1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Tn7

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    174.38 Kb
  • PDF
    814.27 Kb
  • XML
    150.85 Kb
  • Author: Joseph E. Peters1
  • Editors: Mick Chandler2, Nancy Craig3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, Cornell University, 175a Wing Hall, Ithaca, New York 14853; 2: Université Paul Sabatier, Toulouse, France, MD; 3: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
  • Received 12 June 2014 Accepted 19 June 2014 Published 10 October 2014
  • Joseph E. Peters, jep48@cornell.edu
image of Tn7
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Tn7, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/MDNA3-0010-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/5/MDNA3-0010-2014-2.gif
  • Abstract:

    The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein–DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.

  • Citation: Peters J. 2014. Tn7. Microbiol Spectrum 2(5):MDNA3-0010-2014. doi:10.1128/microbiolspec.MDNA3-0010-2014.

Key Concept Ranking

Mobile Genetic Elements
0.5568782
DNA Polymerase I
0.5050676
DNA Polymerase III
0.5033784
0.5568782

References

1. Craig NL. 2002. Tn7, p 423–456. In Craig Nancy L, Craigie R, Gellert M, Lambowitz-Alan M (ed), Mobile DNA II. ASM Press, Washington, DC.
2. Li Z, Craig NL, Peters JE. 2012. Transposon Tn7, p 1–32. In Roberts A, Mullany P (ed), Bacterial Integrative Mobile Genetic Elements. Landes Bioscience, Austin, TX.
3. Parks AR, Peters JE. 2009. Tn7 elements: engendering diversity from chromosomes to episomes. Plasmid 61:1–14. [PubMed][CrossRef]
4. Peters JE, Craig NL. 2001. Tn7: smarter than we thought. Nat Rev Mol Cell Biol 2:806–814. [PubMed][CrossRef]
5. Parks AR, Peters JE. 2007. Transposon Tn7 is widespread in diverse bacteria and forms genomic islands. J Bacteriol 189:2170–2173. [PubMed][CrossRef]
6. Mitra R, McKenzie GJ, Yi L, Lee CA, Craig NL. 2010. Characterization of the TnsD-attTn7 complex that promotes site-specific insertion of Tn7. Mobile DNA 1:18. [PubMed][CrossRef]
7. Gringauz E, Orle K, Orle A, Waddell CS, Craig NL. 1988. Recognition of Escherichia coliattTn7 by transposon Tn7: lack of specific sequence requirements at the point of Tn7 insertion. J Bacteriol 170:2832–2840. [PubMed]
8. McKown RL, Orle KA, Chen T, Craig NL. 1988. Sequence requirements of Escherichia coli attTn7, a specific site of transposon Tn7 insertion. J Bacteriol 170:352–358. [PubMed]
9. Lichtenstein C, Brenner S. 1982. Unique insertion site of Tn7 in E. coli chromosome. Nature 297:601–603. [PubMed][CrossRef]
10. Wolkow CA, DeBoy RT, Craig NL. 1996. Conjugating plasmids are preferred targets for Tn7. Genes Dev 10:2145–2157. [PubMed][CrossRef]
11. Waddell CS, Craig NL. 1988. Tn7 transposition: two transposition pathways directed by five Tn7-encoded genes. Genes Dev 2:137–149. [PubMed][CrossRef]
12. Sarnovsky R, May EW, Craig NL. 1996. The Tn7 transposase is a heteromeric complex in which DNA breakage and joining activities are distributed between different gene products. EMBO J 15:6348–6361. [PubMed]
13. Gary PA, Biery MC, Bainton RJ, Craig NL. 1996. Multiple DNA processing reactions underlie Tn7 transposition. J Mol Biol 257:301–316. [PubMed][CrossRef]
14. May EW, Craig NL. 1996. Switching from cut-and-paste to replicative Tn7 transposition. Science 272:401–404. [PubMed][CrossRef]
15. Hickman AB, Li L, Mathew SV, May EW, Craig NL, Dyda F. 2000. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Mol Cell 5:1025–1034. [PubMed][CrossRef]
16. Haren L, Ton-Hoang B, Chandler M. 1999. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281. [PubMed][CrossRef]
17. Hickman AB, Chandler M, Dyda F. 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 45:50–69. [PubMed][CrossRef]
18. Arciszewska LK, Craig NL. 1991. Interaction of the Tn7-encoded transposition protein TnsB with the ends of the transposon. Nucleic Acids Res 19:5021–5029. [PubMed][CrossRef]
