1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Transcriptional Regulation and Macrophage Differentiation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: David A. Hume1, Kim M. Summers2, Michael Rehli3
  • Editor: Siamon Gordon4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: University of Edinburgh, The Roslin Institute and Royal (Dick) School of Veterinary Studies, Midlothian EH25 9RG, United Kingdom; 2: University of Edinburgh, The Roslin Institute and Royal (Dick) School of Veterinary Studies, Midlothian EH25 9RG, United Kingdom; 3: University Hospital Regensburg, Department of Internal Medicine III, D-93047 Regensburg, Germany; 4: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0024-2015
  • Received 14 October 2015 Accepted 23 October 2015 Published 03 June 2016
  • David A. Hume, david.hume@roslin.ed.ac.uk
image of Transcriptional Regulation and Macrophage Differentiation
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Transcriptional Regulation and Macrophage Differentiation, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0024-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/3/MCHD-0024-2015-2.gif
  • Abstract:

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  • Citation: Hume D, Summers K, Rehli M. 2016. Transcriptional Regulation and Macrophage Differentiation. Microbiol Spectrum 4(3):MCHD-0024-2015. doi:10.1128/microbiolspec.MCHD-0024-2015.

Key Concept Ranking

Innate Immune System
0.64068353
Transcription Start Site
0.5061023
Major Histocompatibility Complex
0.4332316
MHC Class II
0.41389108
0.64068353

References

1. van Furth R, Cohn ZA. 1968. The origin and kinetics of mononuclear phagocytes. J Exp Med 128:415–435. [PubMed][CrossRef]
2. Hume DA. 2006. The mononuclear phagocyte system. Curr Opin Immunol 18:49–53. [PubMed][CrossRef]
3. Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T. 2002. The mononuclear phagocyte system revisited. J Leukoc Biol 72:621–627. [PubMed]
4. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. [PubMed][CrossRef]
5. Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. [PubMed][CrossRef]
6. Hume DA. 2008. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol 1:432–441. [PubMed][CrossRef]
7. Hume DA, MacDonald KP. 2012. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119:1810–1820. [PubMed][CrossRef]
8. Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:445–455. [PubMed][CrossRef]
9. Gordon S, Taylor PR. 2005. Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964. [PubMed][CrossRef]
10. Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM, Wong SC. 2012. The three human monocyte subsets: implications for health and disease. Immunol Res 53:41–57. [PubMed][CrossRef]
11. Ziegler-Heitbrock L. 2014. Monocyte subsets in man and other species. Cell Immunol 289:135–139. [PubMed][CrossRef]
12. Ziegler-Heitbrock L. 2015. Blood monocytes and their subsets: established features and open questions. Front Immunol 6:423. doi:10.3389/fimmu.2015.00423. [PubMed][CrossRef]
13. Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, Scherberich J, Schmitz J, Shortman K, Sozzani S, Strobl H, Zembala M, Austyn JM, Lutz MB. 2010. Nomenclature of monocytes and dendritic cells in blood. Blood 116:e74–e80. doi:10.1182/blood-2010-02-258558. [CrossRef]
14. Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. [PubMed][CrossRef]
15. Bain CC, Mowat AM. 2014. The monocyte-macrophage axis in the intestine. Cell Immunol 291:41–48. [PubMed][CrossRef]
16. Epelman S, Lavine KJ, Randolph GJ. 2014. Origin and functions of tissue macrophages. Immunity 41:21–35. [PubMed][CrossRef]
17. Jenkins SJ, Hume DA. 2014. Homeostasis in the mononuclear phagocyte system. Trends Immunol 35:358–367. [PubMed][CrossRef]
18. Zigmond E, Jung S. 2013. Intestinal macrophages: well educated exceptions from the rule. Trends Immunol 34:162–168. [PubMed][CrossRef]
19. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, Ivanov S, Duan Q, Bala S, Condon T, van Rooijen N, Grainger JR, Belkaid Y, Ma’ayan A, Riches DW, Yokoyama WM, Ginhoux F, Henson PM, Randolph GJ. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39:599–610. [PubMed][CrossRef]
20. Cros J, Cagnard N, Woollard K, Patey N, Zhang SY, Senechal B, Puel A, Biswas SK, Moshous D, Picard C, Jais JP, D’Cruz D, Casanova JL, Trouillet C, Geissmann F. 2010. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity 33:375–386. [PubMed][CrossRef]
21. Thomas G, Tacke R, Hedrick CC, Hanna RN. 2015. Nonclassical patrolling monocyte function in the vasculature. Arterioscler Thromb Vasc Biol 35:1306–1316. [PubMed][CrossRef]
22. Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R, Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L, Randolph GJ. 2010. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115:e10–e19. doi:10.1182/blood-2009-07-235028. [CrossRef]
