1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Evolution of Myeloid Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Daniel R. Barreda1, Harold R. Neely3, Martin F. Flajnik4
  • Editor: Siamon Gordon5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; 2: Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada; 3: Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201; 4: Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD 21201; 5: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0007-2015
  • Received 29 April 2015 Accepted 17 July 2015 Published 06 May 2016
  • Daniel R. Barreda, dan.barreda@ualberta.ca; Martin F. Flajnik, mflajnik@som.umaryland.edu
image of Evolution of Myeloid Cells
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Evolution of Myeloid Cells, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0007-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0007-2015-2.gif
  • Abstract:

    In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these “primitive” organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.

  • Citation: Barreda D, Neely H, Flajnik M. 2016. Evolution of Myeloid Cells. Microbiol Spectrum 4(3):MCHD-0007-2015. doi:10.1128/microbiolspec.MCHD-0007-2015.

Key Concept Ranking

Immune Systems
0.636899
Major Histocompatibility Complex
0.46985513
Tumor Necrosis Factor alpha
0.4642198
Chemicals
0.45466375
0.636899

References

1. Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. [PubMed][CrossRef]
2. Bayles KW. 2007. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726. [PubMed][CrossRef]
3. Ereskovsky AV, Renard E, Borchiellini C. 2013. Cellular and molecular processes leading to embryo formation in sponges: evidences for high conservation of processes throughout animal evolution. Dev Genes Evol 223:5–22. [PubMed][CrossRef]
4. Nedelcu AM. 2012. The evolution of self during the transition to multicellularity. Adv Exp Med Biol 738:14–30. [PubMed][CrossRef]
5. Lewis K. 2000. Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514. [PubMed][CrossRef]
6. Bayles KW. 2014. Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12:63–69. [PubMed][CrossRef]
7. Ranjit DK, Endres JL, Bayles KW. 2011. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol 193:2468–2476. [PubMed][CrossRef]
8. Bos J, Yakhnina AA, Gitai Z. 2012. BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter. Proc Natl Acad Sci U S A 109:18096–18101. [PubMed][CrossRef]
9. Dwyer DJ, Camacho DM, Kohanski MA, Callura JM, Collins JJ. 2012. Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. Mol Cell 46:561–572. [PubMed][CrossRef]
10. Wadhawan S, Gautam S, Sharma A. 2010. Metabolic stress-induced programmed cell death in Xanthomonas. FEMS Microbiol Lett 312:176–183. [PubMed][CrossRef]
11. Bidle KD, Falkowski PG. 2004. Cell death in planktonic, photosynthetic microorganisms. Nat Rev Microbiol 2:643–655. [PubMed][CrossRef]
12. Hakansson AP, Roche-Hakansson H, Mossberg AK, Svanborg C. 2011. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex. PLoS One 6:e17717. doi:10.1371/journal.pone.0017717. [PubMed][CrossRef]
13. Zmasek CM, Godzik A. 2013. Evolution of the animal apoptosis network. Cold Spring Harb Perspect Biol 5:a008649. doi:10.1101/cshperspect.a008649. [PubMed][CrossRef]
14. Conover MS, Mishra M, Deora R. 2011. Extracellular DNA is essential for maintaining Bordetella biofilm integrity on abiotic surfaces and in the upper respiratory tract of mice. PLoS One 6:e16861. doi:10.1371/journal.pone.0016861. [CrossRef]
15. Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8113–8118. [PubMed][CrossRef]
16. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487. doi:10.1126/science.295.5559.1487. [PubMed][CrossRef]
17. Schultz D, Onuchic JN, Ben-Jacob E. 2012. Turning death into creative force during biofilm engineering. Proc Natl Acad Sci U S A 109:18633–18634. [PubMed][CrossRef]
18. Yutin N, Wolf MY, Wolf YI, Koonin EV. 2009. The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9. doi:10.1186/1745-6150-4-9. [PubMed][CrossRef]
19. Goley ED, Welch MD. 2006. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol 7:713–726. [PubMed][CrossRef]
