1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Retroviral Integrase Structure and DNA Recombination Mechanism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    189.86 Kb
  • PDF
    1.10 MB
  • HTML
    197.29 Kb
  • Authors: Alan Engelman1, Peter Cherepanov2
  • Editors: Suzanne Sandmeyer3, Nancy Craig4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA 02215; 2: Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, Potters Bar, EN6 3LD, United Kingdom; 3: University of California, Irvine, CA; 4: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
  • Received 28 April 2014 Accepted 11 August 2014 Published 14 November 2014
  • Alan Engelman, alan_engelman@dfci.harvard.edu
image of Retroviral Integrase Structure and DNA Recombination Mechanism
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Retroviral Integrase Structure and DNA Recombination Mechanism, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/MDNA3-0024-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/6/MDNA3-0024-2014-2.gif
  • Abstract:

    Due to the importance of human immunodeficiency virus type 1 (HIV-1) integrase as a drug target, the biochemistry and structural aspects of retroviral DNA integration have been the focus of intensive research during the past three decades. The retroviral integrase enzyme acts on the linear double-stranded viral DNA product of reverse transcription. Integrase cleaves specific phosphodiester bonds near the viral DNA ends during the 3′ processing reaction. The enzyme then uses the resulting viral DNA 3′-OH groups during strand transfer to cut chromosomal target DNA, which simultaneously joins both viral DNA ends to target DNA 5′-phosphates. Both reactions proceed via direct transesterification of scissile phosphodiester bonds by attacking nucleophiles: a water molecule for 3′ processing, and the viral DNA 3′-OH for strand transfer. X-ray crystal structures of prototype foamy virus integrase-DNA complexes revealed the architectures of the key nucleoprotein complexes that form sequentially during the integration process and explained the roles of active site metal ions in catalysis. X-ray crystallography furthermore elucidated the mechanism of action of HIV-1 integrase strand transfer inhibitors, which are currently used to treat AIDS patients, and provided valuable insights into the mechanisms of viral drug resistance.

  • Citation: Engelman A, Cherepanov P. 2014. Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiol Spectrum 2(6):MDNA3-0024-2014. doi:10.1128/microbiolspec.MDNA3-0024-2014.

Key Concept Ranking

Human immunodeficiency virus 1
0.49606326
Highly Active Antiretroviral Therapy
0.40795895
0.49606326

