1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Complement Receptors in Myeloid Cell Adhesion and Phagocytosis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Michael L. Dustin1
  • Editor: Siamon Gordon2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, The University of Oxford, Headington, OX3 7FY, United Kingdom; 2: Oxford University, Oxford, United Kingdom
  • Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.MCHD-0034-2016
  • Received 05 May 2016 Accepted 12 September 2016 Published 04 November 2016
  • Michael L. Dustin, michael.dustin@kennedy.ox.ac.uk
image of Complement Receptors in Myeloid Cell Adhesion and Phagocytosis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Complement Receptors in Myeloid Cell Adhesion and Phagocytosis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/6/MCHD-0034-2016-1.gif /docserver/preview/fulltext/microbiolspec/4/6/MCHD-0034-2016-2.gif
  • Abstract:

    Myeloid cells make extensive use of the complement system in the context of recruitment, phagocytosis, and other effector functions. There are several types of complement receptors on myeloid cells, including G protein-coupled receptors for localizing the source of complement activation, and three sets of type I transmembrane proteins that link complement to phagocytosis: complement receptor 1, having an extracellular domain with tandem complement regulatory repeats; complement receptors 3 and 4, which are integrin family receptors comprising heterodimers of type I transmembrane subunits; and VSIG4, a member of the Ig superfamily. This review will focus on the role of the different classes of complement receptors and how their activities are integrated in the setting of immune tolerance and inflammatory responses.

  • Citation: Dustin M. 2016. Complement Receptors in Myeloid Cell Adhesion and Phagocytosis. Microbiol Spectrum 4(6):MCHD-0034-2016. doi:10.1128/microbiolspec.MCHD-0034-2016.

Key Concept Ranking

Complement System
0.78321713
Immune Receptors
0.74760455
Immune Systems
0.5598612
Amino Acids
0.48018062
0.78321713

References

1. Holers VM. 2014. Complement and its receptors: new insights into human disease. Annu Rev Immunol 32:433–459. [CrossRef]
2. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. 2015. Complement system part I—molecular mechanisms of activation and regulation. Front Immunol 6:262. doi:10.3389/fimmu.2015.00262. [CrossRef]
3. Janssen BJ, Huizinga EG, Raaijmakers HC, Roos A, Daha MR, Nilsson-Ekdahl K, Nilsson B, Gros P. 2005. Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437:505–511. [CrossRef]
4. Hermanowski-Vosatka A, Detmers PA, Götze O, Silverstein SC, Wright SD. 1988. Clustering of ligand on the surface of a particle enhances adhesion to receptor-bearing cells. J Biol Chem 263:17822–17827.
5. Rothlein R, Springer TA. 1985. Complement receptor type three-dependent degradation of opsonized erythrocytes by mouse macrophages. J Immunol 135:2668–2672.
6. Fällman M, Andersson R, Andersson T. 1993. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol 151:330–338.
7. Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Andersen GR. 2013. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 110:16426–16431. [CrossRef]
8. Chen X, Yu Y, Mi LZ, Walz T, Springer TA. 2012. Molecular basis for complement recognition by integrin αXβ2. Proc Natl Acad Sci U S A 109:4586–4591. [CrossRef]
9. Gorgani NN, He JQ, Katschke KJ Jr, Helmy KY, Xi H, Steffek M, Hass PE, van Lookeren Campagne M. 2008. Complement receptor of the Ig superfamily enhances complement-mediated phagocytosis in a subpopulation of tissue resident macrophages. J Immunol 181:7902–7908. [CrossRef]
10. Wiesmann C, Katschke KJ, Yin J, Helmy KY, Steffek M, Fairbrother WJ, McCallum SA, Embuscado L, DeForge L, Hass PE, van Lookeren Campagne M. 2006. Structure of C3b in complex with CRIg gives insights into regulation of complement activation. Nature 444:217–220. [CrossRef]
