1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Role of the Cytoskeleton in Myeloid Cell Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Noah Fine1, Samira Khaliq2, Siavash Hassanpour3, Michael Glogauer4
  • Editor: Siamon Gordon5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON M5S 3E2, Canada; 2: Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON M5S 3E2, Canada; 3: Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON M5S 3E2, Canada; 4: Department of Dentistry, Matrix Dynamics Group, University of Toronto, Toronto, ON M5S 3E2, Canada; 5: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0029-2016
  • Received 28 February 2016 Accepted 16 May 2016 Published 26 August 2016
  • Noah Fine, nfine1@gmail.com
image of Role of the Cytoskeleton in Myeloid Cell Function
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Role of the Cytoskeleton in Myeloid Cell Function, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/MCHD-0029-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/4/MCHD-0029-2016-2.gif
  • Abstract:

    During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.

  • Citation: Fine N, Khaliq S, Hassanpour S, Glogauer M. 2016. Role of the Cytoskeleton in Myeloid Cell Function. Microbiol Spectrum 4(4):MCHD-0029-2016. doi:10.1128/microbiolspec.MCHD-0029-2016.

Key Concept Ranking

Innate Immune System
0.56903243
Microtubule Organizing Centers
0.5643703
Phagocytic Cells
0.41319785
0.56903243

References

1. Wang YL. 1991. Dynamics of the cytoskeleton in live cells. Curr Opin Cell Biol 3:27–32. [PubMed][CrossRef]
2. Fenteany G, Glogauer M. 2004. Cytoskeletal remodeling in leukocyte function. Curr Opin Hematol 11:15–24. [PubMed][CrossRef]
3. May RC, Machesky LM. 2001. Phagocytosis and the actin cytoskeleton. J Cell Sci 114:1061–1077. [PubMed]
4. Freeman SA, Grinstein S. 2014. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 262:193–215. [PubMed][CrossRef]
5. Nunoi H, Yamazaki T, Kanegasaki S. 2001. Neutrophil cytoskeletal disease. Int J Hematol 74:119–124. [PubMed][CrossRef]
6. Gu Y, Williams DA. 2002. RAC2 GTPase deficiency and myeloid cell dysfunction in human and mouse. J Pediatr Hematol Oncol 24:791–794. [PubMed][CrossRef]
7. Dinauer MC. 2014. Disorders of neutrophil function: an overview. Methods Mol Biol 1124:501–515. [PubMed][CrossRef]
8. Watts RG, Crispens MA, Howard TH. 1991. A quantitative study of the role of F-actin in producing neutrophil shape. Cell Motil Cytoskeleton 19:159–168. [PubMed][CrossRef]
9. Watts RG, Howard TH. 1993. Mechanisms for actin reorganization in chemotactic factor-activated polymorphonuclear leukocytes. Blood 81:2750–2757. [PubMed]
10. Carlier MF, Pantaloni D. 1997. Control of actin dynamics in cell motility. J Mol Biol 269:459–467. [PubMed][CrossRef]
11. Jones GE. 2000. Cellular signaling in macrophage migration and chemotaxis. J Leukoc Biol 68:593–602. [PubMed]
12. Cicchetti G, Allen PG, Glogauer M. 2002. Chemotactic signaling pathways in neutrophils: from receptor to actin assembly. Crit Rev Oral Biol Med 13:220–228. [PubMed][CrossRef]
13. Perrin BJ, Ervasti JM. 2010. The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67:630–634. [PubMed][CrossRef]
14. Xu YZ, Thuraisingam T, Morais DA, Rola-Pleszczynski M, Radzioch D. 2010. Nuclear translocation of β-actin is involved in transcriptional regulation during macrophage differentiation of HL-60 cells. Mol Biol Cell 21:811–820. [PubMed][CrossRef]
15. Welch MD, Mullins RD. 2002. Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288. [PubMed][CrossRef]
16. Schafer DA, Cooper JA. 1995. Control of actin assembly at filament ends. Annu Rev Cell Dev Biol 11:497–518. [PubMed][CrossRef]
17. Silacci P, Mazzolai L, Gauci C, Stergiopulos N, Yin HL, Hayoz D. 2004. Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61:2614–2623. [PubMed][CrossRef]
18. Nauseef WM, Borregaard N. 2014. Neutrophils at work. Nat Immunol 15:602–611. [PubMed][CrossRef]
19. Olson MF, Ashworth A, Hall A. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272. [PubMed][CrossRef]
20. Aznar S, Lacal JC. 2001. Rho signals to cell growth and apoptosis. Cancer Lett 165:1–10. [CrossRef]
21. Hill CS, Wynne J, Treisman R. 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170. [CrossRef]
22. Etienne-Manneville S, Hall A. 2002. Rho GTPases in cell biology. Nature 420:629–635. [PubMed][CrossRef]
