1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Mammalian Endogenous Retroviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    194.73 Kb
  • PDF
    523.41 Kb
  • XML
    181.34 Kb
  • Authors: Dixie L. Mager1, Jonathan P. Stoye2
  • Editors: Suzanne Sandmeyer3, Nancy Craig4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Terry Fox Laboratory, British Columbia Cancer Agency and Dept. of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; 2: MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK; 3: University of California, Irvine, CA; 4: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014
  • Received 12 February 2014 Accepted 11 August 2014 Published 05 February 2015
  • Dixie Mager, dmager@bccrc.ca
image of Mammalian Endogenous Retroviruses
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Mammalian Endogenous Retroviruses, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/1/MDNA3-0009-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/1/MDNA3-0009-2014-2.gif
  • Abstract:

    Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.

  • Citation: Mager D, Stoye J. 2015. Mammalian Endogenous Retroviruses. Microbiol Spectrum 3(1):MDNA3-0009-2014. doi:10.1128/microbiolspec.MDNA3-0009-2014.

Key Concept Ranking

Mouse mammary tumor virus
0.5201867
Genetic Elements
0.45793387
0.5201867

References

1. Weiss RA. 2006. The discovery of endogenous retroviruses. Retrovirology 3:67. [PubMed][CrossRef]
2. Lowy DR, Rowe WP, Teich N, Hartley JW. 1971. Murine leukemia virus: high frequency activation in vitro by 5-iododeoxyuridine and 5-bromodeoxyuridine. Science 174:155–156. [PubMed][CrossRef]
3. Benveniste RE, Todaro GJ. 1974. Multiple divergent copies of endogenous type C virogenes in mammalian cells. Nature 252:170–173. [PubMed][CrossRef]
4. Boeke JD, Stoye JP. 1997. Retrotransposons, endogenous retroviruses and the evolution of retroelements, p 343–435. In Coffin JM, Hughes SH, Varmus HE (ed), Retroviruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
5. Khan AS, Ma W, Ma Y, Kumar A, Williams DK, Muller J, Ma H, Galvin TA. 2009. Proposed algorithm to investigate latent and occult viruses in vaccine cell substrates by chemical induction. Biologicals 37:196–201. [PubMed][CrossRef]
6. Paprotka T, Delviks-Frankenberry KA, Cingoz O, Martinez A, Kung HJ, Tepper CG, Hu WS, Fivash MJ, Jr, Coffin JM, Pathak VK. 2011. Recombinant origin of the retrovirus XMRV. Science 333:97–101. [PubMed][CrossRef]
7. Voisset C, Weiss RA, Griffiths DJ. 2008. Human RNA “rumor” viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 72:157–196. [PubMed][CrossRef]
8. Callahan R, Drohan W, Tronick S, Schlom J. 1982. Detection and cloning of human DNA sequences related to the mouse mammary tumor virus genome. Proc Natl Acad Sci U S A 79:5503–5507. [PubMed][CrossRef]
9. Martin MA, Bryan T, Rasheed S, Khan AS. 1981. Identification and cloning of endogenous retroviral sequences present in human DNA. Proc Natl Acad Sci U S A 78:4892–4896. [PubMed][CrossRef]
10. Dunwiddie CT, Resnick R, Boyce-Jacino M, Alegre JN, Faras AJ. 1986. Molecular cloning and characterization of gag-, pol-, and env-related gene sequences in the ev chicken. J Virol 59:669–675. [PubMed]
11. Medstrand P, Blomberg J. 1993. Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. J Virol 67:6778–6787. [PubMed]
12. Shih A, Misra R, Rush MG. 1989. Detection of multiple, novel reverse transcriptase coding sequences in human nucleic acids: relation to primate retroviruses. J Virol 63:64–75. [PubMed]
13. Tristem M, Kabat P, Lieberman L, Linde S, Karpas A, Hill F. 1996. Characterization of a novel murine leukemia virus-related subgroup within mammals. J Virol 70:8241–8246. [PubMed]
14. Smit AFA. 1993. Identification of a new, abundant superfamily of mammalian LTR-retrotransposons. Nucl Acids Res 21:1863–1872. [PubMed][CrossRef]
15. Smit AFA. 1996. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev 6:743–748. [PubMed][CrossRef]
16. Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87. [PubMed][CrossRef]
17. International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716. [PubMed][CrossRef]
18. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921. [PubMed][CrossRef]
19. International Mouse Genome Sequencing Consortium. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562. [PubMed][CrossRef]
20. Lerat E. 2010. Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity 104:520–522. [PubMed][CrossRef]
21. Sperber GO, Airola T, Jern P, Blomberg J. 2007. Automated recognition of retroviral sequences in genomic data—RectoTector. Nucl Acids Res 35:4964–4976. [PubMed][CrossRef]
22. Katzourakis A, Gifford RJ. 2010. Endogenous viral elements in animal genomes. PLoS Genet 6:e1001191. [PubMed][CrossRef]
23. Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter J, Belshaw R. 2012. Env-less endogenous retroviruses are genomic superspreaders. Proc Natl Acad Sci U S A 109:7385–7390. [PubMed][CrossRef]
24. Hayward A, Grabherr M, Jern P. 2013. Broad-scale phylogenomics provides insights into retrovirus-host evolution. Proc Natl Acad Sci U S A 110:20146–20151. [PubMed][CrossRef]
25. Stoye JP, Coffin JM. 1987. The four classes of endogenous murine leukemia viruses: structural relationships and potential for recombination. J Virol 61:2659–2669. [PubMed]
26. Hohn O, Hanke K, Bannert N. 2013. HERV-K(HML-2), the best preserved family of HERVs: endogenisation, expression and implications in health and disease. Front Oncol 3:1–12. [PubMed][CrossRef]
27. Katzourakis A, Tristem M, Pybus OG, Gifford RJ. 2007. Discovery and analysis of the first endogenous lentivirus. Proc Natl Acad Sci U S A 104:6261–6265. [PubMed][CrossRef]
28. Ribet D, Harper F, Dupressoir A, Dewannieux M, Pierron G, Heidmann T. 2008. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res 18:597–609. [PubMed][CrossRef]
29. Ribet D, Harper F, Dewannieux M, Pierron G, Heidmann T. 2007. Murine MusD retrotransposon:structure and molecular evolution of an “intracellularized” retrovirus. J Virol 81:1888–1898. [PubMed][CrossRef]
