1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Microglia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: V. Hugh Perry1
  • Editor: Siamon Gordon2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Centre for Biological Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom; 2: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0003-2015
  • Received 08 April 2015 Accepted 09 September 2015 Published 27 May 2016
  • V. Hugh Perry, vhp@soton.ac.uk
image of Microglia
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Microglia, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0003-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0003-2015-2.gif
  • Abstract:

    The concept of the immunological privilege of the central nervous system (CNS) has had a profound influence on studies of interactions between the immune system and the CNS. At one time there was considerable debate as to whether there were any cells in the CNS of myeloid origin, but we now know that there are a number of populations of myeloid cells in specialized compartments of the CNS and that there is an ongoing bidirectional dialogue between the CNS and the immune system. We briefly review what we know of the different myeloid populations, in particular the microglia: their phenotype and function; their role in CNS homeostasis; and also their role in pathology, focusing on chronic neurodegeneration.

  • Citation: Perry V. 2016. Microglia. Microbiol Spectrum 4(3):MCHD-0003-2015. doi:10.1128/microbiolspec.MCHD-0003-2015.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.46155068
Transforming Growth Factor beta
0.43680906
0.46155068

References

1. Ransohoff RM, Perry VH. 2009. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. [PubMed][CrossRef]
2. Perry VH, Hume DA, Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326. [PubMed][CrossRef]
3. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. [PubMed][CrossRef]
4. Lawson LJ, Perry VH, Gordon S. 1992. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415. [PubMed][CrossRef]
5. Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R. 2001. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101:249–255. [PubMed]
6. Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318. [PubMed][CrossRef]
7. Hefendehl JK, Neher JJ, Sühs RB, Kohsaka S, Skodras A, Jucker M. 2014. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell 13:60–69. [PubMed][CrossRef]
8. Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J. 2013. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci 16:1896–1905. [PubMed][CrossRef]
9. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. [PubMed][CrossRef]
10. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A. 2011. Physiology of microglia. Physiol Rev 91:461–553. [PubMed][CrossRef]
11. Lawson LJ, Perry VH, Gordon S. 1992. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415. [PubMed][CrossRef]
12. Mildner A, Schlevogt B, Kierdorf K, Böttcher C, Erny D, Kummer MP, Quinn M, Brück W, Bechmann I, Heneka MT, Priller J, Prinz M. 2011. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer’s disease. J Neurosci 31:11159–11171. [PubMed][CrossRef]
13. Tremblay MÈ, Lowery RL, Majewska AK. 2010. Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. doi:10.1371/journal.pbio.1000527. [PubMed][CrossRef]
14. Sogn CJ, Puchades M, Gundersen V. 2013. Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin—a postembedding immunogold study in the healthy rat brain. Eur J Neurosci 38:2030–2040. [PubMed][CrossRef]
15. Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Arima K. 2011. Immunohistochemical characterization of microglia in Nasu-Hakola disease brains. Neuropathology 31:363–375. [PubMed][CrossRef]
16. Nicholson AM, Baker MC, Finch NA, Rutherford NJ, Wider C, Graff-Radford NR, Nelson PT, Clark HB, Wszolek ZK, Dickson DW, Knopman DS, Rademakers R. 2013. CSF1R mutations link POLD and HDLS as a single disease entity. Neurology 80:1033–1040. [PubMed][CrossRef]
17. Krämer-Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W, Berger H, Nave KA, Schild H, Trotter J. 2007. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461. [PubMed][CrossRef]
18. Streit WJ, Xue QS. 2014. Human CNS immune senescence and neurodegeneration. Curr Opin Immunol 29:93–96. [PubMed][CrossRef]
19. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56. [PubMed][CrossRef]
20. Tracey KJ. 2007. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest 117:289–296. [PubMed][CrossRef]
21. Lacroix S, Feinstein D, Rivest S. 1998. The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations. Brain Pathol 8:625–640. [PubMed][CrossRef]
22. Teeling JL, Perry VH. 2009. Systemic infection and inflammation in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158:1062–1073. [PubMed][CrossRef]
23. Hannestad J, Gallezot JD, Schafbauer T, Lim K, Kloczynski T, Morris ED, Carson RE, Ding YS, Cosgrove KP. 2012. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 63:232–239. [PubMed][CrossRef]
24. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178. [PubMed][CrossRef]
25. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458. [PubMed][CrossRef]
26. Kreutzberg GW. 1996. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318. [PubMed][CrossRef]
27. Sawcer S, Franklin RJ, Ban M. 2014. Multiple sclerosis genetics. Lancet Neurol 13:700–709. [PubMed][CrossRef]
28. Hickey WF, Kimura H. 1988. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239:290–292. [PubMed][CrossRef]
29. Huitinga I, van Rooijen N, de Groot CJ, Uitdehaag BM, Dijkstra CD. 1990. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J Exp Med 172:1025–1033. [PubMed][CrossRef]
30. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. 2011. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149. [PubMed][CrossRef]
31. Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee JC, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM. 2014. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549. [PubMed][CrossRef]
32. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. 2015. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. [PubMed][CrossRef]
33. Karch CM, Goate AM. 2015. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77:43–51. [PubMed][CrossRef]
34. Webster SJ, Bachstetter AD, Nelson PT, Schmitt FA, Van Eldik LJ. 2014. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front Genet 5:88. doi:10.3389/fgene.2014.00088. [PubMed][CrossRef]
35. Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M. 2009. Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363. [PubMed][CrossRef]
36. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. 2006. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49:489–502. [PubMed][CrossRef]
37. Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T. 2015. Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534–548. [PubMed][CrossRef]
38. Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P. 1999. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400:173–177. [PubMed][CrossRef]
39. Karran E, Hardy J. 2014. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol 76:185–205. [PubMed][CrossRef]
40. Gómez-Nicola D, Fransen NL, Suzzi S, Perry VH. 2013. Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 33:2481–2493. [PubMed][CrossRef]
41. Deckers K, van Boxtel MP, Schiepers OJ, de Vugt M, Muñoz Sánchez JL, Anstey KJ, Brayne C, Dartigues JF, Engedal K, Kivipelto M, Ritchie K, Starr JM, Yaffe K, Irving K, Verhey FR, Köhler S. 2015. Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry 30:234–246. [PubMed][CrossRef]
42. Cunningham C, Campion S, Lunnon K, Murray CL, Woods JF, Deacon RM, Rawlins JN, Perry VH. 2009. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 65:304–312. [PubMed][CrossRef]
43. Perry VH, Holmes C. 2014. Microglial priming in neurodegenerative disease. Nat Rev Neurol 10:217–224. [PubMed][CrossRef]
44. Paniagua RT, Chang A, Mariano MM, Stein EA, Wang Q, Lindstrom TM, Sharpe O, Roscow C, Ho PP, Lee DM, Robinson WH. 2010. c-Fms-mediated differentiation and priming of monocyte lineage cells play a central role in autoimmune arthritis. Arthritis Res Ther 12:R32. doi:10.1186/ar2940. [PubMed][CrossRef]
45. Maclullich AM, Anand A, Davis DH, Jackson T, Barugh AJ, Hall RJ, Ferguson KJ, Meagher DJ, Cunningham C. 2013. New horizons in the pathogenesis, assessment and management of delirium. Age Ageing 42:667–674. [PubMed][CrossRef]
46. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D, Perry VH. 2009. Systemic inflammation and disease progression in Alzheimer disease. Neurology 73:768–774. [PubMed][CrossRef]
microbiolspec.MCHD-0003-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0003-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0003-2015
2016-05-27
2017-11-20