20. McInerney JO, O’Connell MJ, Pisani D. 2014. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat Rev Microbiol 12:449–455. [PubMed][CrossRef]
21. Martijn J, Ettema TJ. 2013. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem Soc Trans 41:451–457. [PubMed][CrossRef]
22. Poole AM, Neumann N. 2011. Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162:71–76. [PubMed][CrossRef]
23. Eliáš M, Klimeš V. 2012. Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods Mol Biol 827:13–34. [PubMed][CrossRef]
24. David CN, Schmidt N, Schade M, Pauly B, Alexandrova O, Böttger A. 2005. Hydra and the evolution of apoptosis. Integr Comp Biol 45:631–638. [PubMed][CrossRef]
25. Jékely G. 2003. Small GTPases and the evolution of the eukaryotic cell. BioEssays 25:1129–1138. [PubMed][CrossRef]
26. Thacker RW, Díaz MC, Kerner A, Vignes-Lebbe R, Segerdell E, Haendel MA, Mungall CJ. 2014. The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology. J Biomed Semantics 5:39. doi:10.1186/2041-1480-5-39. [PubMed][CrossRef]
27. Bergquist PR. 1978. Sponges. University of California Press, Berkeley, CA.
28. Vacelet J, Duport E. 2004. Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae). Zoomorphology 123:179–190. [CrossRef]
29. Wehrl M, Steinert M, Hentschel U. 2007. Bacterial uptake by the marine sponge Aplysina aerophoba. Microb Ecol 53:355–365. [PubMed][CrossRef]
30. Hadas E, Shpigel M, Ilan M. 2009. Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212:3643–3650. [PubMed][CrossRef]
31. Taylor MW, Radax R, Steger D, Wagner M. 2007. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347. [PubMed][CrossRef]
32. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440. [PubMed][CrossRef]
33. Wilkinson CR, Garrone R, Vacelet J. 1984. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope autoradiography and in situ evidence. Proc R Soc Lond B Biol Sci 220:519–528. [CrossRef]
34. Vogel S. 1977. Current-induced flow through living sponges in nature. Proc Natl Acad Sci U S A 74:2069–2071. [PubMed][CrossRef]
35. Nguyen MT, Liu M, Thomas T. 2014. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol 23:1635–1645. [PubMed][CrossRef]
36. Habyarimana F, Al-Khodor S, Kalia A, Graham JE, Price CT, Garcia MT, Kwaik YA. 2008. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages. Environ Microbiol 10:1460–1474. [PubMed][CrossRef]
37. Pan X, Lührmann A, Satoh A, Laskowski-Arce MA, Roy CR. 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:1651–1654. [PubMed][CrossRef]
38. Price CT, Al-Khodor S, Al-Quadan T, Abu Kwaik Y. 2010. Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 78:2079–2088. [PubMed][CrossRef]
39. van Schaik EJ, Chen C, Mertens K, Weber MM, Samuel JE. 2013. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol 11:561–573. [PubMed][CrossRef]
40. Ellis HM, Horvitz HR. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829. [PubMed][CrossRef]
41. Yuan J, Horvitz HR. 1992. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116:309–320. [PubMed]
42. Hengartner MO, Ellis RE, Horvitz HR. 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356:494–499. [PubMed][CrossRef]
43. Reiter S, Crescenzi M, Galliot B, Buzgariu W. 2012. Hydra, a versatile model to study the homeostatic and developmental functions of cell death. Int J Dev Biol 56:593–604. [PubMed][CrossRef]
44. Burnet FM. 1971. “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232:230–235. [PubMed][CrossRef]
45. Böttger A, Alexandrova O. 2007. Programmed cell death in Hydra. Semin Cancer Biol 17:134–146. [PubMed][CrossRef]
46. Lasi M, David CN, Böttger A. 2010. Apoptosis in pre-Bilaterians: Hydra as a model. Apoptosis 15:269–278. [PubMed][CrossRef]
47. Edgecombe GD, Giribet G, Dunn CW, Hejnol A, Kristensen RM, Neves RC, Rouse GW, Worsaae K, Sorensen MV. 2011. Higher-level metazoan relationships: recent progress and remaining questions. Org Divers Evol 11:151–172. [CrossRef]
48. Holland PW. 1999. The future of evolutionary developmental biology. Nature 402(Suppl):C41–C44. [PubMed][CrossRef]
49. Aravind L, Dixit VM, Koonin EV. 2001. Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291:1279–1284. [PubMed][CrossRef]
50. Vaux DL, Strasser A. 1996. The molecular biology of apoptosis. Proc Natl Acad Sci U S A 93:2239–2244. [PubMed][CrossRef]