19. Arciszewska LK, McKown RL, Craig NL. 1991. Purification of TnsB, a transposition protein that binds to the ends of Tn7. J Biol Chem 266:21736–21744. [PubMed]
20. Bainton R, Gamas P, Craig NL. 1991. Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65:805–816. [PubMed][CrossRef]
21. Stellwagen A, Craig NL. 1997. Gain-of-function mutations in TnsC, an ATP-dependent transposition protein which activates the bacterial transposon Tn7. Genetics 145:573–585. [PubMed]
22. Stellwagen AE, Craig NL. 1998. Mobile DNA elements: controlling transposition with ATP-dependent molecular switches. Trends Biochem Sci 23:486–490. [PubMed][CrossRef]
23. Barth PT, Datta N, Hedges RW, Grinter NJ. 1976. Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J Bacteriol 125:800–810. [PubMed]
24. Barth P, Datta N. 1977. Two naturally occurring transposons indistinguishable from Tn7. J Gen Microbiol 102:129–134. [PubMed][CrossRef]
25. Hall RM, Brookes DE, Stokes HW. 1991. Site-specific insertion of genes into integrons: role of the 59-base element and determination of the recombination cross-over point. Mol Microbiol 5:1941–1959. [PubMed][CrossRef]
26. Sundstrom L, Roy PH, Skold O. 1991. Site-specific insertion of three structural gene cassettes in transposon Tn7. J Gen Microbiol 173:3025–3028. [PubMed]
27. Bainton RJ, Kubo KM, Feng JN, Craig NL. 1993. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72:931–943. [PubMed][CrossRef]
28. Biery MC, Steward F, Stellwagen AE, Raleigh EA, Craig NL. 2000. A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28:1067–1077. [PubMed][CrossRef]
29. Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. 2009. Transposition into replicating DNA occurs through interaction with the processivity factor. Cell 138:685–695. [PubMed][CrossRef]
30. Huisman O, Kleckner N. 1987. A new generalizable test for detection of mutations affecting Tn10 transposition. Genetics 116:185–189. [PubMed]
31. Holder JW, Craig NL. 2010. Architecture of the Tn7 posttransposition complex: an elaborate nucleoprotein structure. J Mol Biol 401:167–181. [PubMed][CrossRef]
32. Rao JE, Miller PS, Craig NL. 2000. Recognition of triple-helical DNA structures by transposon Tn7. Proc Natl Acad Sci USA 97:3936–3941. [PubMed][CrossRef]
33. Kuduvalli P, Rao JE, Craig NL. 2001. Target DNA structure plays a critical role in Tn7 transposition. EMBO J 20:924–932. [PubMed][CrossRef]
34. Rao JE, Craig NL. 2001. Selective recognition of pyrimidine motif triplexes by a protein encoded by the bacterial transposon Tn7. J Mol Biol 307:1161–1170. [PubMed][CrossRef]
35. Choi KY, Li Y, Sarnovsky R, Craig NL. 2013. Direct interaction between the TnsA and TnsB subunits controls the heteromeric Tn7 transposase. Proc Natl Acad Sci USA 110:E2038–E2045. [PubMed][CrossRef]
36. Kennedy A, Guhathakurta A, Kleckner N, Haniford DB. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125–134. [PubMed][CrossRef]
37. Bhasin A, Goryshin IY, Reznikoff WS. 1999. Hairpin formation in Tn5 transposition. J Biol Chem 274:37021–37029. [PubMed][CrossRef]
38. Roth DB, Menetski JP, Nakajima PB, Bosma MJ, Gellert M. 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 70:983–981. [PubMed][CrossRef]
39. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001. [PubMed][CrossRef]
40. Bainton RJ, Kubo KM, Feng J-N, Craig NL. 1993. Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72:931–943. [PubMed][CrossRef]
41. Wiegand TW, Reznikoff WS. 1992. Characterization of two hypertransposing Tn5 mutants. J Gen Microbiol 174:1229–1239. [PubMed]
42. Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci USA 96:11428–11433. [PubMed][CrossRef]
43. Beall EL, Mahoney MB, Rio DC. 2002. Identification and analysis of a hyperactive mutant form of Drosophila P-element transposase. Genetics 162:217–227. [PubMed]