11. Vogt L, Schmitz N, Kurrer MO, Bauer M, Hinton HI, Behnke S, Gatto D, Sebbel P, Beerli RR, Sonderegger I, Kopf M, Saudan P, Bachmann MF. 2006. VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 116:2817–2826. [CrossRef]
12. Bajic G, Yatime L, Klos A, Andersen GR. 2013. Human C3a and C3a desArg anaphylatoxins have conserved structures, in contrast to C5a and C5a desArg. Protein Sci 22:204–212. [CrossRef]
13. Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N, Schmidt RE, Piekorz RP, Nürnberg B, Spicher K, Birnbaumer L, Zwirner J, Claassens JW, Verbeek JS, van Rooijen N, Köhl J, Gessner JE. 2005. Macrophages induce the inflammatory response in the pulmonary Arthus reaction through Gαi2 activation that controls C5aR and Fc receptor cooperation. J Immunol 174:3041–3050. [CrossRef]
14. Heit B, Tavener S, Raharjo E, Kubes P. 2002. An intracellular signaling hierarchy determines direction of migration in opposing chemotactic gradients. J Cell Biol 159:91–102. [CrossRef]
15. Flaherty P, Radhakrishnan ML, Dinh T, Rebres RA, Roach TI, Jordan MI, Arkin AP. 2008. A dual receptor crosstalk model of G-protein-coupled signal transduction. PLOS Comput Biol 4:e1000185. doi:10.1371/journal.pcbi.1000185. [CrossRef]
16. Strainic MG, Liu J, Huang D, An F, Lalli PN, Muqim N, Shapiro VS, Dubyak GR, Heeger PS, Medof ME. 2008. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28:425–435. [CrossRef]
17. Senior RM, Griffin GL, Perez HD, Webster RO. 1988. Human C5a and C5a des Arg exhibit chemotactic activity for fibroblasts. J Immunol 141:3570–3574.
18. Bamberg CE, Mackay CR, Lee H, Zahra D, Jackson J, Lim YS, Whitfeld PL, Craig S, Corsini E, Lu B, Gerard C, Gerard NP. 2010. The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem 285:7633–7644. [CrossRef]
19. Venkiteswaran G, Lewellis SW, Wang J, Reynolds E, Nicholson C, Knaut H. 2013. Generation and dynamics of an endogenous, self-generated signaling gradient across a migrating tissue. Cell 155:674–687. [CrossRef]
20. Humbles AA, Lu B, Nilsson CA, Lilly C, Israel E, Fujiwara Y, Gerard NP, Gerard C. 2000. A role for the C3a anaphylatoxin receptor in the effector phase of asthma. Nature 406:998–1001. [CrossRef]
21. Höpken UE, Lu B, Gerard NP, Gerard C. 1996. The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383:86–89. [CrossRef]
22. Banda NK, Hyatt S, Antonioli AH, White JT, Glogowska M, Takahashi K, Merkel TJ, Stahl GL, Mueller-Ortiz S, Wetsel R, Arend WP, Holers VM. 2012. Role of C3a receptors, C5a receptors, and complement protein C6 deficiency in collagen antibody-induced arthritis in mice. J Immunol 188:1469–1478. [CrossRef]
23. Andersson C, Wenander CS, Usher PA, Hebsgaard JB, Sondergaard BC, Rønø B, Mackay C, Friedrichsen B, Chang C, Tang R, Hornum L. 2014. Rapid-onset clinical and mechanistic effects of anti-C5aR treatment in the mouse collagen-induced arthritis model. Clin Exp Immunol 177:219–233. [CrossRef]
24. Vergunst CE, Gerlag DM, Dinant H, Schulz L, Vinkenoog M, Smeets TJ, Sanders ME, Reedquist KA, Tak PP. 2007. Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford) 46:1773–1778. [CrossRef]
25. Jacobson AC, Weis JH. 2008. Comparative functional evolution of human and mouse CR1 and CR2. J Immunol 181:2953–2959. [CrossRef]
26. Donius LR, Handy JM, Weis JJ, Weis JH. 2013. Optimal germinal center B cell activation and T-dependent antibody responses require expression of the mouse complement receptor Cr1. J Immunol 191:434–447. [CrossRef]
27. Hourcade D, Miesner DR, Bee C, Zeldes W, Atkinson JP. 1990. Duplication and divergence of the amino-terminal coding region of the complement receptor 1 (CR1) gene. An example of concerted (horizontal) evolution within a gene. J Biol Chem 265:974–980.