23. Hollox EJ, Hoh BP. 2014. Human gene copy number variation and infectious disease. Hum Genet 133:1217–1233. [PubMed][CrossRef]
24. Hussen J, Düvel A, Sandra O, Smith D, Sheldon IM, Zieger P, Schuberth HJ. 2013. Phenotypic and functional heterogeneity of bovine blood monocytes. PLoS One 8:e71502. doi:10.1371/journal.pone.0071502. [PubMed][CrossRef]
25. Fairbairn L, Kapetanovic R, Beraldi D, Sester DP, Tuggle CK, Archibald AL, Hume DA. 2013. Comparative analysis of monocyte subsets in the pig. J Immunol 190:6389–6396. [PubMed][CrossRef]
26. Yrlid U, Jenkins CD, MacPherson GG. 2006. Relationships between distinct blood monocyte subsets and migrating intestinal lymph dendritic cells in vivo under steady-state conditions. J Immunol 176:4155–4162. [PubMed][CrossRef]
27. Burke B, Ahmad R, Staples KJ, Snowden R, Kadioglu A, Frankenberger M, Hume DA, Ziegler-Heitbrock L. 2008. Increased TNF expression in CD43++ murine blood monocytes. Immunol Lett 118:142–147. [PubMed][CrossRef]
28. Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ. 2004. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172:4410–4417. [PubMed][CrossRef]
29. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S. 2013. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91. [PubMed][CrossRef]
30. Sauter KA, Pridans C, Sehgal A, Bain CC, Scott C, Moffat L, Rojo R, Stutchfield BM, Davies CL, Donaldson DS, Renault K, McColl BW, Mowat AM, Serrels A, Frame MC, Mabbott NA, Hume DA. 2014. The MacBlue binary transgene (csf1r-gal4VP16/UAS-ECFP) provides a novel marker for visualisation of subsets of monocytes, macrophages and dendritic cells and responsiveness to CSF1 administration. PLoS One 9:e105429. doi:10.1371/journal.pone.0105429. [CrossRef]
31. Naito M, Yamamura F, Nishikawa S, Takahashi K. 1989. Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultures. J Leukoc Biol 46:1–10. [PubMed]
32. Lichanska AM, Browne CM, Henkel GW, Murphy KM, Ostrowski MC, McKercher SR, Maki RA, Hume DA. 1999. Differentiation of the mononuclear phagocyte system during mouse embryogenesis: the role of transcription factor PU.1. Blood 94:127–138. [PubMed]
33. Lichanska AM, Hume DA. 2000. Origins and functions of phagocytes in the embryo. Exp Hematol 28:601–611. [PubMed][CrossRef]
34. Luchin A, Suchting S, Merson T, Rosol TJ, Hume DA, Cassady AI, Ostrowski MC. 2001. Genetic and physical interactions between microphthalmia transcription factor and PU.1 are necessary for osteoclast gene expression and differentiation. J Biol Chem 276:36703–36710. [PubMed][CrossRef]
35. Cuadros MA, Coltey P, Carmen Nieto M, Martin C. 1992. Demonstration of a phagocytic cell system belonging to the hemopoietic lineage and originating from the yolk sac in the early avian embryo. Development 115:157–168. [PubMed]
36. Garceau V, Balic A, Garcia-Morales C, Sauter KA, McGrew MJ, Smith J, Vervelde L, Sherman A, Fuller TE, Oliphant T, Shelley JA, Tiwari R, Wilson TL, Chintoan-Uta C, Burt DW, Stevens MP, Sang HM, Hume DA. 2015. The development and maintenance of the mononuclear phagocyte system of the chick is controlled by signals from the macrophage colony-stimulating factor receptor. BMC Biol 13:12. doi:10.1186/s12915-015-0121-9. [CrossRef]
37. Hettinger J, Richards DM, Hansson J, Barra MM, Joschko AC, Krijgsveld J, Feuerer M. 2013. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14:821–830. [PubMed][CrossRef]
38. Swirski FK, Hilgendorf I, Robbins CS. 2014. From proliferation to proliferation: monocyte lineage comes full circle. Semin Immunopathol 36:137–148. [PubMed][CrossRef]
39. Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H, Nakauchi H. 2013. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126. [PubMed][CrossRef]
40. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. [PubMed][CrossRef]
41. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, Kissenpfennig A, Barbaroux JB, Groves R, Geissmann F. 2009. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med 206:3089–3100. [PubMed][CrossRef]
42. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, Leboeuf M, Low D, Oller G, Almeida F, Choy SH, Grisotto M, Renia L, Conway SJ, Stanley ER, Chan JK, Ng LG, Samokhvalov IM, Merad M, Ginhoux F. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 209:1167–1181. [PubMed][CrossRef]
43. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, Deswarte K, Malissen B, Hammad H, Lambrecht BN. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med 210:1977–1992. [PubMed][CrossRef]
44. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. [PubMed][CrossRef]
45. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, Becker CD, See P, Price J, Lucas D, Greter M, Mortha A, Boyer SW, Forsberg EC, Tanaka M, van Rooijen N, García-Sastre A, Stanley ER, Ginhoux F, Frenette PS, Merad M. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804. [PubMed][CrossRef]
46. Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S, Malissen B, Osborne LC, Artis D, Mowat AM. 2014. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol 15:929–937. [PubMed][CrossRef]
47. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Hölscher C, Müller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280. [PubMed][CrossRef]
48. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F, Rodewald HR. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:547–551. [PubMed][CrossRef]
49. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, Brija T, Gautier EL, Ivanov S, Satpathy AT, Schilling JD, Schwendener R, Sergin I, Razani B, Forsberg EC, Yokoyama WM, Unanue ER, Colonna M, Randolph GJ, Mann DL. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:91–104. [PubMed][CrossRef]
50. Sheng J, Ruedl C, Karjalainen K. 2015. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43:382–393. [PubMed][CrossRef]
51. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, Beaudin AE, Lum J, Low I, Forsberg EC, Poidinger M, Zolezzi F, Larbi A, Ng LG, Chan JK, Greter M, Becher B, Samokhvalov IM, Merad M, Ginhoux F. 2015. C-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:665–678. [PubMed][CrossRef]
52. Hume DA, Perry VH, Gordon S. 1983. Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97:253–257. [PubMed][CrossRef]
53. Perry VH, Hume DA, Gordon S. 1985. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15:313–326. [PubMed][CrossRef]
54. Nakamichi Y, Udagawa N, Takahashi N. 2013. IL-34 and CSF-1: similarities and differences. J Bone Miner Metab 31:486–495. [PubMed][CrossRef]
55. Gow DJ, Sauter KA, Pridans C, Moffat L, Sehgal A, Stutchfield BM, Raza S, Beard PM, Tsai YT, Bainbridge G, Boner PL, Fici G, Garcia-Tapia D, Martin RA, Oliphant T, Shelly JA, Tiwari R, Wilson TL, Smith LB, Mabbott NA, Hume DA. 2014. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol Ther 22:1580–1592. [CrossRef]
56. Hume DA, Pavli P, Donahue RE, Fidler IJ. 1988. The effect of human recombinant macrophage colony-stimulating factor (CSF-1) on the murine mononuclear phagocyte system in vivo. J Immunol 141:3405–3409. [PubMed]
57. Jenkins SJ, Ruckerl D, Thomas GD, Hewitson JP, Duncan S, Brombacher F, Maizels RM, Hume DA, Allen JE. 2013. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J Exp Med 210:2477–2491. [PubMed][CrossRef]
58. Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER. 1987. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A 84:6179–6183. [PubMed][CrossRef]
59. MacDonald KP, Palmer JS, Cronau S, Seppanen E, Olver S, Raffelt NC, Kuns R, Pettit AR, Clouston A, Wainwright B, Branstetter D, Smith J, Paxton RJ, Cerretti DP, Bonham L, Hill GR, Hume DA. 2010. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood 116:3955–3963. [PubMed][CrossRef]
60. Pollard JW. 2009. Trophic macrophages in development and disease. Nat Rev Immunol 9:259–270. [PubMed][CrossRef]
61. Sudo T, Nishikawa S, Ogawa M, Kataoka H, Ohno N, Izawa A, Hayashi S, Nishikawa S. 1995. Functional hierarchy of c-kit and c-fms in intramarrow production of CFU-M. Oncogene 11:2469–2476. [PubMed]
62. Yao GQ, Wu JJ, Troiano N, Zhu ML, Xiao XY, Insogna K. 2012. Selective deletion of the membrane-bound colony stimulating factor 1 isoform leads to high bone mass but does not protect against estrogen-deficiency bone loss. J Bone Miner Metab 30:408–418. [PubMed][CrossRef]
63. De M, Sanford T, Wood GW. 1993. Relationship between macrophage colony-stimulating factor production by uterine epithelial cells and accumulation and distribution of macrophages in the uterus of pregnant mice. J Leukoc Biol 53:240–248. [PubMed]
64. Carreras E, Turner S, Paharkova-Vatchkova V, Mao A, Dascher C, Kovats S. 2008. Estradiol acts directly on bone marrow myeloid progenitors to differentially regulate GM-CSF or Flt3 ligand-mediated dendritic cell differentiation. J Immunol 180:727–738. [PubMed][CrossRef]
65. Gordon S. 2008. Elie Metchnikoff: father of natural immunity. Eur J Immunol 38:3257–3264. [PubMed][CrossRef]
66. Freeman TC, Ivens A, Baillie JK, Beraldi D, Barnett MW, Dorward D, Downing A, Fairbairn L, Kapetanovic R, Raza S, Tomoiu A, Alberio R, Wu C, Su AI, Summers KM, Tuggle CK, Archibald AL, Hume DA. 2012. A gene expression atlas of the domestic pig. BMC Biol 10:90. doi:10.1186/1741-7007-10-90. [PubMed][CrossRef]
67. Hume DA, Summers KM, Raza S, Baillie JK, Freeman TC. 2010. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations. Genomics 95:328–338. [PubMed][CrossRef]
68. van Dam S, Craig T, de Magalhães JP. 2015. GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res 43(Database issue):D1124–D1132. [PubMed][CrossRef]
69. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB. 2004. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101:6062–6067. [PubMed][CrossRef]
70. Theocharidis A, van Dongen S, Enright AJ, Freeman TC. 2009. Network visualization and analysis of gene expression data using BioLayout Express3D. Nat Protoc 4:1535–1550. [PubMed][CrossRef]
71. Freeman TC, Goldovsky L, Brosch M, van Dongen S, Mazière P, Grocock RJ, Freilich S, Thornton J, Enright AJ. 2007. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLoS Comput Biol 3:2032–2042. [PubMed][CrossRef]
72. Mabbott NA, Kenneth Baillie J, Hume DA, Freeman TC. 2010. Meta-analysis of lineage-specific gene expression signatures in mouse leukocyte populations. Immunobiology 215:724–736. [PubMed][CrossRef]
73. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. 2013. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics 14:632. doi:10.1186/1471-2164-14-632. [PubMed][CrossRef]
74. Feng R, Desbordes SC, Xie H, Tillo ES, Pixley F, Stanley ER, Graf T. 2008. PU.1 and C/EBPα/β convert fibroblasts into macrophage-like cells. Proc Natl Acad Sci U S A 105:6057–6062. [PubMed][CrossRef]
75. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. [PubMed][CrossRef]
76. Rehli M, Lichanska A, Cassady AI, Ostrowski MC, Hume DA. 1999. TFEC is a macrophage-restricted member of the microphthalmia-TFE subfamily of basic helix-loop-helix leucine zipper transcription factors. J Immunol 162:1559–1565. [PubMed]
77. Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C, Yokomizo T, Esaki R, Kuroda E, Yoh K, Kudo T, Nagata M, Greaves DR, Engel JD, Yamamoto M, Takahashi S. 2006. MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol 26:5715–5727. [PubMed][CrossRef]
78. Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, Kelly Modis L, Kastner P, Chan S, Duprez E, Otto C, Sieweke MH. 2009. MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138:300–313. [PubMed][CrossRef]
79. Hume DA. 2008. Macrophages as APC and the dendritic cell myth. J Immunol 181:5829–5835. [PubMed][CrossRef]
80. Geissmann F, Gordon S, Hume DA, Mowat AM, Randolph GJ. 2010. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10:453–460. [PubMed][CrossRef]
81. Hume DA, Mabbott N, Raza S, Freeman TC. 2013. Can DCs be distinguished from macrophages by molecular signatures? Nat Immunol 14:187–189. [PubMed][CrossRef]
82. Mildner A, Jung S. 2014. Development and function of dendritic cell subsets. Immunity 40:642–656. [PubMed][CrossRef]
83. Gautier EL, Shay T, Miller J, Greter M, Jakubzick C, Ivanov S, Helft J, Chow A, Elpek KG, Gordonov S, Mazloom AR, Ma’ayan A, Chua WJ, Hansen TH, Turley SJ, Merad M, Randolph GJ, Immunological Genome Consortium. 2012. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol 13:1118–1128. [PubMed][CrossRef]
84. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, Pandey G, Leboeuf M, Elpek KG, Helft J, Hashimoto D, Chow A, Price J, Greter M, Bogunovic M, Bellemare-Pelletier A, Frenette PS, Randolph GJ, Turley SJ, Merad M, Immunological Genome Consortium. 2012. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13:888–899. [PubMed][CrossRef]
85. Doig TN, Hume DA, Theocharidis T, Goodlad JR, Gregory CD, Freeman TC. 2013. Coexpression analysis of large cancer datasets provides insight into the cellular phenotypes of the tumour microenvironment. BMC Genomics 14:469. doi:10.1186/1471-2164-14-469. [CrossRef]
86. Vu Manh TP, Bertho N, Hosmalin A, Schwartz-Cornil I, Dalod M. 2015. Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260. doi:10.3389/fimmu.2015.00260. [CrossRef]
87. Merad M, Sathe P, Helft J, Miller J, Mortha A. 2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31:563–604. [PubMed][CrossRef]
88. Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V, Baillie JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna V, Tyler-Smith C, Dunning J, Gordon SB, GenISIS Investigators, MOSAIC Investigators, Smyth RL, Openshaw PJ, Dougan G, Brass AL, Kellam P. 2012. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484:519–523. [PubMed][CrossRef]
89. Haegel H, Thioudellet C, Hallet R, Geist M, Menguy T, Le Pogam F, Marchand JB, Toh ML, Duong V, Calcei A, Settelen N, Preville X, Hennequi M, Grellier B, Ancian P, Rissanen J, Clayette P, Guillen C, Rooke R, Bonnefoy JY. 2013. A unique anti-CD115 monoclonal antibody which inhibits osteolysis and skews human monocyte differentiation from M2-polarized macrophages toward dendritic cells. MAbs 5:736–747. [PubMed][CrossRef]
90. Malissen B, Tamoutounour S, Henri S. 2014. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol 14:417–428. [PubMed][CrossRef]
91. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, Pollet E, Ardouin L, Luche H, Sanchez C, Dalod M, Malissen B, Henri S. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39:925–938. [PubMed][CrossRef]
92. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S. 2014. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14:571–578. [PubMed][CrossRef]
93. Raza S, Barnett MW, Barnett-Itzhaki Z, Amit I, Hume DA, Freeman TC. 2014. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators. J Leukoc Biol 96:167–183. [PubMed][CrossRef]
94. Sans-Fons MG, Yeramian A, Pereira-Lopes S, Santamaría-Babi LF, Modolell M, Lloberas J, Celada A. 2013. Arginine transport is impaired in C57Bl/6 mouse macrophages as a result of a deletion in the promoter of Slc7a2 (CAT2), and susceptibility to Leishmania infection is reduced. J Infect Dis 207:1684–1693. [PubMed][CrossRef]
95. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL. 2014. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat Neurosci 17:131–143. [PubMed][CrossRef]
96. Schilling E, El Chartouni C, Rehli M. 2009. Allele-specific DNA methylation in mouse strains is mainly determined by cis-acting sequences. Genome Res 19:2028–2035. [PubMed][CrossRef]
97. Heinz S, Romanoski CE, Benner C, Allison KA, Kaikkonen MU, Orozco LD, Glass CK. 2013. Effect of natural genetic variation on enhancer selection and function. Nature 503:487–492. [PubMed][CrossRef]
98. Wells CA, Ravasi T, Faulkner GJ, Carninci P, Okazaki Y, Hayashizaki Y, Sweet M, Wainwright BJ, Hume DA. 2003. Genetic control of the innate immune response. BMC Immunol 4:5. doi:10.1186/1471-2172-4-5. [PubMed][CrossRef]
99. Chen L, Kostadima M, Martens JH, Canu G, Garcia SP, Turro E, Downes K, Macaulay IC, Bielczyk-Maczynska E, Coe S, Farrow S, Poudel P, Burden F, Jansen SB, Astle WJ, Attwood A, Bariana T, de Bono B, Breschi A, Chambers JC, BRIDGE Consortium, Choudry FA, Clarke L, Coupland P, van der Ent M, Erber WN, Jansen JH, Favier R, Fenech ME, Foad N, Freson K, van Geet C, Gomez K, Guigo R, Hampshire D, Kelly AM, Kerstens HH, Kooner JS, Laffan M, Lentaigne C, Labalette C, Martin T, Meacham S, Mumford A, Nürnberg S, Palumbo E, van der Reijden BA, Richardson D, Sammut SJ, Slodkowicz G, Tamuri AU, Vasquez L, Voss K, Watt S, Westbury S, Flicek P, Loos R, Goldman N, Bertone P, Read RJ, Richardson S, Cvejic A, Soranzo N, Ouwehand WH, Stunnenberg HG, Frontini M, Rendon A. 2014. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345:1251033. doi:10.1126/science.1251033. [CrossRef]
100. Laurenti E, Doulatov S, Zandi S, Plumb I, Chen J, April C, Fan JB, Dick JE. 2013. The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment. Nat Immunol 14:756–763. [PubMed][CrossRef]
101. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, Frampton GM, Drake AC, Leskov I, Nilsson B, Preffer F, Dombkowski D, Evans JW, Liefeld T, Smutko JS, Chen J, Friedman N, Young RA, Golub TR, Regev A, Ebert BL. 2011. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:296–309. [PubMed][CrossRef]
102. Qiao W, Wang W, Laurenti E, Turinsky AL, Wodak SJ, Bader GD, Dick JE, Zandstra PW. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol Syst Biol 10:741. doi:10.15252/msb.20145141. [CrossRef]
103. Martinez FO, Gordon S, Locati M, Mantovani A. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177:7303–7311. [PubMed][CrossRef]
104. Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, Chen W, Rehli M. 2012. Dynamic epigenetic enhancer signatures reveal key transcription factors associated with monocytic differentiation states. Blood 119:e161–e171. doi:10.1182/blood-2012-01-402453. [CrossRef]
105. FANTOM Consortium, Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, Lassmann T, Ravasi T, Hasegawa Y, de Hoon MJ, Katayama S, Schroder K, Carninci P, Tomaru Y, Kanamori-Katayama M, Kubosaki A, Akalin A, Ando Y, Arner E, Asada M, Asahara H, Bailey T, Bajic VB, Bauer D, Beckhouse AG, Bertin N, Björkegren J, Brombacher F, Bulger E, Chalk AM, Chiba J, Cloonan N, Dawe A, Dostie J, Engström PG, Essack M, Faulkner GJ, Fink JL, Fredman D, Fujimori K, Furuno M, Gojobori T, Gough J, Grimmond SM, Gustafsson M, Hashimoto M, Hashimoto T, Hatakeyama M, Heinzel S, et al. 2009. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 41:553–562. [PubMed][CrossRef]
106. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, Chen Y, Zhao X, Schmidl C, Suzuki T, Ntini E, Arner E, Valen E, Li K, Schwarzfischer L, Glatz D, Raithel J, Lilje B, Rapin N, Bagger FO, Jørgensen M, Andersen PR, Bertin N, Rackham O, Burroughs AM, Baillie JK, Ishizu Y, Shimizu Y, Furuhata E, Maeda S, Negishi Y, Mungall CJ, Meehan TF, Lassmann T, Itoh M, Kawaji H, Kondo N, Kawai J, Lennartsson A, Daub CO, Heutink P, Hume DA, Jensen TH, Suzuki H, Hayashizaki Y, Müller F, FANTOM Consortium, Forrest AR, Carninci P, Rehli M, Sandelin A. 2014. An atlas of active enhancers across human cell types and tissues. Nature 507:455–461. [PubMed][CrossRef]