44. Baus J, Liu L, Heggestad AD, Sanz S, Fletcher BS. 2005. Hyperactive transposase mutants of the Sleeping Beauty transposon. Mol Ther 12:1148–1156. [PubMed][CrossRef]
45. Yusa K, Zhou L, Li MA, Bradley A, Craig NL. 2011. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536. [PubMed][CrossRef]
46. Lazarow K, Du M-L, Weimer R, Kunze R. 2012. A hyperactive transposase of the maize transposable element activator (Ac). Genetics 191:747–756. [PubMed][CrossRef]
47. Deboy RT, Craig NL. 2000. Target site selection by Tn7: attTn7 transcription and target activity. J Bacteriol 182:3310–3313. [PubMed][CrossRef]
48. Skelding Z, Sarnovsky R, Craig NL. 2002. Formation of a nucleoprotein complex containing Tn7 and its target DNA regulates transposition initiation. EMBO J 21:3494–3504. [PubMed][CrossRef]
49. Yanagihara K, Mizuuchi K. 2003. Progressive structural transitions within Mu transpositional complexes. Mol Cell 11:215–224. [PubMed][CrossRef]
50. Gueguen E, Rousseau P, Duval-Valentin G, Chandler M. 2005. The transpososome: control of transposition at the level of catalysis. Trends Microbiol 13:543–549. [PubMed][CrossRef]
51. Levchenko I, Luo L, Baker TA. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev 9:2399–2408. [PubMed][CrossRef]
52. Steczkiewicz K, Muszewska A, Knizewski L, Rychlewski L, Ginalski K. 2012. Sequence, structure and functional diversity of PD-(D/E)XK phosphodiesterase superfamily. Nucleic Acids Res 40:7016–7045. [PubMed][CrossRef]
53. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. 2012. The Pfam protein families database. Nucleic Acids Res 40:D290–D301. [PubMed][CrossRef]
54. Lu F, Craig NL. 2000. Isolation and characterization of Tn7 transposase gain-of-function mutants: a model for transposase activation. EMBO J 19:3446–3457. [PubMed][CrossRef]
55. Biery M, Lopata M, Craig NL. 2000. A minimal system for Tn7 transposition: the transposon-encoded proteins TnsA and TnsB can execute DNA breakage and joining reactions that generate circularized Tn7 species. J Mol Biol 297:25–37. [PubMed][CrossRef]
56. Ronning DR, Li Y, Perez ZN, Ross PD, Hickman AB, Craig NL, Dyda F. 2004. The carboxy-terminal portion of TnsC activates the Tn7 transposase through a specific interaction with TnsA. EMBO J 23:2972–2981. [PubMed][CrossRef]
57. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986. [PubMed][CrossRef]
58. Skelding Z, Queen-Baker J, Craig NL. 2003. Alternative interactions between the Tn7 transposase and the Tn7 target DNA binding protein regulate target immunity and transposition. EMBO J 22:5904–5917. [PubMed][CrossRef]
59. Wu Z, Chaconas G. 1994. Characterization of a region in phage Mu transposase that is involved in interaction with the Mu B protein. J Biol Chem 269:28829–28833. [PubMed]
60. Levchenko I, Yamauchi M, Baker TA. 1997. ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. Genes Dev 11:1561–1572. [PubMed][CrossRef]
61. Stellwagen A, Craig NL. 1997. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J 16:6823–6834. [PubMed][CrossRef]
62. Stellwagen AE, Craig NL. 2001. Analysis of gain of function mutants of an ATP-dependent regulator of Tn7 transposition. J Mol Biol 305:633–642. [PubMed][CrossRef]
63. Van Roey P, Waddling CA, Fox KM, Belfort M, Derbyshire V. 2001. Intertwined structure of the DNA-binding domain of intron endonuclease I-TevI with its substrate. EMBO J 20:3631–3637. [PubMed][CrossRef]
64. Sharpe P, Craig NL. 1998. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. EMBO J 17:5822–5831. [PubMed][CrossRef]
65. McKenzie GJ, Craig NL. 2006. Fast, easy and efficient: site-specific insertion of transgenes into enterobacterial chromosomes using Tn7 without need for selection of the insertion event. BMC Microbiol 6:39. [PubMed][CrossRef]
66. Koch B, Jensen LE, Nybroe O. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J Microbiol Methods 45:187–195. [PubMed][CrossRef]