28. Java A, Liszewski MK, Hourcade DE, Zhang F, Atkinson JP. 2015. Role of complement receptor 1 (CR1; CD35) on epithelial cells: a model for understanding complement-mediated damage in the kidney. Mol Immunol 67(2 Pt B):584–595. [CrossRef]
29. Schramm EC, Roumenina LT, Rybkine T, Chauvet S, Vieira-Martins P, Hue C, Maga T, Valoti E, Wilson V, Jokiranta S, Smith RJ, Noris M, Goodship T, Atkinson JP, Fremeaux-Bacchi V. 2015. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood 125:2359–2369. [CrossRef]
30. Molina H, Holers VM, Li B, Fung Y, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Chaplin DD. 1996. Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A 93:3357–3361. [CrossRef]
31. Repik A, Pincus SE, Ghiran I, Nicholson-Weller A, Asher DR, Cerny AM, Casey LS, Jones SM, Jones SN, Mohamed N, Klickstein LB, Spitalny G, Finberg RW. 2005. A transgenic mouse model for studying the clearance of blood-borne pathogens via human complement receptor 1 (CR1). Clin Exp Immunol 140:230–240. [CrossRef]
32. Newman SL, Becker S, Halme J. 1985. Phagocytosis by receptors for C3b (CR1), iC3b (CR3), and IgG (Fc) on human peritoneal macrophages. J Leukoc Biol 38:267–278.
33. Holers VM, Kinoshita T, Molina H. 1992. The evolution of mouse and human complement C3-binding proteins: divergence of form but conservation of function. Immunol Today 13:231–236. [CrossRef]
34. Paccaud JP, Carpentier JL, Schifferli JA. 1990. Difference in the clustering of complement receptor type 1 (CR1) on polymorphonuclear leukocytes and erythrocytes: effect on immune adherence. Eur J Immunol 20:283–289. [CrossRef]
35. Ghiran I, Glodek AM, Weaver G, Klickstein LB, Nicholson-Weller A. 2008. Ligation of erythrocyte CR1 induces its clustering in complex with scaffolding protein FAP-1. Blood 112:3465–3473. [CrossRef]
36. Springer TA, Dustin ML. 2012. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24:107–115. [CrossRef]
37. Vogel V, Sheetz MP. 2009. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Curr Opin Cell Biol 21:38–46. [CrossRef]
38. Sanchez-Madrid F, Nagy JA, Robbins E, Simon P, Springer TA. 1983. A human leukocyte differentiation antigen family with distinct α-subunits and a common β-subunit: the lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p150,95 molecule. J Exp Med 158:1785–1803. [CrossRef]
39. Anderson DC, Springer TA. 1987. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med 38:175–194. [CrossRef]
40. Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S, Marie JC, Travis MA. 2015. Integrin αvβ8-mediated TGF-β activation by effector regulatory T cells is essential for suppression of T-cell-mediated inflammation. Immunity 42:903–915. [CrossRef]
41. Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA. 2002. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155. [CrossRef]
42. Shimaoka M, Xiao T, Liu JH, Yang Y, Dong Y, Jun CD, McCormack A, Zhang R, Joachimiak A, Takagi J, Wang JH, Springer TA. 2003. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112:99–111. [CrossRef]
43. Choi WS, Rice WJ, Stokes DL, Coller BS. 2013. Three-dimensional reconstruction of intact human integrin αIIbβ3: new implications for activation-dependent ligand binding. Blood 122:4165–4171. [CrossRef]
44. García-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. 2003. Structural determinants of integrin recognition by talin. Mol Cell 11:49–58. [CrossRef]
45. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP. 2007. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92:2964–2974. [CrossRef]
46. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM. 2010. Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584. [CrossRef]
47. Kupfer A, Singer SJ. 1989. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. J Exp Med 170:1697–1713. [CrossRef]
48. Lim J, Wiedemann A, Tzircotis G, Monkley SJ, Critchley DR, Caron E. 2007. An essential role for talin during αMβ2-mediated phagocytosis. Mol Biol Cell 18:976–985. [CrossRef]
49. Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J. 2014. Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep 4:4610. doi:10.1038/srep04610. [CrossRef]
50. Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V, Stenkamp RE, Sokurenko EV, Thomas WE. 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β sheet twisting. Cell 141:645–655. [CrossRef]
51. Baorto DM, Gao Z, Malaviya R, Dustin ML, van der Merwe A, Lublin DM, Abraham SN. 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389:636–639. [CrossRef]
52. Hynes RO. 1987. Integrins: a family of cell surface receptors. Cell 48:549–554. [CrossRef]
53. Hemler ME, Sanchez-Madrid F, Flotte TJ, Krensky AM, Burakoff SJ, Bhan AK, Springer TA, Strominger JL. 1984. Glycoproteins of 210,000 and 130,000 m.w. on activated T cells: cell distribution and antigenic relation to components on resting cells and T cell lines. J Immunol 132:3011–3018.