30. Swain A, Coffin JM. 1992. Mechanism of transduction by retroviruses. Science 255:841–845. [PubMed][CrossRef]
31. Sonigo P, Wain-Hobson S, Bougueleret L, Tiollais P, Jacob F, Brulet P. 1987. Nucleotide sequence and evolution of ETn elements. Proc Natl Acad Sci U S A 84:3768–3771. [PubMed][CrossRef]
32. Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. 2006. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2:e2. [PubMed][CrossRef]
33. Benachenhou F, Jern P, Oja M, Sperber G, Blikstad V, Somervuo P, Kaski S, Blomberg J. 2009. Evolutionary conservation of orthoretroviral long terminal repeats (LTRs) and ab initio detection of single LTRs in genomic data. PLoS One 4:e5179. [PubMed][CrossRef]
34. Belshaw R, Watson J, Katzourakis A, Howe A, Woolven-Allen J, Burt A, Tristem M. 2007. Rate of recombinational deletion among human endogenous retroviruses. J Virol 81:9437–9442. [PubMed][CrossRef]
35. Seperack PK, Strobel MC, Corrow DJ, Jenkins NA, Copeland NG. 1988. Somatic and germ-line reverse mutation rates of the retrovirus-induced dilute coat-color mutation of DBA mice. Proc Natl Acad Sci U S A 85:189–192. [PubMed][CrossRef]
36. de Parseval N, Lazr V, Casella JF, Benit L, Heidmann T. 2003. Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77:10414–10422. [PubMed][CrossRef]
37. Villeson P, Aagaard L, Wiuf C, Pedersen FS. 2004. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 1:32. [PubMed][CrossRef]
38. Jern P, Stoye JP, Coffin JM. 2007. Role of APOBEC3 in genetic diversity among endogenous murine leukemia viruses. PLoS Genet 3:e183. [PubMed][CrossRef]
39. Dewannieux M, Harper F, Richaud A, Letzelter C, Ribet D, Pierron G, Heidmann T. 2006. Identification of an infectious progenitor for the multiple-copy HERV-K human endogenous retroelements. Genome Res 16:1548–1556. [PubMed][CrossRef]
40. Lee YN, Bieniasz PD. 2007. Reconstitution of an infectious human endogenous retrovirus. PLoS Pathog 3:e10. [PubMed][CrossRef]
41. Blomberg J, Benachenhou F, Blikstad V, Sperber G, Meyer J. 2009. Classification and nomenclature of endogenous retroviral sequences (ERVs): problems and recommendations. Gene 448:115–123. [PubMed][CrossRef]
42. Meyer J, Blomberg J, Seal RL. 2011. A revised nomenclature for transcribed endogenous retroviral loci. Mob DNA 2:7. [PubMed][CrossRef]
43. Tristem M. 2000. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J Virol 74:3715–3730. [PubMed][CrossRef]
44. Henzy JE, Johnson WE. 2013. Pushing the endogenous envelope. Phil Trans R Soc Lond B Biol Sci 368:20120506. [PubMed][CrossRef]
45. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. [PubMed][CrossRef]
46. Bannert N, Kurth R. 2006. The evolutionary dynamics of human endogenous retroviral families. Annu Rev. Genomics Hum Genet 7:149–173. [PubMed][CrossRef]
47. de Parseval N, Heidmann T. 2005. Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res 110:318–332. [PubMed][CrossRef]
48. Gifford R, Tristem M. 2003. The evolution, distribution and diversity of endogenous retroviruses. Virus Genes 26:291–315. [CrossRef]
49. Zhuo X, Rho M, Feschotte C. 2013. Genome-wide characterization of endogenous retroviruses in the bat Myotis lucifugus reveals recent and diverse infections. J Virol 87:8493–8501. [PubMed][CrossRef]
50. Magiorkinis G, Belshaw R, Katzourakis A. 2013. “There and back again”: revisiting the pathophysiological roles of human endogenous retroviruses in the post-genomic era. Phil Trans R Soc Lond B Biol Sci 368:20120504. [PubMed][CrossRef]
51. Gilbert C, Feschotte C. 2010. Genomic fossils calibrate the long term evolution of hepadnaviruses. PLoS Biol 8:e1000495. [PubMed][CrossRef]
52. Goodchild NL, Wilkinson DA, Mager DL. 1993. Recent evolutionary expansion of a subfamily of RTVL-H human endogenous retrovirus-like elements. Virology 196:778–788. [PubMed][CrossRef]
53. Hughes JF, Coffin JM. 2005. Human endogenous retroviral elements as indicators of ectopic recombination events in the primate genome. Genetics 171:1183–1194. [PubMed][CrossRef]
54. Stoye JP. 2012. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat Rev Microbiol 10:395–406. [PubMed]
55. Lee A, Nolan A, Watson J, Tristem M. 2013. Identification of an ancient endogenous retrovirus, predating the divergence of placental animals. Phil Trans R Soc Lond B Biol Sci 368:20120503. [PubMed][CrossRef]
56. Katzourakis A, Rambaut A, Pybus OG. 2005. The evolutionary dynamics of endogenous retroviruses. Trends Microbiol 13:463–468. [PubMed][CrossRef]
57. Stocking C, Kozak CA. 2008. Murine endogenous retroviruses. Cell Mol Life Sci 65:3383–3398. [PubMed][CrossRef]
58. Subramanian RP, Wildschutte JH, C. R, Coffin JM. 2011. Identification, characterization, and comparative genomic distribution of the HERV-K(HML-2) group of human endogenous retroviruses. Retrovirology 8:90. [PubMed][CrossRef]
59. Soriano P, Jaenisch R. 1986. Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell linages. Cell 46:19–29. [PubMed][CrossRef]
60. Rowe WP, Kozak CA. 1980. Germ-line reinsertions of AKR murine leukemia virus genomes in AKV-1 congenic mice. Proc Natl Acad Sci U S A 77:4871–4874. [PubMed][CrossRef]
61. Lock LF, Keshet E, Gilbert DJ, Jenkins NA, Copeland NG. 1988. Studies on the mechanism of spontaneous germline ecotropic provirus acquisition in mice. EMBO J 7:4169–4177. [PubMed]
62. Simmons GS, Young PR, Hanger JJ, Jones K, Clarke D, McKee JJ, Meers J. 2012. Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J 90:404–409. [PubMed][CrossRef]
63. Tarlinton RE, Meers J, Young PR. 2006. Retroviral invasion of the koala genome. Nature 442:79–81. [PubMed][CrossRef]
64. Xu W, Stadler CK, Gorman K, Jensen N, Kim DH, Zheng H, Tang S, Switzer WM, Pye GW, Eiden MV. 2013. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proc Natl Acad Sci U S A 119:11547–11552. [PubMed][CrossRef]
65. Avila-Arcos M, Ho SYW, Ishida Y, Nikolaidis N, Tsangaras K, Hönig K, Medina R, Rasmussen M, Fordyce SL, Calvignac-Spencer S, Willersley E, Gilbert MTP, Helgen KM, Roca AL, Greenwood AD. 2013. One hundred twenty years of koala retrovirus evolution determined from museum skins. Mol Biol Evol 30:299–304. [PubMed][CrossRef]
