN, Ernst RD, Rasko DA, Mobley HL. 2014. Host-specific induction of Escherichia coli fitness genes during human urinary tract infection. Proc Natl Acad Sci U S A 111:18327–18332. [PubMed][CrossRef]
49. Wandersman C, Delepelaire P. 2004. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647. [PubMed][CrossRef]
50. Kammler M, Schön C, Hantke K. 1993. Characterization of the ferrous iron uptake system of Escherichia coli. J Bacteriol 175:6212–6219. [PubMed]
51. Torres AG, Redford P, Welch RA, Payne SM. 2001. TonB-dependent systems of uropathogenic Escherichia coli: aerobactin and heme transport and TonB are required for virulence in the mouse. Infect Immun 69:6179–6185. [PubMed][CrossRef]
52. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99:17020–17024. [PubMed][CrossRef]
53. Hagan EC, Mobley HL. 2009. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiol 71:79–91. [PubMed][CrossRef]
54. Johnson JR, Jelacic S, Schoening LM, Clabots C, Shaikh N, Mobley HL, Tarr PI. 2005. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect Immun 73:965–971. [PubMed][CrossRef]
55. Russo TA, Carlino UB, Johnson JR. 2001. Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 69:6209–6216. [PubMed][CrossRef]
56. Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Barnard TJ, Johnson JR. 2002. IroN functions as a siderophore receptor and is a urovirulence factor in an extraintestinal pathogenic isolate of Escherichia coli. Infect Immun 70:7156–7160. [PubMed][CrossRef]
57. Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC, De Voss JJ, Schembri MA. 2012. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect Immun 80:333–344. [PubMed][CrossRef]
58. Carbonetti NH, Boonchai S, Parry SH, Väisänen-Rhen V, Korhonen TK, Williams PH. 1986. Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51:966–968. [PubMed]
59. Johnson JR, Moseley SL, Roberts PL, Stamm WE. 1988. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56:405–412. [PubMed]
60. Vigil PD, Stapleton AE, Johnson JR, Hooton TM, Hodges AP, He Y, Mobley HL. 2011. Presence of putative repeat-in-toxin gene tosA in Escherichia coli predicts successful colonization of the urinary tract. MBio 2:e00066-00011. doi:10.1128/mBio.00066-11 [PubMed][CrossRef]
61. Henderson JP, Crowley JR, Pinkner JS, Walker JN, Tsukayama P, Stamm WE, Hooton TM, Hultgren SJ. 2009. Quantitative metabolomics reveals an epigenetic blueprint for iron acquisition in uropathogenic Escherichia coli. PLoS Pathog 5:e1000305. doi:10.1371/journal.ppat.1000305 [PubMed][CrossRef]
62. Melican K, Sandoval RM, Kader A, Josefsson L, Tanner GA, Molitoris BA, Richter-Dahlfors A. 2011. Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog 7:e1001298. doi:10.1371/journal.ppat.1001298 [CrossRef]
63. Anfora AT, Halladin DK, Haugen BJ, Welch RA. 2008. Uropathogenic Escherichia coli CFT073 is adapted to acetatogenic growth but does not require acetate during murine urinary tract infection. Infect Immun 76:5760–5767. [PubMed][CrossRef]
64. Zdziarski J, Brzuszkiewicz E, Wullt B, Liesegang H, Biran D, Voigt B, Grönberg-Hernandez J, Ragnarsdottir B, Hecker M, Ron EZ, Daniel R, Gottschalk G, Hacker J, Svanborg C, Dobrindt U. 2010. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients. PLoS Pathog 6:e1001078. doi:10.1371/journal.ppat.1001078 [PubMed][CrossRef]
65. Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. 2011. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80:1516–1529. [PubMed][CrossRef]
66. Park SJ, Gunsalus RP. 1995. Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. J Bacteriol 177:6255–6262. [PubMed]