54. Elices MJ, Osborn L, Takada Y, Crouse C, Luhowskyj S, Hemler ME, Lobb RR. 1990. VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60:577–584. [CrossRef]
55. Springer TA, Dustin ML. 2012. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24:107–115. [CrossRef]
56. Nishida N, Xie C, Shimaoka M, Cheng Y, Walz T, Springer TA. 2006. Activation of leukocyte β2 integrins by conversion from bent to extended conformations. Immunity 25:583–594. [CrossRef]
57. Stewart MP, Cabanas C, Hogg N. 1996. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J Immunol 156:1810–1817.
58. Comrie WA, Babich A, Burkhardt JK. 2015. F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J Cell Biol 208:475–491. [CrossRef]
59. Kishimoto TK, Hollander N, Roberts TM, Anderson DC, Springer TA. 1987. Heterogeneous mutations in the β subunit common to the LFA-1, Mac-1, and p150,95 glycoproteins cause leukocyte adhesion deficiency. Cell 50:193–202. [CrossRef]
60. Thomas C, Le Deist F, Cavazzana-Calvo M, Benkerrou M, Haddad E, Blanche S, Hartmann W, Friedrich W, Fischer A. 1995. Results of allogeneic bone marrow transplantation in patients with leukocyte adhesion deficiency. Blood 86:1629–1635.
61. Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z, Kilic SS, Rosenthal-Allieri MA, Ben-Dor S, Mory A, Bernard A, Moser M, Etzioni A, Alon R. 2009. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 114:2344–2353. [CrossRef]
62. Xue ZH, Feng C, Liu WL, Tan SM. 2013. A role of kindlin-3 in integrin αMβ2 outside-in signaling and the Syk-Vav1-Rac1/Cdc42 signaling axis. PLoS One 8:e56911. doi:10.1371/journal.pone.0056911. [CrossRef]
63. Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA. 1990. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111:3129–3139. [CrossRef]
64. Diamond MS, Staunton DE, Marlin SD, Springer TA. 1991. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961–971. [CrossRef]
65. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. 1986. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137:245–254.
66. Staunton DE, Dustin ML, Springer TA. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339:61–64. [CrossRef]
67. Lu TT, Cyster JG. 2002. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297:409–412. [CrossRef]
68. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. 1999. The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227. [CrossRef]
69. Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S. 2008. Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 28:258–270. [CrossRef]
70. Cambi A, Joosten B, Koopman M, de Lange F, Beeren I, Torensma R, Fransen JA, Garcia-Parajó M, van Leeuwen FN, Figdor CG. 2006. Organization of the integrin LFA-1 in nanoclusters regulates its activity. Mol Biol Cell 17:4270–4281. [CrossRef]
71. Wright SD, Rao PE, Van Voorhis WC, Craigmyle LS, Iida K, Talle MA, Westberg EF, Goldstein G, Silverstein SC. 1983. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci U S A 80:5699–5703. [CrossRef]
72. Wright SD, Silverstein SC. 1983. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158:2016–2023. [CrossRef]
73. Vorup-Jensen T, Carman CV, Shimaoka M, Schuck P, Svitel J, Springer TA. 2005. Exposure of acidic residues as a danger signal for recognition of fibrinogen and other macromolecules by integrin αXβ2. Proc Natl Acad Sci U S A 102:1614–1619. [CrossRef]
74. Melo MD, Catchpole IR, Haggar G, Stokes RW. 2000. Utilization of CD11b knockout mice to characterize the role of complement receptor 3 (CR3, CD11b/CD18) in the growth of Mycobacterium tuberculosis in macrophages. Cell Immunol 205:13–23. [CrossRef]
75. Rooyakkers AW, Stokes RW. 2005. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Microb Pathog 39:57–67. [CrossRef]
76. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B. 2016. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352:712–716. [CrossRef]
