1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Inflammation—a Critical Appreciation of the Role of Myeloid Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Asif J. Iqbal1, Edward A. Fisher2, David R. Greaves3
  • Editor: Siamon Gordon4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; 2: Departments of Medicine (Cardiology) and Cell Biology, New York University School of Medicine, New York, NY 10016; 3: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; 4: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec September 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.MCHD-0027-2016
  • Received 05 January 2016 Accepted 15 July 2016 Published 16 September 2016
  • David R. Greaves, david.greaves@path.ox.ac.uk
image of Inflammation—a Critical Appreciation of the Role of Myeloid Cells
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Inflammation—a Critical Appreciation of the Role of Myeloid Cells, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/5/MCHD-0027-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/5/MCHD-0027-2016-2.gif
  • Abstract:

    What is inflammation’s big idea? In this brief overview of the role of myeloid cells in inflammation, we will critically discuss what drives the initiation, amplification, and resolution of inflammation in different anatomical sites in response to different pathological stimuli. It can be argued that we have a good understanding of the basic principles that underlie myeloid cell activation and the mobilization of innate immune cells to sites of injury and infection in acute inflammation. The challenge now for inflammation biologists is to understand how resolution of this normal physiological response goes wrong in hyperacute and chronic inflammation. A better understanding of how inflammation is regulated will allow us to develop new anti-inflammatory drugs that will reduce the burden of inflammatory disease without compromising the patient’s immune defenses against infectious disease. Ideally such drugs should encourage a return to homeostasis and enhance tissue repair processes.

  • Citation: Iqbal A, Fisher E, Greaves D. 2016. Inflammation—a Critical Appreciation of the Role of Myeloid Cells. Microbiol Spectrum 4(5):MCHD-0027-2016. doi:10.1128/microbiolspec.MCHD-0027-2016.

Key Concept Ranking

Innate Immune System
0.6612814
Complement System
0.6353242
Immune Systems
0.6173544
Adaptive Immune System
0.616148
Mitogen-Activated Protein Kinase Pathway
0.47981143
0.6612814