23. Jaffe AB, Hall A. 2005. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269. [PubMed][CrossRef]
24. Caron E, Hall A. 1998. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282:1717–1721. [PubMed][CrossRef]
25. Lacy P. 2006. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2:98–108. [PubMed][CrossRef]
26. Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM. 1991. Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515. [PubMed][CrossRef]
27. Bokoch GM. 2005. Regulation of innate immunity by Rho GTPases. Trends Cell Biol 15:163–171. [PubMed][CrossRef]
28. Nobes CD, Hall A. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144:1235–1244. [PubMed][CrossRef]
29. Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A. 1990. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 111:1001–1007. [PubMed][CrossRef]
30. Ridley AJ, Hall A. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399. [PubMed][CrossRef]
31. Hotchin NA, Hall A. 1995. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J Cell Biol 131:1857–1865. [PubMed][CrossRef]
32. Jones GE, Allen WE, Ridley AJ. 1998. The Rho GTPases in macrophage motility and chemotaxis. Cell Adhes Commun 6:237–245. [PubMed][CrossRef]
33. Allen WE, Jones GE, Pollard JW, Ridley AJ. 1997. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J Cell Sci 110:707–720. [PubMed]
34. Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46. [PubMed][CrossRef]
35. Fujisawa K, Fujita A, Ishizaki T, Saito Y, Narumiya S. 1996. Identification of the Rho-binding domain of p160ROCK, a Rho-associated coiled-coil containing protein kinase. J Biol Chem 271:23022–23028. [PubMed][CrossRef]
36. Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S. 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1:136–143. [PubMed][CrossRef]
37. Lane J, Martin T, Weeks HP, Jiang WG. 2014. Structure and role of WASP and WAVE in Rho GTPase signalling in cancer. Cancer Genomics Proteomics 11:155–165. [PubMed]
38. Thrasher AJ, Burns SO. 2010. WASP: a key immunological multitasker. Nat Rev Immunol 10:182–192. [PubMed][CrossRef]
39. Ishihara D, Dovas A, Park H, Isaac BM, Cox D. 2012. The chemotactic defect in Wiskott-Aldrich syndrome macrophages is due to the reduced persistence of directional protrusions. PLoS One 7:e30033. doi:10.1371/journal.pone.0030033. [CrossRef]
40. Jones RA, Feng Y, Worth AJ, Thrasher AJ, Burns SO, Martin P. 2013. Modelling of human Wiskott-Aldrich syndrome protein mutants in zebrafish larvae using in vivo live imaging. J Cell Sci 126:4077–4084. [PubMed][CrossRef]
41. Kunisaki Y, Nishikimi A, Tanaka Y, Takii R, Noda M, Inayoshi A, Watanabe K, Sanematsu F, Sasazuki T, Sasaki T, Fukui Y. 2006. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol 174:647–652. [PubMed][CrossRef]
42. Zhang H, Sun C, Glogauer M, Bokoch GM. 2009. Human neutrophils coordinate chemotaxis by differential activation of Rac1 and Rac2. J Immunol 183:2718–2728. [PubMed][CrossRef]
43. Yoo SK, Deng Q, Cavnar PJ, Wu YI, Hahn KM, Huttenlocher A. 2010. Differential regulation of protrusion and polarity by PI3K during neutrophil motility in live zebrafish. Dev Cell 18:226–236. [PubMed][CrossRef]
44. Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT. 1994. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. J Biol Chem 269:30749–30752. [PubMed]
45. Koh AL, Sun CX, Zhu F, Glogauer M. 2005. The role of Rac1 and Rac2 in bacterial killing. Cell Immunol 235:92–97. [PubMed][CrossRef]
46. Pestonjamasp KN, Forster C, Sun C, Gardiner EM, Bohl B, Weiner O, Bokoch GM, Glogauer M. 2006. Rac1 links leading edge and uropod events through Rho and myosin activation during chemotaxis. Blood 108:2814–2820. [PubMed][CrossRef]
47. Glogauer M, Marchal CC, Zhu F, Worku A, Clausen BE, Foerster I, Marks P, Downey GP, Dinauer M, Kwiatkowski DJ. 2003. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J Immunol 170:5652–5657. [PubMed][CrossRef]
48. Sun CX, Magalhães MA, Glogauer M. 2007. Rac1 and Rac2 differentially regulate actin free barbed end formation downstream of the fMLP receptor. J Cell Biol 179:239–245. [PubMed][CrossRef]
49. Kuiper JW, Sun C, Magalhães MA, Glogauer M. 2011. Rac regulates PtdInsP3 signaling and the chemotactic compass through a redox-mediated feedback loop. Blood 118:6164–6171. [PubMed][CrossRef]