66. Arias JF, Koyama T, Kinomoto M, Tokunaga K. 2012. Retroelements versus apobec3 family members: no great escape from the magnificent seven. Front Microbiol 3:275. [PubMed][CrossRef]
67. Crichton JH, Dunican DS, Maclennan M, Meehan RR, Adams IR. 2014. Defending the genome from the enemy within: mechanisms of retrotransposon suppression in the mouse germline. Cell Mol Life Sci 71:1581–605. [PubMed][CrossRef]
68. Maksakova I, Mager D, Reiss D. 2008. Keeping active endogenous retroviral-like sequences in check: the epigenetic perspective. Cell Mol Life Sci 65:3329–3347. [PubMed][CrossRef]
69. Rowe HM, Trono D. 2011. Dynamic control of endogenous retroviruses during development. Virology 411:273–287. [PubMed][CrossRef]
70. Wolf D, Goff SP. 2008. Host restriction factors blocking retroviral replication. Annu Rev Gen 42:143–163. [PubMed][CrossRef]
71. Leung DC, Lorincz MC. 20132. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci 37:127–133. [PubMed][CrossRef]
72. Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. [PubMed][CrossRef]
73. Howard G, Eiges R, Gaudet F, Jaenisch R, Eden A. 2008. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27:404–408. [PubMed][CrossRef]
74. Jaenisch R, Schnieke A, Harbers K. 1985. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc Natl Acad Sci 82:1451–1445. [PubMed][CrossRef]
75. Walsh CP, Chaillet JR, Bestor TH. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117. [PubMed][CrossRef]
76. Bourc'his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99. [PubMed][CrossRef]
77. Brûlet P, Condamine H, Jacob F. 1985. Spatial distribution of transcripts of the long repeated ETn sequence during early mouse embryogenesis. Proc Natl Acad Sci U S A 82:2054–2058. [PubMed][CrossRef]
78. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB. 2004. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606. [PubMed][CrossRef]
79. Li E, Bestor TH, Jaenisch R. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926. [CrossRef]
80. Seifarth W, Frank O, Zeilfelder U, Spiess B, Greenwood AD, Hehlmann R, Leib-Mösch C. 2005. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol 79:341–352. [PubMed][CrossRef]
81. Lavie L, Kitova M, Maldener E, Meese E, Mayer J. 2005. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol 79:876–883. [PubMed][CrossRef]
82. Reiss D, Zhang Y, Mager DL. 2007. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res 35:4743–4754. [PubMed][CrossRef]
83. Schulz WA, Steinhoff C, Florl AR. 2006. Methylation of endogenous human retroelements in health and disease. Curr Top Microbiol Immunol 310:211–250. [PubMed][CrossRef]
84. Stengel S, Fiebig U, Kurth R, Denner J. 2010. Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49:401–411. [PubMed][CrossRef]
85. Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, Kowalski D, Sasaki C, Costa J, Lizardi PM. 2009. Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448:151–167. [PubMed][CrossRef]
86. Xie M, Hong C, Zhang B, Lowdon RF, Xing X, Li D, Zhou X, Lee HJ, Maire CL, Ligon KL, Gascard P, Sigaroudinia M, Tlsty TD, Kadlecek T, Weiss A, O, Geen H, Farnham PJ, Madden PAF, Mungall AJ, Tam A, Kamoh B, Cho S, Moore R, Hirst M, Marra MA, Costello JF, Wang T. 2013. DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45:836–841. [PubMed][CrossRef]
87. Meunier J, Khelifi A, Navratil V, Duret L. 2005. Homology-dependent methylation in primate repetitive DNA. Proc Natl Sci Adad U S A 102:5471–5476. [PubMed][CrossRef]
88. Aravin AA, Bourc'his D. 2008. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev 22:970–975. [PubMed][CrossRef]
89. Yang N, Kazazian HH. 2006. L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nat Struct Mol Biol 13:763–771. [PubMed][CrossRef]
90. Shilatifard A. 2006. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269. [PubMed][CrossRef]
91. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim T-K, Koche RP, Lee W, Mendenhall E, O/'Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560. [PubMed][CrossRef]
92. Matsui T, Leung D, Miyashita H, Maksakova I, Miyachi H, Kimura H, Tachibana M, Lorincz MC, Shinkai Y. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–931. [PubMed][CrossRef]
93. Rowe H, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard P, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam D, Trono D. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–240. [PubMed][CrossRef]
94. Karimi MM, Goyal P, Maksakova IA, Bilenky M, Leung D, Tang JX, Shinkai Y, Mager DL, Jones S, Hirst M, Lorincz MC. 2011. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8:676–687. [PubMed][CrossRef]
95. Thomas JH, Schneider S. 2011. Coevolution of retroelements and tandem zinc finger genes. Genome Res 21:1800–1812. [PubMed][CrossRef]
96. Wolf D, Goff SP. 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–1204. [PubMed][CrossRef]
97. Maksakova IA, Thompson PJ, Goyal P, Jones SJ, Singh PB, Karimi MM, Lorincz MC. 2013. Distinct roles of KAP1, HP1 and G9a/GLP in silencing of the two-cell-specific retrotransposon MERVL in mouse ES cells. Epigenetics Chromatin 6:15. [PubMed][CrossRef]
98. Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, Andrews SE, Franco L, Rosenfeld MG, Ren B, Pfaff SL. 2011. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 25:594–607. [PubMed][CrossRef]
99. Leeb M, Pasini D, Novatchkova M, Jaritz M, Helin K, Wutz A. 2010. Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24:265–276. [PubMed][CrossRef]
100. Huda A, Bowen NJ, Conley AB, Jordan IK. 2011. Epigenetic regulation of transposable element derived human gene promoters. Gene 475:39–48. [PubMed][CrossRef]
101. Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS, Tarabay Y, Viville SP, Jakobsson J, Pfaff SL, Trono D. 2013. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res 23:452–461. [PubMed][CrossRef]
102. Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. 2012. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 13:R89. [PubMed][CrossRef]