References

1. Gordon S. 2008. Elie Metchnikoff: father of natural immunity. Eur J Immunol 38:3257–3264. [PubMed][CrossRef]
2. Shrive AK, Metcalfe AM, Cartwright JR, Greenhough TJ. 1999. C-reactive protein and SAP-like pentraxin are both present in Limulus polyphemus haemolymph: crystal structure of Limulus SAP. J Mol Biol 290:997–1008. [PubMed][CrossRef]
3. Tharia HA, Shrive AK, Mills JD, Arme C, Williams GT, Greenhough TJ. 2002. Complete cDNA sequence of SAP-like pentraxin from Limulus polyphemus: implications for pentraxin evolution. J Mol Biol 316:583–597. [PubMed][CrossRef]
4. Mantovani A, Valentino S, Gentile S, Inforzato A, Bottazzi B, Garlanda C. 2013. The long pentraxin PTX3: a paradigm for humoral pattern recognition molecules. Ann N Y Acad Sci 1285:1–14. [PubMed][CrossRef]
5. Simons JP, Loeffler JM, Al-Shawi R, Ellmerich S, Hutchinson WL, Tennent GA, Petrie A, Raynes JG, de Souza JB, Lawrence RA, Read KD, Pepys MB. 2014. C-reactive protein is essential for innate resistance to pneumococcal infection. Immunology 142:414–420. [PubMed][CrossRef]
6. Du Clos TW. 2013. Pentraxins: structure, function, and role in inflammation. ISRN Inflamm 379040: doi:10.1155/2013/379040. [CrossRef]
7. Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, Maccagno A, Riva F, Bottazzi B, Peri G, Doni A, Vago L, Botto M, De Santis R, Carminati P, Siracusa G, Altruda F, Vecchi A, Romani L, Mantovani A. 2002. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature 420:182–186. [PubMed][CrossRef]
8. Reading PC, Bozza S, Gilbertson B, Tate M, Moretti S, Job ER, Crouch EC, Brooks AG, Brown LE, Bottazzi B, Romani L, Mantovani A. 2008. Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. J Immunol 180:3391–3398. [PubMed][CrossRef]
9. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. 2012. Interactions between coagulation and complement—their role in inflammation. Semin Immunopathol 34:151–165. [PubMed][CrossRef]
10. Gerard NP, Gerard C. 1991. The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617. [PubMed][CrossRef]
11. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973–983. [CrossRef]
12. Janeway CA Jr. 1989. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13. [CrossRef]
13. Janeway CA Jr, Medzhitov R. 2002. Innate immune recognition. Annu Rev Immunol 20:197–216. [PubMed][CrossRef]
14. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF. 2005. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318. [PubMed][CrossRef]
15. Zabel BA, Rott A, Butcher EC. 2015. Leukocyte chemoattractant receptors in human disease pathogenesis. Annu Rev Pathol 10:51–81. [PubMed][CrossRef]
16. Boring L, Gosling J, Cleary M, Charo IF. 1998. Decreased lesion formation in CCR2–/– mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897. [PubMed][CrossRef]
17. Mackay CR. 2008. Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nat Immunol 9:988–998. [PubMed][CrossRef]
18. White GE, Iqbal AJ, Greaves DR. 2013. CC chemokine receptors and chronic inflammation—therapeutic opportunities and pharmacological challenges. Pharmacol Rev 65:47–89. [PubMed][CrossRef]
19. Martinon F, Burns K, Tschopp J. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell 10:417–426. [CrossRef]
20. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. [PubMed][CrossRef]
21. Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. 2007. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856. [PubMed][CrossRef]
22. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. 2012. Alarmins: awaiting a clinical response. J Clin Invest 122:2711–2719. [PubMed][CrossRef]
23. Kataoka H, Kono H, Patel Z, Kimura Y, Rock KL. 2014. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One 9:e104741 doi:10.1371/journal.pone.0104741. [CrossRef]
24. Nathan C, Ding A. 2010. Nonresolving inflammation. Cell 140:871–882. [PubMed][CrossRef]
25. Huang Z, Zhao C, Chen Y, Cowell JA, Wei G, Kultti A, Huang L, Thompson CB, Rosengren S, Frost GI, Shepard HM. 2014. Recombinant human hyaluronidase PH20 does not stimulate an acute inflammatory response and inhibits lipopolysaccharide-induced neutrophil recruitment in the air pouch model of inflammation. J Immunol 192:5285–5295. [PubMed][CrossRef]
26. Cash JL, White GE, Greaves DR. 2009. Chapter 17. Zymosan-induced peritonitis as a simple experimental system for the study of inflammation. Methods Enzymol 461:379–396. [CrossRef]
27. Di Rosa M. 1972. Biological properties of carrageenan. J Pharm Pharmacol 24:89–102. [PubMed][CrossRef]
28. D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Raso GM, Cuzzocrea S, Lo Verme J, Piomelli D, Meli R, Calignano A. 2007. Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-α agonist, modulates carrageenan-induced paw edema in mice. J Pharmacol Exp Ther 322:1137–1143. [PubMed][CrossRef]
29. Sedgwick AD, Sin YM, Edwards JC, Willoughby DA. 1983. Increased inflammatory reactivity in newly formed lining tissue. J Pathol 141:483–495. [PubMed][CrossRef]
30. Notley CA, Inglis JJ, Alzabin S, McCann FE, McNamee KE, Williams RO. 2008. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J Exp Med 205:2491–2497. [PubMed][CrossRef]
31. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. 1996. Organ-specific disease provoked by systemic autoimmunity. Cell 87:811–822. [CrossRef]
32. Jacobs JP, Ortiz-Lopez A, Campbell JJ, Gerard CJ, Mathis D, Benoist C. 2010. Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model. Arthritis Rheum 62:1921–1932. [CrossRef]
33. Moore KJ, Tabas I. 2011. Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355. [PubMed][CrossRef]
34. Klotz L, Norman S, Vieira JM, Masters M, Rohling M, Dubé KN, Bollini S, Matsuzaki F, Carr CA, Riley PR. 2015. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature 522:62–67. [PubMed][CrossRef]
35. Newson J, Stables M, Karra E, Arce-Vargas F, Quezada S, Motwani M, Mack M, Yona S, Audzevich T, Gilroy DW. 2014. Resolution of acute inflammation bridges the gap between innate and adaptive immunity. Blood 124:1748–1764. [PubMed][CrossRef]
36. Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. 2010. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16:228–231. [PubMed][CrossRef]
37. Ferrer R, Martin-Loeches I, Phillips G, Osborn TM, Townsend S, Dellinger RP, Artigas A, Schorr C, Levy MM. 2014. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 42:1749–1755. [PubMed][CrossRef]
38. Collins PE, Carmody RJ. 2015. The regulation of endotoxin tolerance and its impact on macrophage activation. Crit Rev Immunol 35:293–323. [CrossRef]
39. Arts RJ, Gresnigt MS, Joosten LA, Netea MG. 2016. Cellular metabolism of myeloid cells in sepsis. J Leukoc Biol doi:10.1189/jlb.4MR0216-066R.
40. Bannenberg GL, Chiang N, Ariel A, Arita M, Tjonahen E, Gotlinger KH, Hong S, Serhan CN. 2005. Molecular circuits of resolution: formation and actions of resolvins and protectins. J Immunol 174:4345–4355. [PubMed][CrossRef]
41. Yazid S, Norling LV, Flower RJ. 2012. Anti-inflammatory drugs, eicosanoids and the annexin A1/FPR2 anti-inflammatory system. Prostaglandins Other Lipid Mediat 98:94–100. [PubMed][CrossRef]
42. Morris T, Stables M, Hobbs A, de Souza P, Colville-Nash P, Warner T, Newson J, Bellingan G, Gilroy DW. 2009. Effects of low-dose aspirin on acute inflammatory responses in humans. J Immunol 183:2089–2096. [PubMed][CrossRef]
43. Parham P. 2009. The Immune System, 3rd edition. Garland Science, New York, NY and London.
44. Sieweke MH, Allen JE. 2013. Beyond stem cells: self-renewal of differentiated macrophages. Science 342:1242974 doi:10.1126/science.1242974. [CrossRef]
45. Gautier EL, Jakubzick C, Randolph GJ. 2009. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arterioscler Thromb Vasc Biol 29:1412–1418. [PubMed][CrossRef]
46. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 2010. Development of monocytes, macrophages, and dendritic cells. Science 327:656–661. [PubMed][CrossRef]
47. Si Y, Tsou CL, Croft K, Charo IF. 2010. CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J Clin Invest 120:1192–1203. [PubMed][CrossRef]
48. White GE, McNeill E, Channon KM, Greaves DR. 2014. Fractalkine promotes human monocyte survival via a reduction in oxidative stress. Arterioscler Thromb Vasc Biol 34:2554–2562. [PubMed][CrossRef]
49. Mildner A, Yona S, Jung S. 2013. A close encounter of the third kind: monocyte-derived cells. Adv Immunol 120:69–103. [PubMed][CrossRef]
50. Geissmann F, Jung S, Littman DR. 2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. [CrossRef]
51. Woollard KJ, Geissmann F. 2010. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86. [PubMed][CrossRef]
52. Lu H, Huang D, Saederup N, Charo IF, Ransohoff RM, Zhou L. 2011. Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. FASEB J 25:358–369. [PubMed][CrossRef]
53. Swirski FK, Nahrendorf M. 2013. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166. [PubMed][CrossRef]
54. Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, Iwamoto Y, Liao R, Zirlik A, Scherer-Crosbie M, Hedrick CC, Libby P, Nahrendorf M, Weissleder R, Swirski FK. 2014. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res 114:1611–1622. [PubMed][CrossRef]
55. Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, Sena B, Chudnovskiy A, Panizzi P, Keliher E, Higgins JM, Libby P, Moskowitz MA, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M. 2012. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med 209:123–137. [PubMed][CrossRef]
56. Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, Silberstein L, Heidt T, Sebas M, Sun Y, Wojtkiewicz G, Feruglio PF, King K, Baker JN, van der Laan AM, Borodovsky A, Fitzgerald K, Hulsmans M, Hoyer F, Iwamoto Y, Vinegoni C, Brown D, Di Carli M, Libby P, Hiebert SW, Scadden DT, Swirski FK, Weissleder R, Nahrendorf M. 2015. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16:477–487. [PubMed][CrossRef]
57. Dennis EA, Norris PC. 2015. Eicosanoid storm in infection and inflammation. Nat Rev Immunol 15:511–523. [PubMed][CrossRef]
58. Norris PC, Gosselin D, Reichart D, Glass CK, Dennis EA. 2014. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation. Proc Natl Acad Sci USA 111:12746–12751. [PubMed][CrossRef]
59. Wallace JL, Ianaro A, Flannigan KL, Cirino G. 2015. Gaseous mediators in resolution of inflammation. Semin Immunol 27:227–233. [PubMed][CrossRef]
60. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. 2000. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 6:422–428. [PubMed][CrossRef]