50. Damoulakis G, Gambardella L, Rossman KL, Lawson CD, Anderson KE, Fukui Y, Welch HC, Der CJ, Stephens LR, Hawkins PT. 2014. P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils. J Cell Sci 127:2589–2600. [PubMed][CrossRef]
51. Chen G, Dimitriou I, Milne L, Lang KS, Lang PA, Fine N, Ohashi PS, Kubes P, Rottapel R. 2012. The 3BP2 adapter protein is required for chemoattractant-mediated neutrophil activation. J Immunol 189:2138–2150. [PubMed][CrossRef]
52. Thumkeo D, Watanabe S, Narumiya S. 2013. Physiological roles of Rho and Rho effectors in mammals. Eur J Cell Biol 92:303–315. [PubMed][CrossRef]
53. Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR. 2003. Cell migration: integrating signals from front to back. Science 302:1704–1709. [PubMed][CrossRef]
54. Wong K, Pertz O, Hahn K, Bourne H. 2006. Neutrophil polarization: spatiotemporal dynamics of RhoA activity support a self-organizing mechanism. Proc Natl Acad Sci U S A 103:3639–3644. [PubMed][CrossRef]
55. Worthylake RA, Lemoine S, Watson JM, Burridge K. 2001. RhoA is required for monocyte tail retraction during transendothelial migration. J Cell Biol 154:147–160. [PubMed][CrossRef]
56. Yoshinaga-Ohara N, Takahashi A, Uchiyama T, Sasada M. 2002. Spatiotemporal regulation of moesin phosphorylation and rear release by Rho and serine/threonine phosphatase during neutrophil migration. Exp Cell Res 278:112–122. [PubMed][CrossRef]
57. Niggli V. 2003. Signaling to migration in neutrophils: importance of localized pathways. Int J Biochem Cell Biol 35:1619–1638. [PubMed][CrossRef]
58. Alblas J, Ulfman L, Hordijk P, Koenderman L. 2001. Activation of RhoA and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell 12:2137–2145. [PubMed][CrossRef]
59. Liu L, Schwartz BR, Lin N, Winn RK, Harlan JM. 2002. Requirement for RhoA kinase activation in leukocyte de-adhesion. J Immunol 169:2330–2336. [PubMed][CrossRef]
60. Laudanna C, Campbell JJ, Butcher EC. 1996. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 271:981–983. [PubMed][CrossRef]
61. Giagulli C, Scarpini E, Ottoboni L, Narumiya S, Butcher EC, Constantin G, Laudanna C. 2004. RhoA and ζ PKC control distinct modalities of LFA-1 activation by chemokines: critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 20:25–35. [PubMed][CrossRef]
62. Chrzanowska-Wodnicka M, Burridge K. 1996. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J Cell Biol 133:1403–1415. [PubMed][CrossRef]
63. Jennings RT, Strengert M, Hayes P, El-Benna J, Brakebusch C, Kubica M, Knaus UG. 2014. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness. Blood 123:3635–3645. [PubMed][CrossRef]
64. Xu Y, Li J, Ferguson GD, Mercurio F, Khambatta G, Morrison L, Lopez-Girona A, Corral LG, Webb DR, Bennett BL, Xie W. 2009. Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood 114:338–345. [PubMed][CrossRef]
65. Lu Q, Longo FM, Zhou H, Massa SM, Chen YH. 2009. Signaling through Rho GTPase pathway as viable drug target. Curr Med Chem 16:1355–1365. [PubMed][CrossRef]
66. Surma M, Wei L, Shi J. 2011. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol 7:657–671. [PubMed][CrossRef]
67. Springer TA. 1994. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314. [PubMed][CrossRef]
68. Lei X, Lawrence MB, Dong C. 1999. Influence of cell deformation on leukocyte rolling adhesion in shear flow. J Biomech Eng 121:636–643. [PubMed][CrossRef]
69. Jadhav S, Eggleton CD, Konstantopoulos K. 2005. A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J 88:96–104. [PubMed][CrossRef]
70. Bose S, Das SK, Karp JM, Karnik R. 2010. A semianalytical model to study the effect of cortical tension on cell rolling. Biophys J 99:3870–3879. [PubMed][CrossRef]
71. Sheikh S, Nash GB. 1998. Treatment of neutrophils with cytochalasins converts rolling to stationary adhesion on P-selectin. J Cell Physiol 174:206–216. [PubMed][CrossRef]
72. Hasslen SR, Ahrenholz DH, Solem LD, Nelson RD. 1992. Actin polymerization contributes to neutrophil chemotactic dysfunction following thermal injury. J Leukoc Biol 52:495–500. [PubMed]
73. Worthen GS, Schwab B III, Elson EL, Downey GP. 1989. Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 245:183–186. [PubMed][CrossRef]
74. Kitayama J, Hidemura A, Saito H, Nagawa H. 2000. Shear stress affects migration behavior of polymorphonuclear cells arrested on endothelium. Cell Immunol 203:39–46. [PubMed][CrossRef]