103. Ward MC, Wilson MD, Barbosa-Morais NL, Schmidt D, Stark R, Pan Q, Schwalie PC, Menon S, Lukk M, Watt S, Thybert D, Kutter C, Kirschner K, Flicek P, Blencowe BJ, Odom DT. 2013. Latent regulatory potential of human-specific repetitive elements. Mol Cell 49:262–272. [PubMed][CrossRef]
104. Bieniasz PD. 2004. Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115. [PubMed][CrossRef]
105. Malim MH, Bieniasz PD. 2012. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med 2:a006940. [PubMed][CrossRef]
106. Sheehy AM, Gaddis NC, Choi JD, Malim MH. 2002. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418:646–650. [PubMed][CrossRef]
107. Malim MH. 2009. APOBEC proteins and intrinsic resistance to HIV-1 infection. Phil Trans R Soc Lond B Biol Sci 364:675–687. [PubMed][CrossRef]
108. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissler P, Sodroski J. 2004. The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old World monkeys. Nature 427:848–853. [PubMed][CrossRef]
109. Nisole S, Stoye JP, Saïb A. 2005. Trim family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3:799–808. [PubMed][CrossRef]
110. Sanz-Ramos M, Stoye JP. 2013. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J Gen Virol 94:2587–2898. [PubMed][CrossRef]
111. Neil SJD, Zang T, Bieniasz PD. 2008. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451:425–430. [PubMed][CrossRef]
112. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M. 2011. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–382. [PubMed][CrossRef]
113. Koito A, Ikeda T. 2011. Intrinsic restriction activity of AID/APOBEC family of enzymes against the mobility of retroelements. Mob Genet Elements 1:197–202. [PubMed][CrossRef]
114. Haran-Ghera N, Peled A, Brightman BK, Fan H. 1993. Lymphomagenesis in AKR.Fv-1b congenic mice. Cancer Res 53:3433–3438. [PubMed]
115. Kozak CA. 2013. Evolution of different antiviral strategies in wild mouse populations exposed to different gammaretroviruses. Curr Opin Virol 3:657–663. [PubMed][CrossRef]
116. Rosenberg N, Jolicoeur P. 1997. Retroviral pathogenesis, p 475–586. In Coffin JM, Hughes SH, Varmus H (ed), Retroviruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
117. Kool J, Berns A. 2009. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nat Rev Cancer 9:389–399. [PubMed][CrossRef]
118. Stoye JP, Moroni C, Coffin JM. 1991. Virological events leading to spontaneous AKR thymomas. J Virol 65:1273–1285. [PubMed]
119. Ishihara H, Tanaka I, Wan H, Nojima K, Yoshida K. 2004. Retrotransposition of limited deletion type of intracisternal A-particle elements in the myeloid leukemia cells of C3H/He mice. J Radiat Res (Tokyo) 45:25–32. [CrossRef]
120. De Smet C, Loriot A. 2010. DNA hypomethylation in cancer: Epigenetic scars of a neoplastic journey. Epigenetics 5:206–213. [PubMed][CrossRef]
121. Romanish MT, Cohen CJ, Mager DL. 2010. Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Semin Cancer Biol 20:246–253. [PubMed][CrossRef]
122. Chen T, Meng Z, Gan Y, Wang X, Xu F, Gu Y, Xu X, Tang J, Zhou H, Zhang X, Gan X, Van Ness C, Xu G, Huang L, Zhang X, Fang Y, Wu J, Zheng S, Jin J, Huang W, Xu R. 2013. The viral oncogene Np9 acts as a critical molecular switch for co-activating beta-catenin, ERK, Akt and Notch1 and promoting the growth of human leukemia stem/progenitor cells. Leukemia 27:1469–1478. [PubMed][CrossRef]
123. Galli UM, Sauter M, Lecher B, Maurer S, Herbst H, Roemer K, Mueller-Lantzsch N. 2005. Human endogenous retrovirus rec interferes with germ cell development in mice and may cause carcinoma in situ, the predecessor lesion of germ cell tumors. Oncogene 24:3223–3228. [PubMed][CrossRef]
124. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D, Kochert K, Bouhlel MA, Richter J, Soler E, Stadhouders R, Johrens K, Wurster KD, Callen DF, Harte MF, Giefing M, Barlow R, Stein H, Anagnostopoulos I, Janz M, Cockerill PN, Siebert R, Dorken B, Bonifer C, Mathas S. 2010. Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16:571–579. [PubMed][CrossRef]
125. Medstrand P, van de Lagemaat LN, Mager DL. 2002. Retroelement distributions in the human genome: variations associated with age and proximity to genes. Genome Res 12:1483–1495. [PubMed][CrossRef]
126. Smit AF. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev 9:657–663. [PubMed][CrossRef]
127. Zhang Y, Romanish MT, Mager DL. 2011. Distributions of transposable elements reveal hazardous zones in mammalian introns. PLoS Comput Biol 7:e1002046. [PubMed][CrossRef]
128. Druker R, Bruxner TJ, Lehrbach NJ, Whitelaw E. 2004. Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucl Acids Res 32:5800–5808. [PubMed][CrossRef]
129. Li J, Akagi K, Hu Y, Trivett AL, Hlynialuk CJ, Swing DA, Volfovsky N, Morgan TC, Golubeva Y, Stephens RM, Smith DE, Symer DE. 2012. Mouse endogenous retroviruses can trigger premature transcriptional termination at a distance. Genome Res 22:870–884. [PubMed][CrossRef]
130. Conley AB, Miller WJ, Jordan IK. 2008. Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24:53–56. [PubMed][CrossRef]
131. Morgan HD, Sutherland HGE, Martin DIK, Whitelaw E. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318. [PubMed][CrossRef]
132. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E. 2003. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100:2538–2543. [PubMed][CrossRef]
133. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. 2002. Metastable epialleles in mammals. Trends Genet 18:348–351. [PubMed][CrossRef]
134. Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E. 2006. Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet 2:e49. [PubMed][CrossRef]
135. Baudino L, Yoshinobu K, Morito N, Santiago-Raber M-L, Izui S. 2010. Role of endogenous retroviruses in murine SLE. Autoimmun Reviews 10:27–34. [PubMed][CrossRef]
136. Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. 2012. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491:774–778. [PubMed]
137. Sasai M, Yamamoto M. 2013. Pathogen recognition receptors: ligands and signaling pathways by toll-like receptors. Int Rev Immunol 32:116–133. [PubMed][CrossRef]