61. Wallace JL, Wang R. 2015. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14:329–345. [PubMed][CrossRef]
62. O’Neill LA. 2011. Retrospective. Jürg Tschopp (1951-2011). Science 332:679 doi:10.1126/science.1207046. [CrossRef]
63. Guo H, Callaway JB, Ting JP. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687. [PubMed][CrossRef]
64. Ip WK, Medzhitov R. 2015. Macrophages monitor tissue osmolarity and induce inflammatory response through NLRP3 and NLRC4 inflammasome activation. Nat Commun 6:6931 doi:10.1038/ncomms7931. [CrossRef]
65. Vanaja SK, Rathinam VA, Fitzgerald KA. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25:308–315. [PubMed][CrossRef]
66. Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA. 2015. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255. [CrossRef]
67. McDermott MF, Aksentijevich I, Galon J, McDermott EM, Ogunkolade BW, Centola M, Mansfield E, Gadina M, Karenko L, Pettersson T, McCarthy J, Frucht DM, Aringer M, Torosyan Y, Teppo AM, Wilson M, Karaarslan HM, Wan Y, Todd I, Wood G, Schlimgen R, Kumarajeewa TR, Cooper SM, Vella JP, Amos CI, Mulley J, Quane KA, Molloy MG, Ranki A, Powell RJ, Hitman GA, O’Shea JJ, Kastner DL. 1999. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144. [CrossRef]
68. Henderson C, Goldbach-Mansky R. 2010. Monogenic autoinflammatory diseases: new insights into clinical aspects and pathogenesis. Curr Opin Rheumatol 22:567–578. [CrossRef]
69. de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. 2015. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol 33:823–874. [PubMed][CrossRef]
70. Deutschman CS, Tracey KJ. 2014. Sepsis: current dogma and new perspectives. Immunity 40:463–475. [PubMed][CrossRef]
71. Ward PA. 2012. New approaches to the study of sepsis. EMBO Mol Med 4:1234–1243. [PubMed][CrossRef]
72. Tabas I, Glass CK. 2013. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339:166–172. [PubMed][CrossRef]
73. Fredman G, Kamaly N, Spolitu S, Milton J, Ghorpade D, Chiasson R, Kuriakose G, Perretti M, Farokhzad O, Tabas I. 2015. Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice. Sci Transl Med 7:275ra20 doi:10.1126/scitranslmed.aaa1065. [CrossRef]
74. Martinez FO, Gordon S. 2014. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13 doi:10.12703/P6-13. [CrossRef]
75. Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, Stender JD, Chun HB, Garner H, Geissmann F, Glass CK. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–1340. [PubMed][CrossRef]
76. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. [PubMed][CrossRef]
77. Glass CK. 2015. Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler Thromb Vasc Biol 35:755–762. [PubMed][CrossRef]
78. Dalli J, Ramon S, Norris PC, Colas RA, Serhan CN. 2015. Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways. FASEB J 29:2120–2136. [PubMed][CrossRef]
79. Serhan CN, Dalli J, Karamnov S, Choi A, Park CK, Xu ZZ, Ji RR, Zhu M, Petasis NA. 2012. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J 26:1755–1765. [PubMed][CrossRef]
80. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. 2013. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341:1483–1488. [PubMed][CrossRef]
81. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, Besing RC, Menaker M, Gewirtz AT, Davidson AJ. 2010. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol 185:5796–5805. [PubMed][CrossRef]
82. Castellani GC, Menichetti G, Garagnani P, Giulia Bacalini M, Pirazzini C, Franceschi C, Collino S, Sala C, Remondini D, Giampieri E, Mosca E, Bersanelli M, Vitali S, Valle IF, Liò P, Milanesi L. 2016. Systems medicine of inflammaging. Brief Bioinform 17:527–540. [PubMed][CrossRef]
83. Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L. 2015. Local microRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol 35:1945–1953. [PubMed][CrossRef]
84. Carvalheira JB, Qiu Y, Chawla A. 2013. Blood spotlight on leukocytes and obesity. Blood 122:3263–3267. [PubMed][CrossRef]
85. Thorburn AN, Macia L, Mackay CR. 2014. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 40:833–842. [PubMed][CrossRef]
86. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–1286. [PubMed][CrossRef]
87. Schett G, Elewaut D, McInnes IB, Dayer JM, Neurath MF. 2013. How cytokine networks fuel inflammation: toward a cytokine-based disease taxonomy. Nat Med 19:822–824. [PubMed][CrossRef]
88. Morita M, Kuba K, Ichikawa A, Nakayama M, Katahira J, Iwamoto R, Watanebe T, Sakabe S, Daidoji T, Nakamura S, Kadowaki A, Ohto T, Nakanishi H, Taguchi R, Nakaya T, Murakami M, Yoneda Y, Arai H, Kawaoka Y, Penninger JM, Arita M, Imai Y. 2013. The lipid mediator protectin D1 inhibits influenza virus replication and improves severe influenza. Cell 153:112–125. [PubMed][CrossRef]
89. Tam VC, Quehenberger O, Oshansky CM, Suen R, Armando AM, Treuting PM, Thomas PG, Dennis EA, Aderem A. 2013. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell 154:213–227. [PubMed][CrossRef]
microbiolspec.MCHD-0027-2016.citations
cm/4/5
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0027-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0027-2016
2016-09-16
2017-09-21