77. Wyss-Coray T, Rogers J. 2012. Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346. doi:10.1101/cshperspect.a006346. [CrossRef]
78. Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML, Nussenzweig MC. 2004. Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250. [CrossRef]
79. Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220. [CrossRef]
80. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, Idoyaga J, Cheong C, Yao KH, Niec RE, Nussenzweig MC. 2012. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209:1153–1165. [CrossRef]
81. Bullard DC, Hu X, Adams JE, Schoeb TR, Barnum SR. 2007. p150/95 (CD11c/CD18) expression is required for the development of experimental autoimmune encephalomyelitis. Am J Pathol 170:2001–2008. [CrossRef]
82. Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, Burns AR, Paul A, Smith CW, Simon SI, Ballantyne CM. 2009. Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia. Circulation 119:2708–2717. [CrossRef]
83. Astier A, Trescol-Biémont MC, Azocar O, Lamouille B, Rabourdin-Combe C. 2000. Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J Immunol 164:6091–6095. [CrossRef]
84. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. 2003. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421:388–392. [CrossRef]
85. Ghannam A, Fauquert JL, Thomas C, Kemper C, Drouet C. 2014. Human complement C3 deficiency: Th1 induction requires T cell-derived complement C3a and CD46 activation. Mol Immunol 58:98–107. [CrossRef]
86. Wu H, Rodgers JR, Perrard XY, Perrard JL, Prince JE, Abe Y, Davis BK, Dietsch G, Smith CW, Ballantyne CM. 2004. Deficiency of CD11b or CD11d results in reduced staphylococcal enterotoxin-induced T cell response and T cell phenotypic changes. J Immunol 173:297–306. [CrossRef]
87. Geremia NM, Bao F, Rosenzweig TE, Hryciw T, Weaver L, Dekaban GA, Brown A. 2012. CD11d antibody treatment improves recovery in spinal cord-injured mice. J Neurotrauma 29:539–550. [CrossRef]
88. Arnold IC, Mathisen S, Schulthess J, Danne C, Hegazy AN, Powrie F. 2016. CD11c+ monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol 9:352–363. [CrossRef]
89. Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R, Critchley DR, Fässler R, Sixt M. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55. [CrossRef]
90. Haston WS, Shields JM. 1984. Contraction waves in lymphocyte locomotion. J Cell Sci 68:227–241.
91. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M. 2006. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927. [CrossRef]
92. Kim KH, Choi BK, Kim YH, Han C, Oh HS, Lee DG, Kwon BS. 2016. Extracellular stimulation of VSIG4/complement receptor Ig suppresses intracellular bacterial infection by inducing autophagy. Autophagy 12:1647–1659. [CrossRef]
93. Katschke KJ Jr, Helmy KY, Steffek M, Xi H, Yin J, Lee WP, Gribling P, Barck KH, Carano RA, Taylor RE, Rangell L, Diehl L, Hass PE, Wiesmann C, van Lookeren Campagne M. 2007. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J Exp Med 204:1319–1325. [CrossRef]
94. Zeng Z, Surewaard BG, Wong CH, Geoghegan JA, Jenne CN, Kubes P. 2016. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne Gram-positive bacteria. Cell Host Microbe 20:99–106. [CrossRef]
95. von Andrian UH, Chambers JD, McEvoy LM, Bargatze RF, Arfors KE, Butcher EC. 1991. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrins in vivo. Proc Natl Acad Sci U S A 88:7538–7542. [CrossRef]
96. Lawrence MB, Springer TA. 1991. Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873. [CrossRef]
97. Wild MK, Lühn K, Marquardt T, Vestweber D. 2002. Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172:161–173. [CrossRef]
98. Pober JS, Bevilacqua MP, Mendrick DL, Lapierre LA, Fiers W, Gimbrone MA Jr. 1986. Two distinct monokines, interleukin 1 and tumor necrosis factor, each independently induce biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells. J Immunol 136:1680–1687.
99. Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH, Alon R. 2005. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6:497–506. [CrossRef]
100. Chan JR, Hyduk SJ, Cybulsky MI. 2001. Chemoattractants induce a rapid and transient upregulation of monocyte α4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med 193:1149–1158. [CrossRef]
101. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA. 2007. Transcellular diapedesis is initiated by invasive podosomes. Immunity 26:784–797. [CrossRef]
102. Kim JV, Kang SS, Dustin ML, McGavern DB. 2009. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457:191–195. [CrossRef]
103. Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR. 2005. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3:e113. doi:10.1371/journal.pbio.0030113. [CrossRef]
104. Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S, Geissmann F. 2013. Nr4a1-dependent Ly6Clow monocytes monitor endothelial cells and orchestrate their disposal. Cell 153:362–375. [CrossRef]
105. Liese J, Rooijakkers SH, van Strijp JA, Novick RP, Dustin ML. 2013. Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation. Cell Microbiol 15:891–909. [CrossRef]
106. Lämmermann T, Afonso PV, Angermann BR, Wang JM, Kastenmüller W, Parent CA, Germain RN. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–375. [CrossRef]
107. Foxman EF, Campbell JJ, Butcher EC. 1997. Multistep navigation and the combinatorial control of leukocyte chemotaxis. J Cell Biol 139:1349–1360. [CrossRef]
108. Waite JC, Leiner I, Lauer P, Rae CS, Barbet G, Zheng H, Portnoy DA, Pamer EG, Dustin ML. 2011. Dynamic imaging of the effector immune response to listeria infection in vivo. PLoS Pathog 7:e1001326. doi:10.1371/journal.ppat.1001326. [CrossRef]
109. Zinselmeyer BH, Heydari S, Sacristán C, Nayak D, Cammer M, Herz J, Cheng X, Davis SJ, Dustin ML, McGavern DB. 2013. PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210:757–774. [CrossRef]
110. Mizuno M, Nishikawa K, Okada N, Matsuo S, Ito K, Okada H. 1999. Inhibition of a membrane complement regulatory protein by a monoclonal antibody induces acute lethal shock in rats primed with lipopolysaccharide. J Immunol 162:5477–5482.
111. Tohyama Y, Yamamura H. 2009. Protein tyrosine kinase, Syk: a key player in phagocytic cells. J Biochem 145:267–273. [CrossRef]
112. Rogers NC, Slack EC, Edwards AD, Nolte MA, Schulz O, Schweighoffer E, Williams DL, Gordon S, Tybulewicz VL, Brown GD, Reis e Sousa C. 2005. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22:507–517. [CrossRef]
113. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. 2006. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25:117–127. [CrossRef]
114. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJ, Klenerman D, Aricescu AR, Davis SJ. 2016. Initiation of T cell signaling by CD45 segregation at ‘close contacts.’ Nat Immunol 17:574–582. [CrossRef]
115. Goodridge HS, Simmons RM, Underhill DM. 2007. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J Immunol 178:3107–3115. [CrossRef]
116. Freeman SA, Goyette J, Furuya W, Woods EC, Bertozzi CR, Bergmeier W, Hinz B, van der Merwe PA, Das R, Grinstein S. 2016. Integrins form an expanding diffusional barrier that coordinates phagocytosis. Cell 164:128–140. [CrossRef]
117. Dahlbäck B, Smith CA, Müller-Eberhard HJ. 1983. Visualization of human C4b-binding protein and its complexes with vitamin K-dependent protein S and complement protein C4b. Proc Natl Acad Sci U S A 80:3461–3465. [CrossRef]
118. Norman MU, Hulliger S, Colarusso P, Kubes P. 2008. Multichannel fluorescence spinning disk microscopy reveals early endogenous CD4 T cell recruitment in contact sensitivity via complement. J Immunol 180:510–521. [CrossRef]
119. Kolev M, Dimeloe S, Le Friec G, Navarini A, Arbore G, Povoleri GA, Fischer M, Belle R, Loeliger J, Develioglu L, Bantug GR, Watson J, Couzi L, Afzali B, Lavender P, Hess C, Kemper C. 2015. Complement regulates nutrient influx and metabolic reprogramming during Th1 cell responses. Immunity 42:1033–1047. [CrossRef]
120. Oliaro J, Pasam A, Waterhouse NJ, Browne KA, Ludford-Menting MJ, Trapani JA, Russell SM. 2006. Ligation of the cell surface receptor, CD46, alters T cell polarity and response to antigen presentation. Proc Natl Acad Sci U S A 103:18685–18690. [CrossRef]
121. Jung K, Seo SK, Choi I. 2015. Endogenous VSIG4 negatively regulates the helper T cell-mediated antibody response. Immunol Lett 165:78–83. [CrossRef]
122. Li Y, Wang YQ, Wang DH, Hou WP, Zhang Y, Li M, Li FR, Mu J, Du X, Pang F, Yuan FH. 2014. Costimulatory molecule VSIG4 exclusively expressed on macrophages alleviates renal tubulointerstitial injury in VSIG4 KO mice. J Nephrol 27:29–36. [CrossRef]