51. Sokolova IM. 2009. Apoptosis in molluscan immune defense. Invertebrate Surviv J 6:49–58.
52. Poon IK, Lucas CD, Rossi AG, Ravichandran KS. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14:166–180. [PubMed][CrossRef]
53. Henson PM, Hume DA. 2006. Apoptotic cell removal in development and tissue homeostasis. Trends Immunol 27:244–250. [PubMed][CrossRef]
54. Ortega-Gómez A, Perretti M, Soehnlein O. 2013. Resolution of inflammation: an integrated view. EMBO Mol Med 5:661–674. [PubMed][CrossRef]
55. Fadok VA, Chimini G. 2001. The phagocytosis of apoptotic cells. Semin Immunol 13:365–372. [PubMed][CrossRef]
56. Elliott MR, Ravichandran KS. 2010. Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189:1059–1070. [PubMed][CrossRef]
57. Chung EY, Liu J, Homma Y, Zhang Y, Brendolan A, Saggese M, Han J, Silverstein R, Selleri L, Ma X. 2007. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27:952–964. [PubMed][CrossRef]
58. Hottz ED, Medeiros-de-Moraes IM, Vieira-de-Abreu A, de Assis EF, Vals-de-Souza R, Castro-Faria-Neto HC, Weyrich AS, Zimmerman GA, Bozza FA, Bozza PT. 2014. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J Immunol 193:1864–1872. [PubMed][CrossRef]
59. Krönke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, Zarbock A, Koenders MI, Axmann R, Zwerina J, Baenckler HW, van den Berg W, Voll RE, Kühn H, Joosten LA, Schett G. 2009. 12/15-Lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol 183:3383–3389. [PubMed][CrossRef]
60. Pattabiraman G, Lidstone EA, Palasiewicz K, Cunningham BT, Ucker DS. 2014. Recognition of apoptotic cells by viable cells is specific, ubiquitous, and species independent: analysis using photonic crystal biosensors. Mol Biol Cell 25:1704–1714. [PubMed][CrossRef]
61. McPhillips K, Janssen WJ, Ghosh M, Byrne A, Gardai S, Remigio L, Bratton DL, Kang JL, Henson P. 2007. TNF-α inhibits macrophage clearance of apoptotic cells via cytosolic phospholipase A2 and oxidant-dependent mechanisms. J Immunol 178:8117–8126. [PubMed][CrossRef]
62. Moon C, Lee YJ, Park HJ, Chong YH, Kang JL. 2010. N-Acetylcysteine inhibits RhoA and promotes apoptotic cell clearance during intense lung inflammation. Am J Respir Crit Care Med 181:374–387. [PubMed][CrossRef]
63. Rieger AM, Konowalchuk JD, Grayfer L, Katzenback BA, Havixbeck JJ, Kiemele MD, Belosevic M, Barreda DR. 2012. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS One 7:e47070. doi:10.1371/journal.pone.0047070. [PubMed][CrossRef]
64. Rieger AM, Havixbeck JJ, Belosevic M, Barreda DR. 2015. Teleost soluble CSF-1R modulates cytokine profiles at an inflammatory site, and inhibits neutrophil chemotaxis, phagocytosis, and bacterial killing. Dev Comp Immunol 49:259–266. [PubMed][CrossRef]
65. Birge RB, Ucker DS. 2008. Innate apoptotic immunity: the calming touch of death. Cell Death Differ 15:1096–1102. [PubMed][CrossRef]
66. Pang K, Ryan JF, Baxevanis AD, Martindale MQ. 2011. Evolution of the TGF-β signaling pathway and its potential role in the ctenophore, Mnemiopsis leidyi. PLoS One 6:e24152. doi:10.1371/journal.pone.0024152. [PubMed][CrossRef]
67. De Robertis EM, Sasai Y. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40. [PubMed][CrossRef]
68. Herpin A, Lelong C, Favrel P. 2004. Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol 28:461–485. [PubMed][CrossRef]
69. Kingsley DM. 1994. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146. [PubMed][CrossRef]
70. Cavaillon JM. 2011. The historical milestones in the understanding of leukocyte biology initiated by Elie Metchnikoff. J Leukoc Biol 90:413–424. [PubMed][CrossRef]