67. Hahn G, Jarosch M, Wang JB, Berbes C, McVoy MA. 2003. Tn7-mediated introduction of DNA sequences into bacmid-cloned cytomegalovirus genomes for rapid recombinant virus construction. J Virol Methods 107:185–194. [PubMed][CrossRef]
68. Berger I, Fitzgerald DJ, Richmond TJ. 2004. Baculovirus expression system for heterologous multiprotein complexes. Nat Biotechnol 22:1583–1587. [PubMed][CrossRef]
69. Laitinen OH, Airenne KJ, Hytonen VP, Peltomaa E, Mahonen AJ, Wirth T, Lind MM, Makela KA, Toivanen PI, Schenkwein D, Heikura T, Nordlund HR, Kulomaa MS, Yla-Herttuala S. 2005. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res 33:e42. [PubMed][CrossRef]
70. Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2:443–448. [PubMed][CrossRef]
71. Crepin S, Harel J, Dozois CM. 2012. Chromosomal complementation using Tn7 transposon vectors in enterobacteriaceae. Appl Environ Microbiol 78:6001–6008. [PubMed][CrossRef]
72. Damron FH, McKenney ES, Schweizer HP, Goldberg JB. 2012. Construction of a broad-host-range Tn7-based vector for single-copy PBAD-controlled gene expression in Gram-negative bacteria. Appl Environ Microbiol 79:718–721. [PubMed][CrossRef]
73. Richards CA, Brown CE, Cogswell JP, Weiner MP. 2000. The admid system: generation of recombinant adenoviruses by Tn7-mediated transposition in E. coli. BioTechniques 29:146–154. [PubMed]
74. Sibley MH, Raleigh EA. 2012. A versatile element for gene addition in bacterial chromosomes. Nucleic Acids Res 40:e19. [PubMed][CrossRef]
75. Kvitko BH, McMillan IA, Schweizer HP. 2013. An improved method for oriT-directed cloning and functionalization of large bacterial genomic regions. Appl Environ Microbiol 79:4869–4878. [PubMed][CrossRef]
76. Kuduvalli PN, Mitra R, Craig NL. 2005. Site-specific Tn7 transposition into the human genome. Nucleic Acids Res 33:857–863. [PubMed][CrossRef]
77. Kubo KM, Craig NL. 1990. Bacterial transposon Tn7 utilizes two classes of target sites. J Bacteriol 172:2774–2778. [PubMed]
78. Finn JA, Parks AR, Peters JE. 2007. Transposon Tn7 directs transposition into the genome of filamentous bacteriophage M13 using the element-encoded TnsE protein. J Bacteriol 189:9122–9125. [PubMed][CrossRef]
79. Peters JE, Craig NL. 2000. Tn7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol Cell 6:573–582. [PubMed][CrossRef]
80. Peters JE, Craig NL. 2001. Tn7 recognizes target structures associated with DNA replication using the DNA binding protein TnsE. Genes Dev 15:737–747. [PubMed][CrossRef]
81. Ton-Hoang B, Pasternak C, Siguier P, Guynet C, Hickman AB, Dyda F, Sommer S, Chandler M. Single-stranded DNA transposition is coupled to host replication. Cell 142:398–408. [PubMed][CrossRef]
82. Guynet C, Hickman AB, Barabas O, Dyda F, Chandler M, Ton-Hoang B. 2008. In vitro reconstitution of a single-stranded transposition mechanism of IS608. Mol Cell 29:302–312. [PubMed][CrossRef]
83. Hu WY, Derbyshire KM. 1998. Target choice and orientation preference of the insertion sequence IS903. J Bacteriol 180:3039–3048. [PubMed]
84. Zhong J, Lambowitz AM. 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J 22:4555–4565. [PubMed][CrossRef]
85. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97:5978–5983. [PubMed][CrossRef]
86. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. [PubMed][CrossRef]
87. van Kessel JC, Hatfull GF. 2008. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67:1094–1107. [PubMed][CrossRef]
88. Fricker A, Peters JE. 2014. Vulnerabilities on the lagging-stand template: opportunities for mobile elements. Ann Rev Genet 48, in press. [PubMed][CrossRef]
89. Shi Q, Parks AR, Potter BD, Safir IJ, Luo Y, Forster BM, Peters JE. 2008. DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli. Genetics 179:1237–1250. [PubMed][CrossRef]
90. Hauer B, Shapiro JA. 1984. Control of Tn7 transposition. Mol Gen Genet 194:149–158. [PubMed][CrossRef]
91. Reyes I, Beyou A, Mignotte-Vieux C, Richaud F. 1987. Mini-Mu transduction: cis-inhibition of the insertion of Mud transposons. Plasmid 18:183–192. [PubMed][CrossRef]