123. Fuller MJ, Callendret B, Zhu B, Freeman GJ, Hasselschwert DL, Satterfield W, Sharpe AH, Dustin LB, Rice CM, Grakoui A, Ahmed R, Walker CM. 2013. Immunotherapy of chronic hepatitis C virus infection with antibodies against programmed cell death-1 (PD-1). Proc Natl Acad Sci U S A 110:15001–15006. [CrossRef]
124. Takagi J, Petre BM, Walz T, Springer TA. 2002. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611. [CrossRef]
125. Chen W, Lou J, Evans EA, Zhu C. 2012. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J Cell Biol 199:497–512. [CrossRef]
126. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326. [CrossRef]
microbiolspec.MCHD-0034-2016.citations
cm/4/6
content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0034-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MCHD-0034-2016
2016-11-04
2017-09-21

Abstract:

Myeloid cells make extensive use of the complement system in the context of recruitment, phagocytosis, and other effector functions. There are several types of complement receptors on myeloid cells, including G protein-coupled receptors for localizing the source of complement activation, and three sets of type I transmembrane proteins that link complement to phagocytosis: complement receptor 1, having an extracellular domain with tandem complement regulatory repeats; complement receptors 3 and 4, which are integrin family receptors comprising heterodimers of type I transmembrane subunits; and VSIG4, a member of the Ig superfamily. This review will focus on the role of the different classes of complement receptors and how their activities are integrated in the setting of immune tolerance and inflammatory responses.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Receptors for products of C3 expressed on human macrophages. Human macrophages differentiated from CD14 monocytes with granulocyte-monocyte colony-stimulating factor express all the major complement receptors, including C3aR, C5aR, CR1, CR3, and VSIG4. The arrows with the receptor names indicate approximate binding-site location within the schematic of C3 breakdown products that are released in the production of C3a, C3b, and its covalently attached products iC3b and C3d. The upper part of the schematic is the macrophage surface and the lower part is a microbial surface bearing the complement components.

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.MCHD-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic of the mouse and human complement receptor gene products. In the mouse, CR1 and CR2 proteins are derived from alternative splicing of the gene. Mouse CR1 and CR2 are not present on myeloid cells. In humans, the CR1 and CR2 proteins are products of different genes. Human CR1 is expressed on myeloid cells and functions in phagocytosis in addition to clearance of immune complexes bearding C3b and/or C4b. CR1 also acts as a cofactor for factor I in conversion of C3b to iC3b and, further, to C3d. Each ball is an SCR, and each group of seven repeats is referred to as an LHR.

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.MCHD-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Fitting integrins and complement receptors into a diffusion barrier model for the phagocytic synapse. Close contacts are inherent to immunological synapses. Fc receptors and T-cell receptors naturally fit into a 15-nm gap that generates a diffusion barrier for entry of the RO and RB splice variants of CD45 and thus tips the local kinase/phosphatase balance in favor of the kinases. Large receptors like CR3 and CR4 are too large to fit into the <15-nm space when fully extended. Active F-actin-mediated processes induced by phosphatidylinositol-3 kinase (PI-3K) signaling can work with integrins to expand close contacts in phagocytic immune synapses and increase the area from which CD45 is excluded. The relevant integrin conformations that mediate this close contact formation are not known, but may include alternative crouching conformations recently described by electron microscopy or tilted extended conformations generated by forces tangential to the membrane. CR1 function overlaps extensively with CR3/4, and thus it is possible that CR1 can also adopt conformations that facilitate close contact in an F-actin-dependent manner, despite its apparent large size. Further study is needed to understand whether CR1 also participates in close contact formation and how CR1’s structure is adapted to this task.

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.MCHD-0034-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Complement receptors involved in adhesion, migration, and phagocytosis

Source: microbiolspec November 2016 vol. 4 no. 6 doi:10.1128/microbiolspec.MCHD-0034-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error