75. Alon R, Dustin ML. 2007. Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells. Immunity 26:17–27. [PubMed][CrossRef]
76. Zarbock A, Ley K. 2009. Neutrophil adhesion and activation under flow. Microcirculation 16:31–42. [PubMed][CrossRef]
77. Hoffman BD, Grashoff C, Schwartz MA. 2011. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323. [PubMed][CrossRef]
78. Coughlin MF, Sohn DD, Schmid-Schönbein GW. 2008. Recoil and stiffening by adherent leukocytes in response to fluid shear. Biophys J 94:1046–1051. [PubMed][CrossRef]
79. Coughlin MF, Schmid-Schönbein GW. 2004. Pseudopod projection and cell spreading of passive leukocytes in response to fluid shear stress. Biophys J 87:2035–2042. [PubMed][CrossRef]
80. Makino A, Glogauer M, Bokoch GM, Chien S, Schmid-Schönbein GW. 2005. Control of neutrophil pseudopods by fluid shear: role of Rho family GTPases. Am J Physiol Cell Physiol 288:C863–C871. [PubMed][CrossRef]
81. Makino A, Shin HY, Komai Y, Fukuda S, Coughlin M, Sugihara-Seki M, Schmid-Schönbein GW. 2007. Mechanotransduction in leukocyte activation: a review. Biorheology 44:221–249. [PubMed]
82. Sheikh S, Gratzer WB, Pinder JC, Nash GB. 1997. Actin polymerisation regulates integrin-mediated adhesion as well as rigidity of neutrophils. Biochem Biophys Res Commun 238:910–915. [PubMed][CrossRef]
83. Anderson SI, Hotchin NA, Nash GB. 2000. Role of the cytoskeleton in rapid activation of CD11b/CD18 function and its subsequent downregulation in neutrophils. J Cell Sci 113:2737–2745. [PubMed]
84. Laudanna C, Mochly-Rosen D, Liron T, Constantin G, Butcher EC. 1998. Evidence of ζ protein kinase C involvement in polymorphonuclear neutrophil integrin-dependent adhesion and chemotaxis. J Biol Chem 273:30306–30315. [PubMed][CrossRef]
85. Rullo J, Becker H, Hyduk SJ, Wong JC, Digby G, Arora PD, Cano AP, Hartwig J, McCulloch CA, Cybulsky MI. 2012. Actin polymerization stabilizes α4β1 integrin anchors that mediate monocyte adhesion. J Cell Biol 197:115–129. [PubMed][CrossRef]
86. Phillipson M, Heit B, Parsons SA, Petri B, Mullaly SC, Colarusso P, Gower RM, Neely G, Simon SI, Kubes P. 2009. Vav1 is essential for mechanotactic crawling and migration of neutrophils out of the inflamed microvasculature. J Immunol 182:6870–6878. [PubMed][CrossRef]
87. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T, Bourne HR. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–214. [PubMed][CrossRef]
88. Wang F, Herzmark P, Weiner OD, Srinivasan S, Servant G, Bourne HR. 2002. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat Cell Biol 4:513–518. [PubMed][CrossRef]
89. Chodniewicz D, Zhelev DV. 2003. Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by 2 distinct pathways. Blood 101:1181–1184. [PubMed][CrossRef]
90. Niggli V. 2000. A membrane-permeant ester of phosphatidylinositol 3,4,5-trisphosphate (PIP3) is an activator of human neutrophil migration. FEBS Lett 473:217–221. [PubMed][CrossRef]
91. Weiner OD, Neilsen PO, Prestwich GD, Kirschner MW, Cantley LC, Bourne HR. 2002. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat Cell Biol 4:509–513. [PubMed][CrossRef]
92. Worthylake RA, Burridge K. 2003. RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 278:13578–13584. [PubMed][CrossRef]
93. Weiner OD, Rentel MC, Ott A, Brown GE, Jedrychowski M, Yaffe MB, Gygi SP, Cantley LC, Bourne HR, Kirschner MW. 2006. Hem-1 complexes are essential for Rac activation, actin polymerization, and myosin regulation during neutrophil chemotaxis. PLoS Biol 4:e38. doi:10.1371/journal.pbio.0040038. [CrossRef]
94. Van Keymeulen A, Wong K, Knight ZA, Govaerts C, Hahn KM, Shokat KM, Bourne HR. 2006. To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J Cell Biol 174:437–445. [PubMed][CrossRef]
95. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y, Filippi MD. 2012. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 120:3563–3574. [PubMed][CrossRef]
96. Bokoch GM. 2003. Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781. [PubMed][CrossRef]
97. Itakura A, Aslan JE, Kusanto BT, Phillips KG, Porter JE, Newton PK, Nan X, Insall RH, Chernoff J, McCarty OJ. 2013. p21-activated kinase (PAK) regulates cytoskeletal reorganization and directional migration in human neutrophils. PLoS One 8:e73063. doi:10.1371/journal.pone.0073063.