92. Arciszewska LK, Drake D, Craig NL. 1989. Transposon Tn7 cis-acting sequences in transposition and transposition immunity. J Mol Biol 207:35–52. [PubMed][CrossRef]
93. Robinson MK, Bennett PM, Richmond MH. 1977. Inhibition of TnA translocation by TnA. J Bacteriol 129:407–414. [PubMed]
94. Hagemann AT, Craig NL. 1993. Tn7 transposition creates a hotspot for homologous recombination at the transposon donor site. Genetics 133:9–16. [PubMed]
95. Kholodii GYG, Yurieva OVO, Lomovskaya OLO, Gorlenko ZZ, Mindlin SZS, Nikiforov VGV. 1993. Tn5053, a mercury resistance transposon with integron's ends. J Mol Biol 230:1103–1107. [PubMed][CrossRef]
96. Radstrom P, Skold O, Swedberg G, Flensburg F, Roy PH, Sundstrom L. 1994. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol 176:3257–3268. [PubMed]
97. Minakhina S, Kholodii G, Mindlin S, Yurieva O, Nikiforov V. 1999. Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol 33:1059–1068. [PubMed][CrossRef]
98. Moreno Switt AI, den Bakker HC, Cummings CA, Rodriguez-Rivera LD, Govoni G, Raneiri ML, Degoricija L, Brown S, Hoelzer K, Peters JE, Bolchacova E, Furtado MR, Wiedmann M. 2012. Identification and characterization of novel Salmonella mobile elements involved in the dissemination of genes linked to virulence and transmission. PLoS One 7:e41247. [PubMed][CrossRef]
99. Ahmed SA, Awosika J, Baldwin C, Bishop-Lilly KA, Biswas B, Broomall S, Chain PSG, Chertkov O, Chokoshvili O, Coyne S, Davenport K, Detter JC, Dorman W, Erkkila TH, Folster JP, Frey KG, George M, Gleasner C, Henry M, Hill KK, Hubbard K, Insalaco J, Johnson S, Kitzmiller A, Krepps M, Lo C-C, Luu T, McNew LA, Minogue T, Munk CA, Osborne B, Patel M, Reitenga KG, Rosenzweig CN, Shea A, Shen X, Strockbine N, Tarr C, Teshima H, van Gieson E, Verratti K, Wolcott M, Xie G, Sozhamannan S, Gibbons HS, Threat Characterization C. 2012. Genomic comparison of Escherichia coli O104:H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including shiga toxin encoding phage stx2. PloS One 7:e48228. [PubMed][CrossRef]
100. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguenec C, Lescat M, Mangenot S, Martinez-Jehanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Medigue C, Rocha EPC, Denamur E. 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genetics 5:e1000344. [PubMed][CrossRef]
101. Kucerova E, Clifton SW, Xia X-Q, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PloS One 5:e9556. [PubMed][CrossRef]
102. Kholodii GY, Mindlin SZ, Bas IA, Yurieva OV, Minakhina SV, Nikiforov VG. 1995. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol Microbiol 17:1189–1200. [PubMed][CrossRef]
103. Lewis K. 2010. Persister cells. Annu Rev Microbiol 64:357–372. [PubMed][CrossRef]
104. Johnson TJ, Wannemeuhler YM, Scaccianoce JA, Johnson SJ, Nolan LK. 2006. Complete DNA sequence, comparative genomics, and prevalence of an IncHI2 plasmid occurring among extraintestinal pathogenic Escherichia coli isolates. Antimicrob Agents Chemother 50:3929–3933. [PubMed][CrossRef]
105. Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. 2004. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52:182–202. [PubMed][CrossRef]
106. Fournier P-E, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie J-M. 2006. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet 2:e7. [PubMed][CrossRef]
107. Rose A. 2010. TnAbaR1: a novel Tn7-related transposon in Acinetobacter baumannii that contributes to the accumulation and dissemination of large repertoires of resistance genes. Biosci Horizons 3:40–48. [CrossRef]
108. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, MacDonald IJ, Martin KM, Russo T, Campagnari AA, Hujer AM, Bonomo RA, Gill SR. 2008. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol 190:8053–8064. [PubMed][CrossRef]