Abstract:

What is inflammation’s big idea? In this brief overview of the role of myeloid cells in inflammation, we will critically discuss what drives the initiation, amplification, and resolution of inflammation in different anatomical sites in response to different pathological stimuli. It can be argued that we have a good understanding of the basic principles that underlie myeloid cell activation and the mobilization of innate immune cells to sites of injury and infection in acute inflammation. The challenge now for inflammation biologists is to understand how resolution of this normal physiological response goes wrong in hyperacute and chronic inflammation. A better understanding of how inflammation is regulated will allow us to develop new anti-inflammatory drugs that will reduce the burden of inflammatory disease without compromising the patient’s immune defenses against infectious disease. Ideally such drugs should encourage a return to homeostasis and enhance tissue repair processes.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Time course of a typical acute inflammatory response. A schematic representation of the ideal outcome of an acute inflammatory response, i.e., resolution, is shown as a dashed line. Two potential outcomes leading to significant clinical sequelae are shown: hyperacute inflammation, e.g., septic shock; and nonresolving, chronic inflammation, e.g., RA. Adapted from an original figure by Christopher Buckley, University of Birmingham, United Kingdom.

Source: microbiolspec September 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.MCHD-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The inflammatory set point hypothesis. This schematic representation highlights the balance between locally produced proinflammatory and endogenous anti-inflammatory/proresolution mediators in determining the magnitude of the inflammatory response to a given stimulus.

Source: microbiolspec September 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.MCHD-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Inflammaging: do inflammatory responses change with age? This schematic representation compares the “normal” inflammatory response (solid line) with the inflammatory response seen in aged populations (dashed line). Aged populations show increased basal levels of systemic inflammation and may show differences in the magnitude of the response to inflammatory stimuli and/or altered resolution.

Source: microbiolspec September 2016 vol. 4 no. 5 doi:10.1128/microbiolspec.MCHD-0027-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error