Abstract:

The concept of the immunological privilege of the central nervous system (CNS) has had a profound influence on studies of interactions between the immune system and the CNS. At one time there was considerable debate as to whether there were any cells in the CNS of myeloid origin, but we now know that there are a number of populations of myeloid cells in specialized compartments of the CNS and that there is an ongoing bidirectional dialogue between the CNS and the immune system. We briefly review what we know of the different myeloid populations, in particular the microglia: their phenotype and function; their role in CNS homeostasis; and also their role in pathology, focusing on chronic neurodegeneration.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Microglia in the outer plexiform layer of the retina of the mouse, illustrating the delicate branching of the processes and the territory occupied by each cell. GFP-labeled cell from a MacGreen mouse with immunocytochemistry. Courtesy of Sallome Murinello.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0003-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Electron micrograph of a microglia in the adult mouse cortex immunolabeled with F4/80. The thin rim of cytoplasm and the sparse rough endoplasmic reticulum point to the downregulated phenotype of these cells. Ligands expressed in the CNS (left-hand column) engage receptors expressed on the microglia (right-hand column) that inhibit their activation. Other soluble mediators, including the neurotransmitters acetylcholine (ACh) and noradrenaline (NA), are shown at the top of the figure.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0003-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

GFP-labeled microglia in the hippocampus of the normal adult mouse , and morphologically activated microglia in the hippocampus of a mouse with prion disease . Note the greater density of cells, larger cell bodies, and multiple processes of those in panel B compared to panel A. Courtesy of Diego Gomez-Nicola.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0003-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error