138. Yu P, Lubben W, Slomka H, Gebler J, Konert M, Cai C, Neubrandt L, Prazeres da Costa O, Paul S, Dehnert S, Dohne K, Thanisch M, Storsberg S, Wiegand L, Kaufmann A, Nain M, Quintanilla-Martinez L, Bettio S, Schnierle B, Kolesnikova L, Becker S, Schnare M, Bauer S. 2012. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–879. [PubMed][CrossRef]
139. Cherkasova E, Weisman Q, Childs RW. 2012. Endogenous retroviruses as targets for antitumor immunity in renal cell cancer and other tumors. Front Oncol 3:243. [PubMed]
140. Antony JM, DesLauriers AM, Bhat RK, Ellestad KK, Power C. 2011. Human endogenous retroviruses and multiple sclerosis: Innocent bystanders or disease determinants? Biochim Biophys Acta 1812:162–176. [PubMed][CrossRef]
141. Balada E, Vilardell-Tarrés M, Ordi-Ros J. 2010. Implication of human endogenous retroviruses in the development of autoimmune diseases. Int Rev Immunol 29:351–370. [PubMed][CrossRef]
142. Perl A, Fernandez D, Telarico T, Phillips PE. 2010. Endogenous retroviral pathogenesis in lupus. Curr Opin Rheumatol 22:483–492. [PubMed][CrossRef]
143. Venables PJW, Brookes SM, Griffiths D, Weiss RA, Boyd MT. 1995. Abundance of an endogenous retroviral envelope protein in placental trophoblasts suggests a biological function. Virology 211:589–592. [PubMed][CrossRef]
144. de Parseval N, Heidmann T. 1998. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J Virol 72:3442–3445. [PubMed]
145. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, Mandrand B, Mallet F, Cosser F-L. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329. [PubMed][CrossRef]
146. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, Keith JC, Jr, McCoy JM. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789. [PubMed][CrossRef]
147. Blaise S, de Parseval N, Bénit L, Heidmann T. 2003. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci U S A 100:13013–13018. [PubMed][CrossRef]
148. Vargas A, Moreau J, Landry S, LeBellego F, Toutaily C, Rassart E, Lafond J, Barbeau B. 2009. Sybcytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392:301–308. [PubMed][CrossRef]
149. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G, Opolon P, Heidmann T. 2009. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc Natl Acad Sci U S A 106:12127–12132. [PubMed][CrossRef]
150. Dupressoir A, Vernochet C, Harper F, Guegan J, Dessen P, Pierron G, Heidmann T. 2011. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A 108:E1164–E1173. [PubMed][CrossRef]
151. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, Heidmann T. 2013. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Phil Trans R Soc Lond B Biol Sci 368:20120507. [PubMed][CrossRef]
152. Lilly F. 1970. Fv-2: Identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J Natl Cancer Inst 45:163–169. [PubMed]
153. Best S, Le Tissier P, Towers G, Stoye JP. 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–829. [PubMed][CrossRef]
154. Best S, Le Tissier PR, Stoye JP. 1997. Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol 4:313–318. [PubMed][CrossRef]
155. Dodding MP, Bock M, Yap MW, Stoye JP. 2005. Capsid processing requirements for abrogation of Fv1 and Ref1 restriction. J Virol 79:10571–10577. [PubMed][CrossRef]
156. McDougall AS, Terry A, Tzavaras T, Cheney C, Rojko J, Neil JC. 1994. Defective endogenous proviruses are expressed in feline lymphoid cells: evidence for a role in natural resistance to subgroup B feline leukemia virus. J Virol 68:2151–2160. [PubMed]
157. Odaka T, Ikeda H, Akatsuka T. 1980. Restricted expression of endogenous N-tropic XC-positive leukemia virus in hybrids between G and AKR mice: an effect of the Fv-4r gene. Int J Cancer 25:757–762. [PubMed][CrossRef]
158. Wu T, Yan Y, Kozac CA. 2005. Rmcf2, a xenotropic provirus in the Asian mouse species Mus castaneus, blocks infection by mouse gammaretroviruses. J Virol 79:9677–9684. [PubMed][CrossRef]
159. Young GR, Ploquin MJ, Eksmond U, Wadwa M, Stoye JP, Kassiotis G. 2012. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral antigen. PLoS Pathog 8:e1002709. [PubMed][CrossRef]
160. Arnaud F, Murcia PR, Palmarini M. 2007. Mechanisms of late restriction induced by an endogenous retrovirus. J Virol 81:11441–11451. [PubMed][CrossRef]
161. Acha-Orbea H, Held W, Wanders GA, Shakhov AN, Scarpellino L, Lees RK, MacDonald HR. 1993. Exogenous and endogenous mouse mammary tumor virus superantigens. Immunol Rev 131:5–25. [PubMed][CrossRef]
162. Czarneski J, Rassa JC, Ross SR. 2003. Mouse mammary tumor virus and the immune system. Immunol Res 27:469–480. [PubMed][CrossRef]
163. Frankel WN, Rudy C, Coffin JM, Huber BT. 1991. Linkage of Mls genes to endogenous mammary tumour viruses of inbred mice. Nature 349:526–528. [PubMed][CrossRef]
164. Rebollo R, Farivar S, Mager DL. 2012. C-GATE—catalogue of genes affected by transposable elements. Mob DNA 3:9. [PubMed][CrossRef]
165. Samuelson LC, Phillips RS, Swanberg LJ. 1996. Amylase gene structures in primates: retroposon insertions and promoter evolution. Mol Biol Evol 13:767–779. [PubMed][CrossRef]
166. Ramakrishnan C, Robins DM. 1997. Steroid hormone responsiveness of a family of closely related mouse proviral elements. Mamm Genome 8:811–817. [PubMed][CrossRef]
167. Stavenhagen JB, Robins DM. 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55:247–254. [PubMed][CrossRef]
168. Pi W, Zhu X, Wu M, Wang Y, Fulzele S, Eroglu A, Ling J, Tuan D. 2010. Long-range function of an intergenic retrotransposon. Proc Natl Acad Sci U S A 107:12992–12997. [PubMed][CrossRef]
169. Beyer U, Moll-Rocek J, Moll UM, Dobbelstein M. 2011. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes. Proc Natl Acad Sci U S A 108:3624–3629. [PubMed][CrossRef]
170. Cohen CJ, Lock WM, Mager DL. 2009. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114. [PubMed][CrossRef]
171. Conley AB, Piriyapongsa J, Jordan IK. 2008. Retroviral promoters in the human genome. Bioinformatics 24:1563–1567. [PubMed][CrossRef]
172. van de Lagemaat LN, Landry J-R, Mager DL, Medstrand P. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet 19:530–536. [PubMed][CrossRef]