71. Metchnikoff E. 1968; orig. 1905. Immunity in infective diseases. Johnson Reprint Corporation, New York and London.
72. Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Lun CM, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S, Schrankel CS, Stensvag K. 2010. Echinoderm immunity, p 260–301. In Söderhäll K (ed), Invertebrate Immunity. Springer, New York, NY. [CrossRef]
73. West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P, Walsh MC, Choi Y, Shadel GS, Ghosh S. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–480. [PubMed][CrossRef]
74. Underhill DM, Ozinsky A. 2002. Phagocytosis of microbes: complexity in action. Annu Rev Immunol 20:825–852. [PubMed][CrossRef]
75. Danilova N. 2006. The evolution of immune mechanisms. J Exp Zoolog B Mol Dev Evol 306:496–520. [PubMed][CrossRef]
76. Jung HC, Eckmann L, Yang SK, Panja A, Fierer J, Morzycka-Wroblewska E, Kagnoff MF. 1995. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest 95:55–65. [PubMed][CrossRef]
77. Maderna P, Godson C. 2003. Phagocytosis of apoptotic cells and the resolution of inflammation. Biochim Biophys Acta 1639:141–151. [PubMed][CrossRef]
78. Henson PM, Bratton DL, Fadok VA. 2001. Apoptotic cell removal. Curr Biol 11:R795–R805. [PubMed][CrossRef]
79. Havixbeck JJ, Rieger AM, Wong ME, Wilkie MP, Barreda DR. 2014. Evolutionary conservation of divergent pro-inflammatory and homeostatic responses in lamprey phagocytes. PLoS One 9:e86255. doi:10.1371/journal.pone.0086255. [PubMed][CrossRef]
80. Esmann L, Idel C, Sarkar A, Hellberg L, Behnen M, Möller S, van Zandbergen G, Klinger M, Köhl J, Bussmeyer U, Solbach W, Laskay T. 2010. Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells. J Immunol 184:391–400. [PubMed][CrossRef]
81. Devitt A, Marshall LJ. 2011. The innate immune system and the clearance of apoptotic cells. J Leukoc Biol 90:447–457. [PubMed][CrossRef]
82. Silva MT. 2011. Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J Leukoc Biol 89:675–683. [PubMed][CrossRef]
83. Soehnlein O, Lindbom L. 2010. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439. [PubMed][CrossRef]
84. Mulero V, Sepulcre MP, Rainger GE, Buckley CD. 2011. Editorial: neutrophils live on a two-way street. J Leukoc Biol 89:645–647. [PubMed][CrossRef]
85. Scapini P, Cassatella MA. 2014. Social networking of human neutrophils within the immune system. Blood 124:710–719. [PubMed][CrossRef]
86. Weissmann G. 2010. It’s complicated: inflammation from Metchnikoff to Meryl Streep. FASEB J 24:4129–4132. [PubMed][CrossRef]
87. Steinman RM, Cohn ZA. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137:1142–1162. [PubMed][CrossRef]
88. Jolles S. 2002. Paul Langerhans. J Clin Pathol 55:243. [PubMed][CrossRef]
89. Langerhans P. 1868. Ueber die Nerven der menschlichen Haut. Arch Pathol Anat Physiol Klin Med 44:325–337. [CrossRef]
90. Karmaus PW, Chi H. 2014. Genetic dissection of dendritic cell homeostasis and function: lessons from cell type-specific gene ablation. Cell Mol Life Sci 71:1893–1906. [PubMed][CrossRef]
91. Satpathy AT, Wu X, Albring JC, Murphy KM. 2012. Re(de)fining the dendritic cell lineage. Nat Immunol 13:1145–1154. [PubMed][CrossRef]
92. Hume DA. 2008. Macrophages as APC and the dendritic cell myth. J Immunol 181:5829–5835. [PubMed][CrossRef]