98. Svetina S, Bozic B, Derganc J, Zeks B. 2001. Mechanical and functional aspects of membrane skeletons. Cell Mol Biol Lett 6:677–690. [PubMed]
99. White JR, Naccache PH, Sha’afi RI. 1983. Stimulation by chemotactic factor of actin association with the cytoskeleton in rabbit neutrophils. Effects of calcium and cytochalasin B. J Biol Chem 258:14041–14047. [PubMed]
100. Cassimeris L, McNeill H, Zigmond SH. 1990. Chemoattractant-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distributions and relative stabilities. J Cell Biol 110:1067–1075. [PubMed][CrossRef]
101. Gomez-Cambronero J, Horn J, Paul CC, Baumann MA. 2003. Granulocyte-macrophage colony-stimulating factor is a chemoattractant cytokine for human neutrophils: involvement of the ribosomal p70 S6 kinase signaling pathway. J Immunol 171:6846–6855. [PubMed][CrossRef]
102. Kamata N, Kutsuna H, Hato F, Kato T, Oshitani N, Arakawa T, Kitagawa S. 2004. Activation of human neutrophils by granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor alpha: role of phosphatidylinositol 3-kinase. Int J Hematol 80:421–427. [PubMed][CrossRef]
103. Cano ML, Lauffenburger DA, Zigmond SH. 1991. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution. J Cell Biol 115:677–687. [PubMed][CrossRef]
104. Rougerie P, Miskolci V, Cox D. 2013. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 256:222–239. [PubMed][CrossRef]
105. Gupton SL, Waterman-Storer CM. 2006. Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell 125:1361–1374. [PubMed][CrossRef]
106. Seveau S, Eddy RJ, Maxfield FR, Pierini LM. 2001. Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell 12:3550–3562. [PubMed][CrossRef]
107. Rossy J, Schlicht D, Engelhardt B, Niggli V. 2009. Flotillins interact with PSGL-1 in neutrophils and, upon stimulation, rapidly organize into membrane domains subsequently accumulating in the uropod. PLoS One 4:e5403. doi:10.1371/journal.pone.0005403. [CrossRef]
108. Ludwig A, Otto GP, Riento K, Hams E, Fallon PG, Nichols BJ. 2010. Flotillin microdomains interact with the cortical cytoskeleton to control uropod formation and neutrophil recruitment. J Cell Biol 191:771–781. [PubMed][CrossRef]
109. Smith LA, Aranda-Espinoza H, Haun JB, Dembo M, Hammer DA. 2007. Neutrophil traction stresses are concentrated in the uropod during migration. Biophys J 92:L58–L60. [PubMed][CrossRef]
110. Fais S, Malorni W. 2003. Leukocyte uropod formation and membrane/cytoskeleton linkage in immune interactions. J Leukoc Biol 73:556–563. [PubMed][CrossRef]
111. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, Critchley DR, Fässler R, Sixt M. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55. [PubMed][CrossRef]
112. Muller WA. 2011. Mechanisms of leukocyte transendothelial migration. Annu Rev Pathol 6:323–344. [PubMed][CrossRef]
113. Stroka KM, Hayenga HN, Aranda-Espinoza H. 2013. Human neutrophil cytoskeletal dynamics and contractility actively contribute to trans-endothelial migration. PLoS One 8:e61377. doi:10.1371/journal.pone.0061377.
114. Wang N. 1998. Mechanical interactions among cytoskeletal filaments. Hypertension 32:162–165. [PubMed][CrossRef]
115. Janke C. 2014. The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol 206:461–472. [PubMed][CrossRef]
116. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ. 2006. Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172. [PubMed][CrossRef]
117. Gundersen GG, Kalnoski MH, Bulinski JC. 1984. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell 38:779–789. [PubMed][CrossRef]
118. Bulinski JC, Gundersen GG. 1991. Stabilization of post-translational modification of microtubules during cellular morphogenesis. BioEssays 13:285–293. [PubMed][CrossRef]
119. Cassimeris LU, Wadsworth P, Salmon ED. 1986. Dynamics of microtubule depolymerization in monocytes. J Cell Biol 102:2023–2032. [PubMed][CrossRef]
120. Ding M, Robinson JM, Behrens BC, Vandré DD. 1995. The microtubule cytoskeleton in human phagocytic leukocytes is a highly dynamic structure. Eur J Cell Biol 66:234–245. [PubMed]
121. Eddy RJ, Pierini LM, Maxfield FR. 2002. Microtubule asymmetry during neutrophil polarization and migration. Mol Biol Cell 13:4470–4483. [PubMed][CrossRef]
122. Palazzo AF, Joseph HL, Chen YJ, Dujardin DL, Alberts AS, Pfister KK, Vallee RB, Gundersen GG. 2001b. Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Curr Biol 11:1536–1541. [PubMed][CrossRef]
123. Etienne-Manneville S, Hall A. 2003. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421:753–756. [PubMed][CrossRef]
124. Szczur K, Zheng Y, Filippi MD. 2009. The small Rho GTPase Cdc42 regulates neutrophil polarity via CD11b integrin signaling. Blood 114:4527–4537. [PubMed][CrossRef]
125. Dziezanowski MA, DeStefano MJ, Rabinovitch M. 1980. Effect of antitubulins on spontaneous and chemotactic migration of neutrophils under agarose. J Cell Sci 42:379–388. [PubMed]
126. Keller HU, Naef A, Zimmermann A. 1984. Effects of colchicine, vinblastine and nocodazole on polarity, motility, chemotaxis and cAMP levels of human polymorphonuclear leukocytes. Exp Cell Res 153:173–185. [PubMed][CrossRef]