109. Farrugia DN, Elbourne LDH, Hassan KA, Eijkelkamp BA, Tetu SG, Brown MH, Shah BS, Peleg AY, Mabbutt BC, Paulsen IT. 2013. The complete genome and phenome of a community- acquired Acinetobacter baumannii. PLoS One 8:e58628. [PubMed][CrossRef]
110. Lee H-Y, Chang R-C, Su L-H, Liu S-Y, Wu S-R, Chuang C-H, Chen C-L, Chiu C-H. 2012. Wide spread of Tn2006 in an AbaR4-type resistance island among carbapenem-resistant Acinetobacter baumannii clinical isolates in Taiwan. Int J Antimicrob Agents 40:163–167. [PubMed][CrossRef]
111. Hamidian M, Hall RM. 2011. AbaR4 replaces AbaR3 in a carbapenem-resistant Acinetobacter baumannii isolate belonging to global clone 1 from an Australian hospital. J Antimicrob Chemother 66:2484–2491. [PubMed][CrossRef]
112. Jukes TH, Cantor CR. 1969. Evolution of Protein Molecules. Academic Press, New York.
113. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. [PubMed]
114. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. [PubMed][CrossRef]
115. Oppon JC, Sarnovsky RJ, Craig NL, Rawlings DE. 1998. A Tn7-like transposon is present in the glmUS region of the obligately hemoautolithotrophic bacterium Thiobacillus ferrooxidans. J Bacteriol 180:3007–3012. [PubMed]
116. Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, Dossat C, Gas S, Kreimeyer A, Lenoble P, Oztas S, Poulain J, Segurens B, Robert C, Abergel C, Claverie J-M, Raoult D, Médigue C, Weissenbach J, Cruveiller S. 2008. Comparative analysis of Acinetobacters: three genomes for three lifestyles. PLoS One 3:e1805. [PubMed]
117. Reith ME, Singh RK, Curtis B, Boyd JM, Bouevitch A, Kimball J, Munholland J, Murphy C, Sarty D, Williams J, Nash JH, Johnson SC, Brown LL. 2008. The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen. BMC Genomics 9:427. [PubMed][CrossRef]
118. Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV, Kolonay J, Nelson WC, Kolsto AB, Fraser CM, Read TD. 2004. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 32:977–988. [PubMed][CrossRef]
119. Wang A, Pattemore J, Ash G, Williams A, Hane J. 2013. Draft genome sequence of Bacillus thuringiensis strain DAR 81934, which exhibits molluscicidal activity. Genome Announc 1:e0017512. [PubMed][CrossRef]
120. Flores C, Qadri MI, Lichtenstein C. 1990. DNA sequence analysis of five genes; tnsA, B, C, D and E, required for Tn7 transposition. Nucleic Acids Res 18:901–911. [PubMed][CrossRef]
121. Hou S, Saw JH, Lee KS, Freitas TA, Belisle C, Kawarabayasi Y, Donachie SP, Pikina A, Galperin MY, Koonin EV, Makarova KS, Omelchenko MV, Sorokin A, Wolf YI, Li QX, Keum YS, Campbell S, Denery J, Aizawa S, Shibata S, Malahoff A, Alam M. 2004. Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci USA 101:18036–18041. [PubMed][CrossRef]
122. Aklujkar M, Haveman SA, DiDonato R, Jr, Chertkov O, Han CS, Land ML, Brown P, Lovley DR. 2012. The genome of Pelobacter carbinolicus reveals surprising metabolic capabilities and physiological features. BMC Genomics 13:690. [PubMed][CrossRef]
123. Gupta HK, Gupta RD, Singh A, Chauhan NS, Sharma R. 2011. Genome sequence of Rheinheimera sp. strain A13L, isolated from Pangong Lake, India. J Bacteriol 193:5873–5874. [PubMed][CrossRef]
124. Weiner RM, Taylor LE, 2nd, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S. 2008. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 4:e1000087. [PubMed][CrossRef]
125. den Bakker HC, Moreno Switt AI, Govoni G, Cummings CA, Ranieri ML, Degoricija L, Hoelzer K, Rodriguez-Rivera LD, Brown S, Bolchacova E, Furtado MR, Wiedmann M. 2011. Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica. BMC Genomics 12:425. [PubMed][CrossRef]
126. Caro-Quintero A, Auchtung J, Deng J, Brettar I, Hofle M, Tiedje JM, Konstantinidis KT. 2012. Genome sequencing of five Shewanella baltica strains recovered from the oxic-anoxic interface of the Baltic Sea. J Bacteriol 194:1236. [PubMed][CrossRef]
microbiolspec.MDNA3-0010-2014.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0010-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0010-2014
2014-10-10
2017-05-28