93. Flajnik MF. 2014. Re-evaluation of the immunological Big Bang. Curr Biol 24:R1060–R1065. [PubMed][CrossRef]
94. Flajnik MF, Du Pasquier L. 2004. Evolution of innate and adaptive immunity: can we draw a line? Trends Immunol 25:640–644. [PubMed][CrossRef]
95. Rumfelt LL, McKinney EC, Taylor E, Flajnik MF. 2002. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56:130–148. [PubMed][CrossRef]
96. Torroba M, Chiba A, Vicente A, Varas A, Sacedón R, Jimenez E, Honma Y, Zapata AG. 1995. Macrophage-lymphocyte cell clusters in the hypothalamic ventricle of some elasmobranch fish: ultrastructural analysis and possible functional significance. Anat Rec 242:400–410. [PubMed][CrossRef]
97. Ohta Y, Landis E, Boulay T, Phillips RB, Collet B, Secombes CJ, Flajnik MF, Hansen JD. 2004. Homologs of CD83 from elasmobranch and teleost fish. J Immunol 173:4553–4560. [PubMed][CrossRef]
98. Lugo-Villarino G, Balla KM, Stachura DL, Bañuelos K, Werneck MB, Traver D. 2010. Identification of dendritic antigen-presenting cells in the zebrafish. Proc Natl Acad Sci U S A 107:15850–15855. [PubMed][CrossRef]
99. Wittamer V, Bertrand JY, Gutschow PW, Traver D. 2011. Characterization of the mononuclear phagocyte system in zebrafish. Blood 117:7126–7135. [PubMed][CrossRef]
100. Haugland GT, Jordal AE, Wergeland HI. 2012. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells. PLoS One 7:e49260. doi:10.1371/journal.pone.0049260. [CrossRef]
101. Bassity E, Clark TG. 2012. Functional identification of dendritic cells in the teleost model, rainbow trout (Oncorhynchus mykiss). PLoS One 7:e33196. doi:10.1371/journal.pone.0033196. [CrossRef]
102. Baldwin WM, III, Cohen N. 1981. A giant cell with dendritic cell properties in spleens of the anuran amphibian Xenopus laevis. Dev Comp Immunol 5:461–473. [PubMed][CrossRef]
103. Horton JD, Manning MJ. 1974. Effect of early thymectomy on the cellular changes occuring in the spleen of the clawed toad following administration of soluble antigen. Immunology 26:797–807. [PubMed]
104. Aguzzi A, Kranich J, Krautler NJ. 2014. Follicular dendritic cells: origin, phenotype, and function in health and disease. Trends Immunol 35:105–113. [PubMed][CrossRef]
105. Krautler NJ, Kana V, Kranich J, Tian Y, Perera D, Lemm D, Schwarz P, Armulik A, Browning JL, Tallquist M, Buch T, Oliveira-Martins JB, Zhu C, Hermann M, Wagner U, Brink R, Heikenwalder M, Aguzzi A. 2012. Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206. [PubMed][CrossRef]
106. Du Pasquier L, Flajnik MF. 1990. Expression of MHC class II antigens during Xenopus development. Dev Immunol 1:85–95. [PubMed][CrossRef]
107. Turpen JB, Smith PB. 1986. Analysis of hemopoietic lineage of accessory cells in the developing thymus of Xenopus laevis. J Immunol 136:412–421. [PubMed]
108. Mescher AL, Wolf WL, Moseman EA, Hartman B, Harrison C, Nguyen E, Neff AW. 2007. Cells of cutaneous immunity in Xenopus: studies during larval development and limb regeneration. Dev Comp Immunol 31:383–393. [PubMed][CrossRef]
109. García Barrutia MS, Leceta J, Fonfría J, Garrido E, Zapata A. 1983. Non-lymphoid cells of the anuran spleen: an ultrastructural study in the natterjack, Bufo calamita. Am J Anat 167:83–94. [PubMed][CrossRef]