127. Niggli V. 2003. Microtubule-disruption-induced and chemotactic-peptide-induced migration of human neutrophils: implications for differential sets of signalling pathways. J Cell Sci 116:813–822. [PubMed][CrossRef]
128. Keller HU, Niggli V. 1993. Colchicine-induced stimulation of PMN motility related to cytoskeletal changes in actin, alpha-actinin, and myosin. Cell Motil Cytoskeleton 25:10–18. [PubMed][CrossRef]
129. Rich AM, Hoffstein ST. 1981. Inverse correlation between neutrophil microtubule numbers and enhanced random migration. J Cell Sci 48:181–191. [PubMed]
130. Xu J, Wang F, Van Keymeulen A, Rentel M, Bourne HR. 2005. Neutrophil microtubules suppress polarity and enhance directional migration. Proc Natl Acad Sci U S A 102:6884–6889. [PubMed][CrossRef]
131. Wittmann T, Waterman-Storer CM. 2001. Cell motility: can Rho GTPases and microtubules point the way? J Cell Sci 114:3795–3803. [PubMed]
132. Kodama A, Lechler T, Fuchs E. 2004. Coordinating cytoskeletal tracks to polarize cellular movements. J Cell Biol 167:203–207. [PubMed][CrossRef]
133. Yoo SK, Lam PY, Eichelberg MR, Zasadil L, Bement WM, Huttenlocher A. 2012. The role of microtubules in neutrophil polarity and migration in live zebrafish. J Cell Sci 125:5702–5710. [PubMed][CrossRef]
134. Glasgow JE, Daniele RP. 1994. Role of microtubules in random cell migration: stabilization of cell polarity. Cell Motil Cytoskeleton 27:88–96. [PubMed][CrossRef]
135. Redd MJ, Kelly G, Dunn G, Way M, Martin P. 2006. Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskeleton 63:415–422. [PubMed][CrossRef]
136. Wang Y, Ku CJ, Zhang ER, Artyukhin AB, Weiner OD, Wu LF, Altschuler SJ. 2013. Identifying network motifs that buffer front-to-back signaling in polarized neutrophils. Cell Rep 3:1607–1616. [PubMed][CrossRef]
137. Krendel M, Zenke FT, Bokoch GM. 2002. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 4:294–301. [PubMed][CrossRef]
138. Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. 2008. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Mol Biol Cell 19:2147–2153. [PubMed][CrossRef]
139. Hanania R, Sun HS, Xu K, Pustylnik S, Jeganathan S, Harrison RE. 2012. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J Biol Chem 287:8468–8483. [PubMed][CrossRef]
140. Wang B, Rao YH, Inoue M, Hao R, Lai CH, Chen D, McDonald SL, Choi MC, Wang Q, Shinohara ML, Yao TP. 2014. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat Commun 5:3479. doi:10.1038/ncomms4479. [PubMed][CrossRef]
141. Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM. 2003. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat Cell Biol 5:599–609. [PubMed][CrossRef]
142. Palazzo AF, Cook TA, Alberts AS, Gundersen GG. 2001a. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 3:723–729. [PubMed][CrossRef]
143. Bartolini F, Moseley JB, Schmoranzer J, Cassimeris L, Goode BL, Gundersen GG. 2008. The formin mDia2 stabilizes microtubules independently of its actin nucleation activity. J Cell Biol 181:523–536. [PubMed][CrossRef]
144. Danowski BA. 1989. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. J Cell Sci 93:255–266. [PubMed]
145. Enomoto T. 1996. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct Funct 21:317–326. [PubMed][CrossRef]
146. Farrera C, Fadeel B. 2013. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol 191:2647–2656. [PubMed][CrossRef]
147. Swanson JA, Baer SC. 1995. Phagocytosis by zippers and triggers. Trends Cell Biol 5:89–93. [PubMed][CrossRef]
148. Greenberg S. 1995. Signal transduction of phagocytosis. Trends Cell Biol 5:93–99. [PubMed][CrossRef]
149. Cox D, Chang P, Zhang Q, Reddy PG, Bokoch GM, Greenberg S. 1997. Requirements for both Rac1 and Cdc42 in membrane ruffling and phagocytosis in leukocytes. J Exp Med 186:1487–1494. [PubMed][CrossRef]
150. Greenberg S, Chang P, Silverstein SC. 1993. Tyrosine phosphorylation is required for Fc receptor-mediated phagocytosis in mouse macrophages. J Exp Med 177:529–534. [PubMed][CrossRef]
151. Dharmawardhane S, Brownson D, Lennartz M, Bokoch GM. 1999. Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J Leukoc Biol 66:521–527. [PubMed]
152. Hoppe AD, Swanson JA. 2004. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol Biol Cell 15:3509–3519. [PubMed][CrossRef]
153. Groves E, Dart AE, Covarelli V, Caron E. 2008. Molecular mechanisms of phagocytic uptake in mammalian cells. Cell Mol Life Sci 65:1957–1976. [PubMed][CrossRef]
154. Yin HL, Albrecht JH, Fattoum A. 1981. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol 91:901–906. [PubMed][CrossRef]
155. Serrander L, Skarman P, Rasmussen B, Witke W, Lew DP, Krause KH, Stendahl O, Nüsse O. 2000. Selective inhibition of IgG-mediated phagocytosis in gelsolin-deficient murine neutrophils. J Immunol 165:2451–2457. [PubMed][CrossRef]
156. Robinson JM, Badwey JA. 2002. Rapid association of cytoskeletal remodeling proteins with the developing phagosomes of human neutrophils. Histochem Cell Biol 118:117–125.