Abstract:

The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein–DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/MDNA3-0010-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0010-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Tn7 encodes two pathways that recognize different types of target site. One pathway is directed by the TnsABC+TnsD proteins and directs insertions into a single site, called , found in bacteria. Insertion into the site does not appear to harm the bacterial host and likely maximizes vertical transmission of the element. A second pathway directed by the TnsABC+TnsE proteins directs insertions into plasmids capable of mobilizing between bacteria when they enter the host. Insertion into mobile plasmids probably facilitates the horizontal transfer of the element. Neither pathway is likely to inactivate host genes. The positions of the five Tn7 genes required for transposition, , and , are shown including the “Variable region” that contains genes likely to benefit the element and/or the bacterial host. The right and left ends are indicated with black triangles and showing the layout of the seven 22-bp TnsB binding sites with black arrows. doi:10.1128/microbiolspec.MDNA3-0010-2014.f1

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Mechanisms of DNA transposition. Canonical cut-and-paste transposition involves two separate reactions (left side). Canonical replicative transposition involves a direct joining reaction to the target DNA and extensive DNA replication, often along with resolution of a co-integrate (right side). Tn7 utilizes a heteromeric transposase that is capable of directly joining the broken ends of the element to a target DNA, but does not require extensive processing after transposition because it has a second protein, the TnsA endonuclease (center). The rectangle indicates the transposon element and the triangles indicate the -acting sequences at the ends of the element. (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f2

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

The relationship between the positions of Tns-protein and host-protein binding relative to the point of insertion and the orientation of the element. In TnsABC+TnsD-mediated transposition into the site, TnsD binds to the very C-terminal coding region of the gene (not shown). Two host proteins, ACP and L29, help in this binding reaction (cross-hatched ovals). Approximately 25 TnsATnsB complexes are recruited to the site by TnsD, which appear to encompass a region across both sides of the point of insertion. Based on the findings with TnsD and the TnsABC+TnsE reaction, a plausible model for TnsE-mediated targeting of the lagging-strand template during DNA replication has the protein to the left of the point of insertion and the orientation of the element. TnsE interacts with the 3′ recessed end structure and the sliding clamp processivity factor protein (cross-hatched ring). TnsE may recruit a similar array of TnsATnsB complexes as found with the TnsABC+TnsD complexes. doi:10.1128/microbiolspec.MDNA3-0010-2014.f3