173. Banville D, Boie Y. 1989. Retroviral long terminal repeat is the promoter of the gene encoding the tumor-associated calcium-binding protein oncomodulin in the rat. Journal of Molecular Biology 207:481–490. [PubMed][CrossRef]
174. Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. 2007. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genetics 3:e10. [PubMed][CrossRef]
175. Conley A, Jordan I. 2012. Cell type-specific termination of transcription by transposable element sequences. Mob DNA 3:15. [PubMed][CrossRef]
176. Bourque G. 2009. Transposable elements in gene regulation and in the evolution of vertebrate genomes. Curr Opin Genet Dev 19:607–612. [PubMed][CrossRef]
177. Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405. [PubMed][CrossRef]
178. Rebollo R, Romanish MT, Mager DL. 2012. Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annu Rev Genet 46:21–42. [PubMed][CrossRef]
179. McClintock B. 1956. Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216. [PubMed][CrossRef]
180. Britten RJ, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science 165:349–357. [PubMed][CrossRef]
181. Thornburg BG, Gotea V, Makalowski W. 2006. Transposable elements as a significant source of transcription regulating signals. Gene 365:104–110. [PubMed][CrossRef]
182. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G. 2010. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat Genet 42:631–634. [PubMed][CrossRef]
183. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D. 2007. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc Natl Acad Sci U S A 104:18613–18618. [PubMed][CrossRef]
184. Chuong EB, Rumi MA, Soares MJ, Baker JC. 2013. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat Genet 45:325–329. [PubMed][CrossRef]
185. Jacques P-E, Jeyakani J, Bourque G. 2013. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet 9:e1003504. [PubMed][CrossRef]
186. Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L, Bourque G, Yandell M, Feschotte C. 2013. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLoS Genet 9:e1003470. [PubMed][CrossRef]
187. Kelley D, Rinn J. 2013. Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol 13:R107. [PubMed][CrossRef]
188. St Laurent G, Shtokalo D, Dong B, Tackett M, Fan X, Lazorthes S, Nicolas E, Sang N, Triche T, McCaffrey T, Xiao W, Kapranov P. 2013. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer. Genome Biol 14:R73. [PubMed][CrossRef]
189. Santoni F, Guerra J, Luban J. 2012. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9:111. [PubMed][CrossRef]
190. Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, Yang H, Wang T, Lee AY, Swanson SA, Zhang J, Zhu Y, Kim A, Nery JR, Urich MA, Kuan S, Yen C-a, Klugman S, Yu P, Suknuntha K, Propson NE, Chen H, Edsall LE, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung W-Y, Chi NC, Antosiewicz-Bourget JE, Slukvin I, Stewart R, Zhang MQ, Wang W, Thomson JA, Ecker JR, Ren B. 2013. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153:1134–11348. [PubMed][CrossRef]
191. Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA, Saxena A, Bonetti A, Voineagu I, Bertin N, Kratz A, Noro Y, Wong C-H, de Hoon M, Andersson R, Sandelin A, Suzuki H, Wei C-L, Koseki H, The FC, Hasegawa Y, Forrest ARR, Carninci P. 2014. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat Genet 46:558–566. [PubMed][CrossRef]
192. Loewer S, Cabili MN, Guttman M, Loh Y-H, Thomas K, Park IH, Garber M, Curran M, Onder T, Agarwal S, Manos PD, Datta S, Lander ES, Schlaeger TM, Daley GQ, Rinn JL. 2010. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat Genet 42:1113–1117. [PubMed][CrossRef]
193. Lu X, Sachs F, Ramsay L, Jacques PE, Goke J, Bourque G, Ng HH. 2014. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 21:423–425. [PubMed][CrossRef]
194. Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. 2013. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25:69–80. [PubMed][CrossRef]
195. Herquel B, Ouararhni K, Martianov I, Le Gras S, Ye T, Keime C, Lerouge T, Jost B, Cammas F, Losson R, Davidson I. 2013. Trim24-repressed VL30 retrotransposons regulate gene expression by producing noncoding RNA. Nat Struct Mol Biol 20:339–346. [PubMed][CrossRef]
196. Emerman M, Malik HS. 2010. Paleovirology--modern consequences of ancient viruses. PLoS Biol 8:e1000301. [PubMed][CrossRef]
197. Dupressoir A, Marceau G, Vernochet C, Benit L, Kanellopoulos C, Sapin V, Heidmann T. 2005. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Sci Adad U S A 102:725–730. [PubMed][CrossRef]
198. Heidmann O, Vernochet C, Dupressoir A, Heidmann T. 2009. Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new “syncytin” in a third order of mammals. Retrovirology 6:107. [PubMed][CrossRef]
199. Cornelis G, Heidmann O, Degrelle SA, Vernochet C, Lavialle C, Letzelter C, Bernard-Stoecklin S, Hassanin A, Mulot B, Guillomot M, Hue I, Heidmann T, Dupressoir A. 2013. Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants. Proc Natl Sci Adad U S A 110:E828–E837. [PubMed][CrossRef]
200. Nakaya Y, Koshi K, Nakagawa S, Hashizume K, Miyazawa T. 2013. Fematrin-1 is involved in fetomaternal cell-to-cell fusion in Bovinae placenta and has contributed to diversity of ruminant placentation. J Virol 87:10563–10572. [PubMed][CrossRef]
201. Cornelis G, Heidmann O, Bernard-Stoecklin S, Reynaud K, Veron G, Mulot B, Dupressoir A, Heidmann T. 2012. Ancestral capture of syncytin-Car1, a fusogenic endogenous retroviral envelope gene involved in placentation and conserved in Carnivora. Proc Natl Sci Adad U S A 109:E432–E441. [PubMed][CrossRef]
202. Redelsperger F, Cornelis G, Vernochet C, Tennant BC, Catzeflis F, Mulot B, Heidmann O, Heidmann T, Dupressoir A. 2014. Capture of syncytin-Mar1, a fusogenic endogenous retroviral envelope gene involved in placentation in the rodentia squirrel-related clade. J Virol 88:7915–7928. [PubMed][CrossRef]
microbiolspec.MDNA3-0009-2014.citations
cm/3/1
content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0009-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0009-2014
2015-02-05
2017-10-23