107. FANTOM Consortium and the RIKEN PMI and CLST (DGT), Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, Andersson R, Mungall CJ, Meehan TF, Schmeier S, Bertin N, Jørgensen M, Dimont E, Arner E, Schmidl C, Schaefer U, Medvedeva YA, Plessy C, Vitezic M, Severin J, Semple C, Ishizu Y, Young RS, Francescatto M, Alam I, Albanese D, Altschuler GM, Arakawa T, Archer JA, Arner P, Babina M, Rennie S, Balwierz PJ, Beckhouse AG, Pradhan-Bhatt S, Blake JA, Blumenthal A, Bodega B, Bonetti A, Briggs J, Brombacher F, Burroughs AM, Califano A, Cannistraci CV, Carbajo D, et al. 2014. A promoter-level mammalian expression atlas. Nature 507:462–470. [PubMed][CrossRef]
108. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, Ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG. 2014. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086. doi:10.1126/science.1251086. [CrossRef]
109. Joshi A, Pooley C, Freeman TC, Lennartsson A, Babina M, Schmidl C, Geijtenbeek T, the FANTOM Consortium, Michoel T, Severin J, Itoh M, Lassmann T, Kawaji H, Hayashizaki Y, Carninci P, Forrest AR, Rehli M, Hume DA. 2015. Transcription factor, promoter, and enhancer utilization in human myeloid cells. J Leukoc Biol doi:10.1189/jlb.6TA1014-477RR. [CrossRef]
110. D’Aveni M, Rossignol J, Coman T, Sivakumaran S, Henderson S, Manzo T, Santos e Sousa P, Bruneau J, Fouquet G, Zavala F, Alegria-Prévot O, Garfa-Traoré M, Suarez F, Trebeden-Nègre H, Mohty M, Bennett CL, Chakraverty R, Hermine O, Rubio MT. 2015. G-CSF mobilizes CD34+ regulatory monocytes that inhibit graft-versus-host disease. Sci Transl Med 7:281ra42. doi:10.1126/scitranslmed.3010435. [CrossRef]
111. Schmidl C, Renner K, Peter K, Eder R, Lassmann T, Balwierz PJ, Itoh M, Nagao-Sato S, Kawaji H, Carninci P, Suzuki H, Hayashizaki Y, Andreesen R, Hume DA, Hoffmann P, Forrest AR, Kreutz MP, Edinger M, Rehli M, FANTOM consortium. 2014. Transcription and enhancer profiling in human monocyte subsets. Blood 123:e90–e99. doi:10.1182/blood-2013-02-484188. [CrossRef]
112. Huber R, Pietsch D, Günther J, Welz B, Vogt N, Brand K. 2014. Regulation of monocyte differentiation by specific signaling modules and associated transcription factor networks. Cell Mol Life Sci 71:63–92. [PubMed][CrossRef]
113. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, Geissmann F. 2013. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:362–375. [PubMed][CrossRef]
114. Tagoh H, Himes R, Clarke D, Leenen PJ, Riggs AD, Hume D, Bonifer C. 2002. Transcription factor complex formation and chromatin fine structure alterations at the murine c-fms (CSF-1 receptor) locus during maturation of myeloid precursor cells. Genes Dev 16:1721–1737. [PubMed][CrossRef]
115. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH. 2013. M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497:239–243. [PubMed][CrossRef]
116. Krysinska H, Hoogenkamp M, Ingram R, Wilson N, Tagoh H, Laslo P, Singh H, Bonifer C. 2007. A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol Cell Biol 27:878–887. [PubMed][CrossRef]
117. Ross IL, Dunn TL, Yue X, Roy S, Barnett CJ, Hume DA. 1994. Comparison of the expression and function of the transcription factor PU.1 (Spi-1 proto-oncogene) between murine macrophages and B lymphocytes. Oncogene 9:121–132. [PubMed]
118. Reddy MA, Yang BS, Yue X, Barnett CJ, Ross IL, Sweet MJ, Hume DA, Ostrowski MC. 1994. Opposing actions of c-ets/PU.1 and c-myb protooncogene products in regulating the macrophage-specific promoters of the human and mouse colony-stimulating factor-1 receptor (c-fms) genes. J Exp Med 180:2309–2319. [PubMed][CrossRef]
119. Bonifer C, Hume DA. 2008. The transcriptional regulation of the colony-stimulating factor 1 receptor (csf1r) gene during hematopoiesis. Front Biosci 13:549–560. [PubMed][CrossRef]
120. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. 2010. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38:576–589. [PubMed][CrossRef]
121. Ross IL, Yue X, Ostrowski MC, Hume DA. 1998. Interaction between PU.1 and another Ets family transcription factor promotes macrophage-specific basal transcription initiation. J Biol Chem 273:6662–6669. [PubMed][CrossRef]
122. Hume DA, Sasmono T, Himes SR, Sharma SM, Bronisz A, Constantin M, Ostrowski MC, Ross IL. 2008. The Ewing sarcoma protein (EWS) binds directly to the proximal elements of the macrophage-specific promoter of the CSF-1 receptor (csf1r) gene. J Immunol 180:6733–6742. [PubMed][CrossRef]
123. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, Ostrowski MC, Himes SR, Hume DA. 2003. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163. [PubMed][CrossRef]
124. Sauter KA, Bouhlel MA, O’Neal J, Sester DP, Tagoh H, Ingram RM, Pridans C, Bonifer C, Hume DA. 2013. The function of the conserved regulatory element within the second intron of the mammalian Csf1r locus. PLoS One 8:e54935. doi:10.1371/journal.pone.0054935. [CrossRef]