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

The relevant features of the Tns proteins of Tn7 and their total length. TnsA encodes a conserved N-terminal catalytic domain [77 to 168 amino acids (aa)] as indicated and the amino acids that coordinate the metal are shown (E63, D114, and K132). The conserved C-terminal region of TnsA is shown (170 to 248 aa) as is the region that interacts with TnsB, TnsC, and DNA. TnsB encodes a conserved catalytic domain (266 to 406 aa) and the amino acids that coordinate the metal are shown (D273, D361, and E396). The regions of TnsB that interact with TnsA (440 to 480 aa) and TnsC (662 to 702 aa) are indicated. TnsC contains a conserved domain from the AAA family (126 to 281 aa). The 1 to 293 region of TnsC interacts with TnsD and the 504 to 555 region of TnsC interacts with TnsA. TnsD has a CCCH zinc finger motif (C124, C127, C152, H155) and the region 1 to 309 interacts with TnsC. TnsE contains a sliding clamp interacting motif 121 to 131 aa and may generally act with DnaN across the N-terminus of the protein and DNA with the C-terminus of the protein based on TnsE gain-of-activity and loss-of-activity mutations. (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f4

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

The TnsABC+D pathway directs transposition between and a downstream gene. The downstream genes will differ by the particular genus and species (shown as and ) (A). The TnsD protein recognizes sequences in and directs insertions in one orientation at a single position downstream of and this insertion will have the 5-bp target-site duplication (TSD) associated with this element (B). Additional Tn7-like elements that have diverged from the others can insert in series and can accumulate with new elements always inserting proximal to at the exact same position and with the same target-site duplication (C). Over time the elements will pick up inactivating mutations and deletions that will contribute to the element eroding leading to a mix of functional and nonfunctional elements (D). Genomic islands can result when the transposase genes and ends are lost, but highly selected genes still reside in the site (E). (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f5

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Target immunity inhibits addition copies of the element from occurring in the same site or region where one already exists. The target immunity process is mediated by the Tn7 proteins TnsA, TnsB, and TnsC. TnsB that is bound to the ends of the element, and presumably therefore at a higher concentration in this region, will not allow TnsC to form a productive target complex with TnsD and TnsE. This behavior is modeled to redistribute active TnsC to other sites where stable complexes can form with TnsA and the target-site selection proteins. (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f6

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Comparison of various transposable elements. Representative transposons that utilize a transposase regulator protein (TnsC/TniB). The Tn5090/Tn5350 element undergoes replicative transposition where a resolvase (TniR) is used to resolve co-integrates at the site after transposition and replication of the element. Tn5090/Tn5350 is compared with the known or putative heteromeric transposase elements Tn7, Tn6022, and Tn6230. (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f7

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Click to view

FIGURE 8

Phylogenetic tree of TnsA endonuclease transposase found with putative heteromeric transposase elements indicated by their host with Tn7, Tn6230, and a Tn6022 derivative (Tn6022) also indicated. A MUSCLE alignment file of extracted TnsA N-domain sequences ( (PF08722) with eight iterations was used to build the tree using the Jukes-Cantor genetic distance model and a Neighbor-Joining tree-building method ( 112 , 113 , 114 ) using the following sequences: ATCC 33020 (AAC21667) ( 115 ), ATCC 53993 (YP_002220549), sp. JS42 (WP_011804647), AYE (WP_012300781) ( 116 ), subsp. salmonicida A449 (WP_005317426) ( 117 ), ATCC10987 (WP_001129185) ( 118 ), DAR 81934 pNB4711 (WP_017762552) ( 119 ), DSM 11498 (WP_018123630), Tn7 ( 120 ), LMG 21857 (WP_007103512), sp. HTCC2999 (WP_010179396), DSM 17046 (WP_020406004), L2TR (WP_011235836) ( 121 ), 9715 (WP_009116837), DSM 2380 (WP_011339779) ( 122 ), pv. tabaci str. 6605 (WP_016981931 pv. Maculicola str. ES4326 (WP_007247747), sp. A13L (WP_008897114) ( 123 ), 2-40 (WP_011466674) ( 124 ), subsp. enterica serovar Senftenberg str. A4-543 (EHC89275) ( 125 ), OS155 (WP_011848289) ( 126 ), and SH04 (WP_008315655). (See the text for details.) doi:10.1128/microbiolspec.MDNA3-0010-2014.f8

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MDNA3-0010-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error