Abstract:

Over 40% of mammalian genomes comprise the products of reverse transcription. Among such retrotransposed sequences are those characterized by the presence of long terminal repeats (LTRs), including the endogenous retroviruses (ERVs), which are inherited genetic elements closely resembling the proviruses formed following exogenous retrovirus infection. Sequences derived from ERVs make up at least 8 to 10% of the human and mouse genomes and range from ancient sequences that predate mammalian divergence to elements that are currently still active. In this chapter we describe the discovery, classification and origins of ERVs in mammals and consider cellular mechanisms that have evolved to control their expression. We also discuss the negative effects of ERVs as agents of genetic disease and cancer and review examples of ERV protein domestication to serve host functions, as in placental development. Finally, we address growing evidence that the gene regulatory potential of ERV LTRs has been exploited multiple times during evolution to regulate genes and gene networks. Thus, although recently endogenized retroviral elements are often pathogenic, those that survive the forces of negative selection become neutral components of the host genome or can be harnessed to serve beneficial roles.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/1/MDNA3-0009-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0009-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

(A) Formation of ERVs. Exogenous retroviruses typically infect their host and spread to other individuals via horizontal transmission. When retroviruses infect and integrate into the genome of germ line cells, the provirus can be vertically transmitted and become endogenous to the host. ERVs can amplify in the host genome through reinfection or through intracellular retrotransposition (see text). (B) Basic structures of ERVs. Complete ERVs are essentially identical to the integrated proviruses of simple exogenous retroviruses; they contain two LTRs made up of unique 3′ (U3), repeat (R), and unique 5′ (U5) regions, a primer binding site (pbs) and polypurine tract (ppt), as well as a full complement of coding sequences (, , and ), splice donor (SD) and acceptor (SA) sites, and an RNA packaging signal (psi). Slimmed down” ERVs are elements lacking coding sequences compared to a complete ERV—here illustrated with a deletion in . “Substituted” ERVs are elements in which the ERV coding sequences have been replaced with nonviral sequences. “Solo LTRs” are single LTRs generated by homologous recombination between the two LTRs of a complete element. doi:10.1128/microbiolspec.MDNA3-0009-2014.f1