157. Witke W, Li W, Kwiatkowski DJ, Southwick FS. 2001. Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. J Cell Biol 154:775–784. [PubMed][CrossRef]
158. Herant M, Heinrich V, Dembo M. 2006. Mechanics of neutrophil phagocytosis: experiments and quantitative models. J Cell Sci 119:1903–1913. [PubMed][CrossRef]
159. Tollis S, Dart AE, Tzircotis G, Endres RG. 2010. The zipper mechanism in phagocytosis: energetic requirements and variability in phagocytic cup shape. BMC Syst Biol 4:149. doi:10.1186/1752-0509-4-149. [PubMed][CrossRef]
160. Colucci-Guyon E, Niedergang F, Wallar BJ, Peng J, Alberts AS, Chavrier P. 2005. A role for mammalian diaphanous-related formins in complement receptor (CR3)-mediated phagocytosis in macrophages. Curr Biol 15:2007–2012. [PubMed][CrossRef]
161. Olazabal IM, Caron E, May RC, Schilling K, Knecht DA, Machesky LM. 2002. Rho-kinase and myosin-II control phagocytic cup formation during CR, but not FcγR, phagocytosis. Curr Biol 12:1413–1418. [PubMed][CrossRef]
162. Wang QQ, Li H, Oliver T, Glogauer M, Guo J, He YW. 2008. Integrin β1 regulates phagosome maturation in macrophages through Rac expression. J Immunol 180:2419–2428. [PubMed][CrossRef]
163. Magalhães MA, Sun CX, Glogauer M, Ellen RP. 2008. The major outer sheath protein of Treponema denticola selectively inhibits Rac1 activation in murine neutrophils. Cell Microbiol 10:344–354. [PubMed]
164. Allen LH, Aderem A. 1995. A role for MARCKS, the α isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med 182:829–840. [PubMed][CrossRef]
165. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A. 1992. MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356:618–622. [PubMed][CrossRef]
166. Ali WH, Chen Q, Delgiorno KE, Su W, Hall JC, Hongu T, Tian H, Kanaho Y, Di Paolo G, Crawford HC, Frohman MA. 2013. Deficiencies of the lipid-signaling enzymes phospholipase D1 and D2 alter cytoskeletal organization, macrophage phagocytosis, and cytokine-stimulated neutrophil recruitment. PLoS One 8:e55325. doi:10.1371/journal.pone.0055325.
167. Brinkmann V, Zychlinsky A. 2007. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5:577–582. [PubMed][CrossRef]
168. Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. 2014. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Reports 8:883–896. [PubMed][CrossRef]
169. Neeli I, Dwivedi N, Khan S, Radic M. 2009. Regulation of extracellular chromatin release from neutrophils. J Innate Immun 1:194–201. [PubMed][CrossRef]
170. Newman SL, Mikus LK, Tucci MA. 1991. Differential requirements for cellular cytoskeleton in human macrophage complement receptor- and Fc receptor-mediated phagocytosis. J Immunol 146:967–974. [PubMed]
171. Allen LA, Aderem A. 1996. Molecular definition of distinct cytoskeletal structures involved in complement- and Fc receptor-mediated phagocytosis in macrophages. J Exp Med 184:627–637. [PubMed][CrossRef]
172. Zhou X, Li J, Kucik DF. 2001. The microtubule cytoskeleton participates in control of β2 integrin avidity. J Biol Chem 276:44762–44769. [PubMed][CrossRef]
173. Desjardins M, Huber LA, Parton RG, Griffiths G. 1994. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677–688. [PubMed][CrossRef]
174. Damiani MT, Colombo MI. 2003. Microfilaments and microtubules regulate recycling from phagosomes. Exp Cell Res 289:152–161. [PubMed][CrossRef]
175. Blocker A, Griffiths G, Olivo JC, Hyman AA, Severin FF. 1998. A role for microtubule dynamics in phagosome movement. J Cell Sci 111:303–312. [PubMed]
176. Blocker A, Severin FF, Burkhardt JK, Bingham JB, Yu H, Olivo JC, Schroer TA, Hyman AA, Griffiths G. 1997. Molecular requirements for bi-directional movement of phagosomes along microtubules. J Cell Biol 137:113–129. [PubMed][CrossRef]
177. Tapper H, Grinstein S. 1997. Fc receptor-triggered insertion of secretory granules into the plasma membrane of human neutrophils: selective retrieval during phagocytosis. J Immunol 159:409–418. [PubMed]
178. Botelho RJ, Tapper H, Furuya W, Mojdami D, Grinstein S. 2002. FcγR-mediated phagocytosis stimulates localized pinocytosis in human neutrophils. J Immunol 169:4423–4429. [PubMed][CrossRef]
179. Peachman KK, Rao M, Palmer DR, Zidanic M, Sun W, Alving CR, Rothwell SW. 2004. Functional microtubules are required for antigen processing by macrophages and dendritic cells. Immunol Lett 95:13–24. [PubMed][CrossRef]
180. Radhika V, Naik NR, Advani SH, Bhisey AN. 2000. Actin polymerization in response to different chemoattractants is reduced in granulocytes from chronic myeloid leukemia patients. Cytometry 42:379–386. [PubMed][CrossRef]