125. Alder JK, Georgantas RW, III, Hildreth RL, Kaplan IM, Morisot S, Yu X, McDevitt M, Civin CI. 2008. Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180:5645–5652. [PubMed][CrossRef]
126. Sauter KA, Pridans C, Sehgal A, Tsai YT, Bradford BM, Raza S, Moffat L, Gow DJ, Beard PM, Mabbott NA, Smith LB, Hume DA. 2014. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol 96:265–274. [PubMed][CrossRef]
127. Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, Orlofsky A, Liu Q, Hume DA, Pollard JW, Augenlicht L, Lin EY. 2010. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176:952–967. [PubMed][CrossRef]
128. Ovchinnikov DA, DeBats CE, Sester DP, Sweet MJ, Hume DA. 2010. A conserved distal segment of the mouse CSF-1 receptor promoter is required for maximal expression of a reporter gene in macrophages and osteoclasts of transgenic mice. J Leukoc Biol 87:815–822. [PubMed][CrossRef]
129. Ovchinnikov DA, van Zuylen WJ, DeBats CE, Alexander KA, Kellie S, Hume DA. 2008. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukoc Biol 83:430–433. [PubMed][CrossRef]
130. van Zuylen WJ, Garceau V, Idris A, Schroder K, Irvine KM, Lattin JE, Ovchinnikov DA, Perkins AC, Cook AD, Hamilton JA, Hertzog PJ, Stacey KJ, Kellie S, Hume DA, Sweet MJ. 2011. Macrophage activation and differentiation signals regulate Schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis. PLoS One 6:e15723. doi:10.1371/journal.pone.0015723. [CrossRef]
131. Jacquelin S, Licata F, Dorgham K, Hermand P, Poupel L, Guyon E, Deterre P, Hume DA, Combadière C, Boissonnas A. 2013. CX3CR1 reduces Ly6Chigh-monocyte motility within and release from the bone marrow after chemotherapy in mice. Blood 122:674–683. [PubMed][CrossRef]
132. Pridans CE, Lillico S, Whitelaw CBA, Hume DA. 2014. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals. Mol Ther Methods Clin Dev 1:14010. doi:10.1038/mtm.2014.10. [CrossRef]
133. Balic A, Garcia-Morales C, Vervelde L, Gilhooley H, Sherman A, Garceau V, Gutowska MW, Burt DW, Kaiser P, Hume DA, Sang HM. 2014. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage. Development 141:3255–3265. [PubMed][CrossRef]
134. Cuadros MA, Martin C, Coltey P, Almendros A, Navascués J. 1993. First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330:113–129. [PubMed][CrossRef]
135. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. [PubMed][CrossRef]
136. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340. [PubMed][CrossRef]
137. Gautier EL, Ivanov S, Williams JW, Huang SC, Marcelin G, Fairfax K, Wang PL, Francis JS, Leone P, Wilson DB, Artyomov MN, Pearce EJ, Randolph GJ. 2014. Gata6 regulates aspartoacylase expression in resident peritoneal macrophages and controls their survival. J Exp Med 211:1525–1531. [PubMed][CrossRef]
138. Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, O’Donnell VB, Fraser DJ, Jones SA, Taylor PR. 2014. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344:645–648. [PubMed][CrossRef]
139. Gordon S. 2007. The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17. [PubMed][CrossRef]
140. Taylor PR, Gordon S. 2003. Monocyte heterogeneity and innate immunity. Immunity 19:2–4. [CrossRef]
141. Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795. [PubMed][CrossRef]
142. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-γ: an overview of signals, mechanisms and functions. J Leukoc Biol 75:163–189. [PubMed][CrossRef]
143. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, MacDonald AS, Allen JE. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:1284–1288. [PubMed][CrossRef]
144. Schroder K, Irvine KM, Taylor MS, Bokil NJ, Le Cao KA, Masterman K-A, Labzin LI, Semple CA, Kapetanovic R, Fairbairn L, Akalin A, Faulkner GJ, Baillie JK, Gongora M, Daub CO, Kawaji H, McLachlan GJ, Goldman N, Grimmond SM, Carninci P, Suzuki H, Hayashizaki Y, Lenhard B, Hume DA, Sweet MJ. 2012. Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A 109:E944–E953. doi:10.1073/pnas.1110156109. [CrossRef]
145. Kapetanovic R, Fairbairn L, Beraldi D, Sester DP, Archibald AL, Tuggle CK, Hume DA. 2012. Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide. J Immunol 188:3382–3394. [PubMed][CrossRef]
146. Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, Ten Hacken NH, Cobos Jiménez V, Kootstra NA, Hamann J, Greaves DR, Locati M, Mantovani A, Gordon S. 2013. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences. Blood 121:e57–e69. doi:10.1182/blood-2012-06-436212. [CrossRef]
147. Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969. [PubMed][CrossRef]
148. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL. 2014. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40:274–288. [PubMed][CrossRef]