67. Unden G, Bongaerts J. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320:217–234. [PubMed][CrossRef]
68. Jones SA, Chowdhury FZ, Fabich AJ, Anderson A, Schreiner DM, House AL, Autieri SM, Leatham MP, Lins JJ, Jorgensen M, Cohen PS, Conway T. 2007. Respiration of Escherichia coli in the mouse intestine. Infect Immun 75:4891–4899. [PubMed][CrossRef]
69. Shepherd M, Sanguinetti G, Cook GM, Poole RK. 2010. Compensations for diminished terminal oxidase activity in Escherichia coli: cytochrome bd-II-mediated respiration and glutamate metabolism. J Biol Chem 285:18464–18472. [PubMed][CrossRef]
70. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 2011. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–348. [PubMed][CrossRef]
71. Allison KR, Brynildsen MP, Collins JJ. 2011. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220. [PubMed][CrossRef]
72. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189:1734–1742. [PubMed][CrossRef]
73. Godaly G, Bergsten G, Hang L, Fischer H, Frendéus B, Lundstedt AC, Samuelsson M, Samuelsson P, Svanborg C. 2001. Neutrophil recruitment, chemokine receptors, and resistance to mucosal infection. J Leukoc Biol 69:899–906. [PubMed]
74. Chromek M, Slamová Z, Bergman P, Kovács L, Podracká L, Ehrén I, Hökfelt T, Gudmundsson GH, Gallo RL, Agerberth B, Brauner A. 2006. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat Med 12:636–641. [PubMed][CrossRef]
75. Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. 2011. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 82:145–163. [PubMed][CrossRef]
76. Anfora AT, Haugen BJ, Roesch P, Redford P, Welch RA. 2007. Roles of serine accumulation and catabolism in the colonization of the murine urinary tract by Escherichia coli CFT073. Infect Immun 75:5298–5304. [PubMed][CrossRef]
77. Haugen BJ, Pellett S, Redford P, Hamilton HL, Roesch PL, Welch RA. 2007. In vivo gene expression analysis identifies genes required for enhanced colonization of the mouse urinary tract by uropathogenic Escherichia coli strain CFT073 dsdA. Infect Immun 75:278–289. [PubMed][CrossRef]
78. Cai W, Wannemuehler Y, Dell’anna G, Nicholson B, Barbieri NL, Kariyawasam S, Feng Y, Logue CM, Nolan LK, Li G. 2013. A novel two-component signaling system facilitates uropathogenic Escherichia coli’s ability to exploit abundant host metabolites. PLoS Pathog 9:e1003428. doi:10.1371/journal.ppat.1003428 [PubMed][CrossRef]
79. Barbieri NL, Nicholson B, Hussein A, Cai W, Wannemuehler YM, Dell’Anna G, Logue CM, Horn F, Nolan LK, Li G. 2014. FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect Immun 82:5086–5098. [PubMed][CrossRef]
80. Sohanpal BK, El-Labany S, Lahooti M, Plumbridge JA, Blomfield IC. 2004. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc Natl Acad Sci U S A 101:16322–16327. [PubMed][CrossRef]
81. Bernier SP, Létoffé S, Delepierre M, Ghigo JM. 2011. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol Microbiol 81:705–716. [PubMed][CrossRef]
82. Marteyn B, West NP, Browning DF, Cole JA, Shaw JG, Palm F, Mounier J, Prévost MC, Sansonetti P, Tang CM. 2010. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465:355–358. [PubMed][CrossRef]
83. Spurbeck RR, Stapleton AE, Johnson JR, Walk ST, Hooton TM, Mobley HL. 2011. Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of ygi and yad fimbriae. Infect Immun 79:4753–4763. [PubMed][CrossRef]
microbiolspec.MBP-0016-2015.citations
cm/3/3
content/journal/microbiolspec/10.1128/microbiolspec.MBP-0016-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MBP-0016-2015
2015-06-18
2017-10-24