181. Bhansali RS, Yeltiwar RK, Bhat KG. 2013. Assessment of peripheral neutrophil functions in patients with localized aggressive periodontitis in the Indian population. J Indian Soc Periodontol 17:731–736. [PubMed][CrossRef]
182. Southwick FS, Dabiri GA, Stossel TP. 1988. Neutrophil actin dysfunction is a genetic disorder associated with partial impairment of neutrophil actin assembly in three family members. J Clin Invest 82:1525–1531. [PubMed][CrossRef]
183. Derry JM, Ochs HD, Francke U. 1994. Isolation of a novel gene mutated in Wiskott-Aldrich syndrome. Cell 78:635–644. [PubMed][CrossRef]
184. Binks M, Jones GE, Brickell PM, Kinnon C, Katz DR, Thrasher AJ. 1998. Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. Eur J Immunol 28:3259–3267. [PubMed][CrossRef]
185. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, Levine JE, Petryniak B, Derrow CW, Harris C, Jia B, Zheng Y, Ambruso DR, Lowe JB, Atkinson SJ, Dinauer MC, Boxer L. 2000. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96:1646–1654. [PubMed]
186. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL, Roos D. 2000. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97:4654–4659. [PubMed][CrossRef]
187. Nunoi H, Yamazaki T, Tsuchiya H, Kato S, Malech HL, Matsuda I, Kanegasaki S. 1999. A heterozygous mutation of β-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci U S A 96:8693–8698. [PubMed][CrossRef]
188. Hundt N, Preller M, Swolski O, Ang AM, Mannherz HG, Manstein DJ, Müller M. 2014. Molecular mechanisms of disease-related human β-actin mutations p.R183W and p.E364K. FEBS J 281:5279–5291. [PubMed][CrossRef]
189. Longacre A, Koh JS, Hsiao KK, Gilligan H, Fan H, Patel VA, Levine JS. 2004. Macrophages from lupus-prone MRL mice are characterized by abnormalities in Rho activity, cytoskeletal organization, and adhesiveness to extracellular matrix proteins. J Leukoc Biol 76:971–984. [PubMed][CrossRef]
190. Fan H, Patel VA, Longacre A, Levine JS. 2006. Abnormal regulation of the cytoskeletal regulator Rho typifies macrophages of the major murine models of spontaneous autoimmunity. J Leukoc Biol 79:155–165. [PubMed][CrossRef]
191. Radtke K, Döhner K, Sodeik B. 2006. Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400. [PubMed][CrossRef]
192. Stamm LM, Morisaki JH, Gao LY, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch MD, Brown EJ. 2003. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198:1361–1368. [PubMed][CrossRef]
193. Alpuche-Aranda CM, Racoosin EL, Swanson JA, Miller SI. 1994. Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes. J Exp Med 179:601–608. [PubMed][CrossRef]
194. Alpuche-Aranda CM, Berthiaume EP, Mock B, Swanson JA, Miller SI. 1995. Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility. Infect Immun 63:4456–4462. [PubMed]
microbiolspec.MCHD-0029-2016.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0029-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0029-2016
2016-08-26
2017-11-18

Abstract:

During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The neutrophil F-actin and MT cytoskeletons. Mouse bone marrow neutrophils were plated on ICAM-1 (Intercellular Adhesion Molecule-1)-coated glass and treated with 1 µM fMLP for 10 min. Cells were fixed with paraformaldehyde and labeled for F-actin (red) and phosphorylated MLC (Thr18/Ser19) (green). An arrow indicates the position of the uropod. Cells were treated as above, fixed with glutaraldehyde as in reference 120 and labeled for MTs (green). Bars, 10 µm.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0029-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The macrophage F-actin and MT cytoskeletons. Colony-stimulating factor-1-cultured mouse bone marrow macrophages were fixed and labeled for F-actin (red) and MTs (green). Bar, 50 µm.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0029-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

F-actin localization during Fc-mediated phagocytosis in neutrophils. Mouse bone marrow-derived neutrophils were incubated with IgG-tagged sheep red blood cells (sRBCs) at 37°C. Cells were fixed during phagocytosis, labeled, and visualized by confocal microscopy. F-actin was labeled with FITC-phalloidin and RBCs were labeled with anti-IgG Alexa-568. F-actin concentrates on the site of recognition of the IgG-labeled RBC. It then extends toward the tips of the nascent phagosome, creating protrusions at the site. Consequently, cell membrane is pushed forward and receptor-ligand binding ensures enwrapping of the particle completely. Lastly, the tips of the protrusions fuse due to being pushed into close proximity and the particle is internalized (S. Khaliq, unpublished data).

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.MCHD-0029-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error