149. Breen FN, Hume DA, Weidemann MJ. 1991. Interactions among granulocyte-macrophage colony-stimulating factor, macrophage colony-stimulating factor, and IFN-gamma lead to enhanced proliferation of murine macrophage progenitor cells. J Immunol 147:1542–1547. [PubMed]
150. Fairfax BP, Humburg P, Makino S, Naranbhai V, Wong D, Lau E, Jostins L, Plant K, Andrews R, McGee C, Knight JC. 2014. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343:1246949. doi:10.1126/science.1246949. [PubMed][CrossRef]
151. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D, Trombetta JJ, Gennert D, Gnirke A, Goren A, Hacohen N, Levin JZ, Park H, Regev A. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240. [PubMed][CrossRef]
152. Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ, Aderem A, Grimmond S, Hume DA. 2002. Generation of diversity in the innate immune system: macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 168:44–50. [PubMed][CrossRef]
153. Pereira JP, Girard R, Chaby R, Cumano A, Vieira P. 2003. Monoallelic expression of the murine gene encoding Toll-like receptor 4. Nat Immunol 4:464–470. [PubMed][CrossRef]
154. Kondo T, Kawai T, Akira S. 2012. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol 33:449–458. [PubMed][CrossRef]
155. Wells CA, Ravasi T, Hume DA. 2005. Inflammation suppressor genes: please switch out all the lights. J Leukoc Biol 78:9–13. [PubMed][CrossRef]
156. Lee TK, Covert MW. 2010. High-throughput, single-cell NF-κB dynamics. Curr Opin Genet Dev 20:677–683. [PubMed][CrossRef]
157. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA. 2014. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41:14–20. [PubMed][CrossRef]
158. Robert C, Lu X, Law A, Freeman TC, Hume DA. 2011. Macrophages.com: an on-line community resource for innate immunity research. Immunobiology 216:1203–1211. [PubMed][CrossRef]
159. Pham TH, Minderjahn J, Schmidl C, Hoffmeister H, Schmidhofer S, Chen W, Längst G, Benner C, Rehli M. 2013. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1. Nucleic Acids Res 41:6391–6402. [PubMed][CrossRef]
microbiolspec.MCHD-0024-2015.citations
cm/4/3
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0024-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0024-2015
2016-06-03
2017-07-21

Abstract:

Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Expression of selected genes encoding myeloid-restricted growth factor receptors. Stacked bars show expression of each gene in the cell type (normalized tags per million) derived from FANTOM5 CAGE data for human cells ( 107 ). Cell types are presented in the order of maturation: CD34 MSCs; CMPs; GMPs; migratory DCs; CD14 monocytes (CD14 Mo); CD14CD16 monocytes (CD14, CD16 Mo); CD16 monocytes (CD16 Mo); MDMs (cultured in CSF-1); monocytes cultured in GM-CSF (MDCs); and migratory DCs from skin lymphatics (LC).

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0024-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Network layout of 108 growth factor receptor and transcription factor genes in myeloid lineages. Nodes represent genes and edges correlation between expression patterns of genes at a Pearson correlation coefficient of 0.74 or greater. Nodes of the same color form a cluster. Histograms show the average expression pattern of genes within the cluster. axis, cell type. Each column represents one cell type, presented in the order of maturation: CD34 mesenchymal stem cells; CMPs; GMPs; migratory DCs; CD14 monocytes; CD14CD16 monocytes; CD16 monocytes; MDMs (cultured in CSF-1); monocytes cultured in GM-CSF; and migratory DCs from skin lymphatics. Column colors are the same as the nodes in the cluster. axis, average expression of genes in the cluster (normalized tags per million) derived from FANTOM5 CAGE data for human cells ( 107 ).

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0024-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Chromatin architecture of the mouse and human loci. Genome browser tracks of indicated histone modifications and transcription factors associated with enhancer elements are shown. The filled green box indicates the macrophage promoter. Boxes in blue identify intergenic and intragenic enhancer candidates. FIRE is represented by a filled blue box. Chip-Seq data sets that formed the basis of this figure for human macrophages are from derived from references 104 and 159 . The mouse PU.1 track is derived from reference 136 , and other mouse tracks from ENCODE.

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0024-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Coexpression of transcription factor genes in cells of myeloid lineages

Source: microbiolspec June 2016 vol. 4 no. 3 doi:10.1128/microbiolspec.MCHD-0024-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error