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

ERV/LTR content in different species. Overall genomic fractions occupied by ERVs and solo LTRs in various species. Data were obtained from the RepeatMasker web site (http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html) and are updated from the original genome publications—for example, the human and mouse genome papers ( 18 , 19 ) due to a more-sensitive repeat detection. doi:10.1128/microbiolspec.MDNA3-0009-2014.f2

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Common ways in which retroviral insertions can affect genes. (A) Proviral elements are shown as thick lines, with arrows for the LTRs, and gene exons are numbered boxes with P showing the gene promoter. Retroviral elements inserted near genes can donate their LTR enhancers or promoters to affect gene expression. This mechanism occurs when new somatic retroviral insertions activate oncogenes. This mechanism also occurs in normal cells as an evolutionary adaptation and in mouse cells defective for LTR epigenetic silencing. This can occur even if only a solitary LTR remains. (B) When inserted in an intron, splice sites and polyA signals within ERVs can perturb splicing. Most of the documented germ line-detrimental ERV insertions in mice are due to this mechanism. (C) ERVs/LTRs located downstream of a gene or within an intron have the potential to promote antisense transcripts, possibly regulating the gene or causing premature polyadenylation. (D) Closely related LTRs/ERVs distributed across the genome (black triangles) that bind the same transcription factors can become exapted (shown as gray triangles) and regulate expression of sets of genes (gene A and C in this example), establishing a regulatory network. doi:10.1128/microbiolspec.MDNA3-0009-2014.f3

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Independent instances of ERV Env domestication involved in placenta formation. (A) Domestication of Env proteins (which have natural fusogenic properties) can promote the formation of multinucleated tissue, as occurs in the developing placenta. Env syncytin-like molecules are shown as balls binding to receptors. (B) Schematic evolutionary tree showing different instances of ERV Env domestication (shown as arrows): Syncytin-A and Syncytin-B ( 197 ), Syncytin-Ory1 ( 198 ), Syncytin-1 ( 146 ), Syncytin-2 ( 147 ), Syncytin-Rum1 ( 199 ), Fematrin-1 ( 200 ), Syncytin-Car1 ( 201 ), and Syncytin-Mar1 ( 202 ). doi:10.1128/microbiolspec.MDNA3-0009-2014.f4

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Representative ERVs

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.MDNA3-0009-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error