110. García Barrutia MS, Villena A, Gomariz RP, Razquin B, Zapata A. 1985. Ultrastructural changes in the spleen of the natterjack, Bufo calamita, after antigenic stimulation. Cell Tissue Res 239:435–441. [PubMed][CrossRef]
111. Kroese FG, Leceta J, Döpp EA, Herraez MP, Nieuwenhuis P, Zapata A. 1985. Dendritic immune complex trapping cells in the spleen of the snake, Python reticulatus. Dev Comp Immunol 9:641–652. [PubMed][CrossRef]
112. Zapata A, Leceta J, Barrutia MG. 1981. Ultrastructure of splenic white pulp of the turtle, Mauremys caspica. Cell Tissue Res 220:845–855. [PubMed][CrossRef]
113. Leceta J, Zapata AG. 1991. White pulp compartments in the spleen of the turtle Mauremys caspica: a light-microscopic, electron-microscopic, and immune-histochemical study. Cell Tissue Res 266:605–613. [CrossRef]
114. Oláh I, Nagy N. 2013. Retrospection to discovery of bursal function and recognition of avian dendritic cells; past and present. Dev Comp Immunol 41:310–315. [PubMed][CrossRef]
115. Wu Z, Rothwell L, Young JR, Kaufman J, Butter C, Kaiser P. 2010. Generation and characterization of chicken bone marrow-derived dendritic cells. Immunology 129:133–145. [PubMed][CrossRef]
116. Wu Z, Hu T, Kaiser P. 2011. Chicken CCR6 and CCR7 are markers for immature and mature dendritic cells respectively. Dev Comp Immunol 35:563–567. [PubMed][CrossRef]
117. Del Cacho E, Gallego M, Lillehoj HS, López-Bernard F, Sánchez-Acedo C. 2009. Avian follicular and interdigitating dendritic cells: isolation and morphologic, phenotypic, and functional analyses. Vet Immunol Immunopathol 129:66–75. [PubMed][CrossRef]
118. Kaiser P. 2012. The long view: a bright past, a brighter future? Forty years of chicken immunology pre- and post-genome. Avian Pathol 41:511–518. [PubMed][CrossRef]
119. Magor KE, Miranzo Navarro D, Barber MR, Petkau K, Fleming-Canepa X, Blyth GA, Blaine AH. 2013. Defense genes missing from the flight division. Dev Comp Immunol 41:377–388. [PubMed][CrossRef]
microbiolspec.MCHD-0007-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0007-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0007-2015
2016-05-06
2017-11-24

Abstract:

In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins for the study of innate immunity, and an appreciation that cellular immunity was well established even in these “primitive” organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells, and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multifactorial aspects of homeostasis and immunity.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Contributions of phagocytosis to the evolution of myeloid cell function. Major events and key features identified in comparative models are highlighted. Metazoa refers to multicellular animals; invertebrates of the protostome lineage arose 600 MYA and deuterostomes ∼500 MYA. Agnathans are jawless fish, and all other vertebrates have jaws (gnathostomes). Adaptive immunity is found only in the vertebrates, as well as the division of labor among myeloid cells that is well known in mammals. Refer to the text for details of each of the particular features described in the figure. MPS, mononuclear phagocyte system.

Source: microbiolspec May 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0007-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error