Abstract:

Among common infections, urinary tract infections (UTI) are the most frequently diagnosed urologic disease. The majority of UTIs are caused by uropathogenic . The primary niche occupied by is the lower intestinal tract of mammals, where it resides as a beneficial component of the commensal microbiota. Although it is well-known that resides in the human intestine as a harmless commensal, specific strains or pathotypes have the potential to cause a wide spectrum of intestinal and diarrheal diseases. In contrast, extraintestinal pathotypes reside harmlessly in the human intestinal microenvironment but, upon access to sites outside of the intestine, become a major cause of human morbidity and mortality as a consequence of invasive UTI (pyelonephritis, bacteremia, or septicemia). Thus, extraintestinal pathotypes like uropathogenic (UPEC) possess an enhanced ability to cause infection outside of the intestinal tract and colonize the urinary tract, the bloodstream, or cerebrospinal fluid of human hosts. Due to the requirement for these to replicate in and colonize both the intestine and extraintestinal environments, we posit that physiology and metabolism of UPEC strains is paramount. Here we discuss that the ability to survive in the urinary tract depends as much on bacterial physiology and metabolism as it does on the well-considered virulence determinants.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/3/MBP-0016-2015.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MBP-0016-2015&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Adaptation of metabolism and basic physiology allows to replicate in diverse host microenvironments. ExPEC that cause urinary tract infection, bacteremia, sepsis, and meningitis, have adapted to grow as a harmless commensal in the nutrient-replete, carbon-rich human intestine but rapidly transition to pathogenic lifestyle in the nutritionally poor, nitrogen-rich urinary tract. In order to establish a commensal association within the human intestine, adaptive factors such as metabolic flexibility allow to successfully compete for carbon and energy sources with a large and diverse bacterial population. acquires nutrients from the intestinal mucus, including N-acetylglucosamine, sialic acid, glucosamine, gluconate, arabinose, fucose and simple sugars released upon breakdown of complex polysaccharides by anaerobic gut residents. When UPEC transition to the urinary tract, the bacteria encounter a drastic reduction in the abundance of nutrients and bacterial competition. Consequently, to replicate in a new host microenvironment, UPEC utilization of metabolic pathways required for growth in the dilute mixture of amino acids and peptides in the bladder signals the bacterium to elaborate virulence properties to successfully cause invasive disease and survive the onslaught of bactericidal host defenses. These adaptations are a unique and essential characteristic of ExPEC that enable a successful transition between disparate microenvironments within the same individual ( 13 ). doi:10.1128/microbiolspec.MBP-0016-2015.f1

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MBP-0016-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

UPEC acquires amino acids and requires gluconeogenesis and the TCA cycle for fitness . Peptide substrate-binding protein genes and are required to import di- and oligopeptides into the cytoplasm from the periplasm. Short peptides are degraded into amino acids in the cytoplasm and converted into pyruvate and oxaloacetate. Pyruvate is converted into acetyl-CoA and enters the TCA cycle to replenish intermediates and generate oxaloacetate. Oxaloacetate is converted to phosphoenolpyruvate by the gene product during gluconeogenesis. Mutations in the indicated genes , , , , and demonstrated fitness defects . ( 18 ) doi:10.1128/microbiolspec.MBP-0016-2015.f2

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MBP-0016-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Diagram of central metabolism and map of the specific pathways disrupted by targeted mutations in uropathogenic . Carbon sources or biochemical intermediates shared between pathways are indicated in capital letters or abbreviated: G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; G3P, glyceraldehyde-3-phosphate; 6PGN, 6-phosphogluconate. Reactions are denoted with arrows. Specific reactions (red arrows) were targeted by deletion or insertion in CFT073. In glycolysis: , glucose-6-phosphate isomerase; , 6-phosphofructokinase transferase; , triosephosphate isomerase; , pyruvate kinase; in pentose phosphate pathway: gnd, 6-phosphogluconate dehydrogenase; , transaldolase; in Entner-Duodoroff pathway: , 6-phosphogluconate dehydratase; in gluconeogenesis: , phosphoenolpyruvate carboxykinase; and in the TCA cycle: , succinate dehydrogenase; , fumarate hydratase; , fumarate reductase. ( 43 ) doi:10.1128/microbiolspec.MBP-0016-2015.f3

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MBP-0016-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Model describing the C/N ratio within the urinary tract for . The urinary tract environment has a low C/N ratio due to the dilute mixture of amino acids and peptides as the primary carbon source and the abundance of urea in urine providing a substantial nitrogen contribution. is unable to utilize or sense the nitrogen sequestered in urea because it lacks urease, which liberates ammonia from urea. This results in activation of the glutamine synthetase and glutamate oxo-glutarate aminotransferase system (GS/GOGAT) to assimilate nitrogen. ( 43 ) doi:10.1128/microbiolspec.MBP-0016-2015.f4

Source: microbiolspec June 2015 vol. 3 no. 3 doi:10.1128/microbiolspec.MBP-0016-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error