References

1. Métifiot M, Marchand C, Pommier Y. 2013. HIV integrase inhibitors: 20-year landmark and challenges. Adv Pharmacol 67:75–105. [PubMed][CrossRef]
2. Ruelas DS, Greene WC. 2013. An integrated overview of HIV-1 latency. Cell 155:519–529. [PubMed][CrossRef]
3. Donehower LA, Varmus HE. 1984. A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc Natl Acad Sci USA 81:6461–6465. [PubMed][CrossRef]
4. Panganiban AT, Temin HM. 1984. The retrovirus pol gene encodes a product required for DNA integration: Identification of a retrovirus int locus. Proc Natl Acad Sci USA 81:7885–7889. [PubMed][CrossRef]
5. Schwartzberg P, Colicelli J, Goff SP. 1984. Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: A new viral function required for productive infection. Cell 37:1043–1052. [PubMed][CrossRef]
6. Fassati A, Goff SP. 1999. Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol 73:8919–8925. [PubMed]
7. Fassati A, Goff SP. 2001. Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J Virol 75:3626–3635. [PubMed][CrossRef]
8. Panganiban AT, Temin HM. 1983. The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306:155–160. [PubMed][CrossRef]
9. Colicelli J, Goff SP. 1985. Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integration site. Cell 42:573–580. [PubMed][CrossRef]
10. Colicelli J, Goff SP. 1988. Sequence and spacing requirements of a retrovirus integration site. J Mol Biol 199:47–59. [PubMed][CrossRef]
11. Masuda T, Kuroda MJ, Harada S. 1998. Specific and independent recognition of U3 and U5 att sites by human immunodeficiency virus type 1 integrase in vivo. J Virol 72:8396–8402. [PubMed]
12. Brown HEV, Chen H, Engelman A. 1999. Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: effects on integration and cDNA synthesis. J Virol 73:9011–9020. [PubMed]
13. Roth MJ, Schwartzberg PL, Goff SP. 1989. Structure of the termini of DNA intermediates in the integration of retroviral DNA: Dependence on IN function and terminal DNA sequence. Cell 58:47–54. [PubMed][CrossRef]
14. Fujiwara T, Mizuuchi K. 1988. Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504. [PubMed][CrossRef]
15. Brown PO, Bowerman B, Varmus HE, Bishop JM. 1989. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci USA 86:2525–2529. [PubMed][CrossRef]
16. Pauza CD. 1990. Two bases are deleted from the termini of HIV–1 linear DNA during integrative recombination. Virology 179:886–889. [PubMed][CrossRef]
17. Lee YM, Coffin JM. 1991. Relationship of avian retrovirus DNA synthesis to integration in vitro. Mol. Cell Biol. 11:1419–1430. [PubMed]
18. Brown PO, Bowerman B, Varmus HE, Bishop JM. 1987. Correct integration of retroviral DNA in vitro. Cell 49:347–356. [PubMed][CrossRef]
19. Lee YM, Coffin JM. 1990. Efficient autointegration of avian retrovirus DNA in vitro. J Virol 64:5958–5965. [PubMed]
20. Ellison V, Abrams H, Roe T, Lifson J, Brown P. 1990. Human immunodeficiency virus integration in a cell-free system. J Virol 64:2711–2715. [PubMed]
21. Farnet CM, Haseltine WA. 1990. Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci USA 87:4164–4168. [PubMed][CrossRef]
22. Katzman M, Katz RA, Skalka AM, Leis J. 1989. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327. [PubMed]
23. Craigie R, Fujiwara T, Bushman F. 1990. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837. [PubMed][CrossRef]
24. Sherman PA, Fyfe JA. 1990. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc Natl Acad Sci USA 87:5119–5123. [PubMed][CrossRef]
25. Bushman FD, Fujiwara T, Craigie R. 1990. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558. [PubMed][CrossRef]
26. Bushman FD, Craigie R. 1991. Activities of human immunodeficiency virus (HIV) integration protein in vitro: Specific cleavage and integration of HIV DNA. Proc Natl Acad Sci USA 88:1339–1343. [PubMed][CrossRef]
27. Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM. 1990. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95. [PubMed][CrossRef]
28. Vora AC, Fitzgerald ML, Grandgenett DP. 1990. Removal of 3′–OH–terminal nucleotides from blunt-ended long terminal repeat termini by the avian retrovirus integration protein. J Virol 64:5656–5659. [PubMed]
29. LaFemina RL, Callahan PL, Cordingley MG. 1991. Substrate specificity of recombinant human immunodeficiency virus integrase protein. J Virol 65:5624–5630. [PubMed]
30. Pahl A, Flugel RM. 1993. Endonucleolytic cleavages and DNA–joining activities of the integration protein of human foamy virus. J Virol 67:5426–5434. [PubMed]
31. Miller M, Farnet C, Bushman F. 1997. Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J Virol 71:5382–5390. [PubMed]
32. Munir S, Thierry S, Subra F, Deprez E, Delelis O. 2013. Quantitative analysis of the time–course of viral DNA forms during the HIV-1 life cycle. Retrovirology 10:87. [PubMed][CrossRef]
33. Butler SL, Hansen MS, Bushman FD. 2001. A quantitative assay for HIV DNA integration in vivo. Nat Med 7:631–634. [PubMed][CrossRef]
34. Vandegraaff N, Kumar R, Burrell CJ, Li P. 2001. Kinetics of human immunodeficiency virus type 1 (HIV) DNA integration in acutely infected cells as determined using a novel assay for detection of integrated HIV DNA. J Virol 75:11253–11260. [PubMed][CrossRef]
35. Chow SA, Vincent KA, Ellison V, Brown PO. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726. [PubMed][CrossRef]
36. Vink C, Yeheskiely E, van der Marel GA, Van Boom JH, Plasterk RHA. 1991. Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Res 19:6691–6698. [PubMed][CrossRef]
37. Katzman M, Sudol M. 1995. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases. J Virol 69:5687–5696. [PubMed]
38. Mizuuchi K. 1992. Transpositional recombination: Mechanistic insights from studies of Mu and other elements. Annu Rev Biochem 61:1011–1051. [PubMed][CrossRef]
39. Knowles JR. 1980. Enzyme-catalyzed phosphoryl transfer reactions. Annu Rev Biochem 49:877–919. [PubMed][CrossRef]
40. Mizuuchi K, Adzuma K. 1991. Inversion of the phosphate chirality at the target site of Mu DNA strand transfer: Evidence for a one-step transesterification mechanism. Cell 66:129–140. [PubMed][CrossRef]
41. Engelman A, Mizuuchi K, Craigie R. 1991. HIV-1 DNA integration: Mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221. [PubMed][CrossRef]
42. Jenkins TM, Engelman A, Ghirlando R, Craigie R. 1996. A soluble active mutant of HIV-1 integrase: Involvement of both the core and the C-terminal domains in multimerization. J Biol Chem 271:7712–7718. [PubMed][CrossRef]
43. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986. [PubMed][CrossRef]
44. Song JJ, Smith SK, Hannon GJ, Joshua–Tor L. 2004. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437. [PubMed][CrossRef]
45. Landree MA, Wibbenmeyer JA, Roth DB. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev 13:3059–3069. [PubMed][CrossRef]
46. Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev 13:3070–3080. [PubMed][CrossRef]
47. Nowotny M. 2009. Retroviral integrase superfamily: The structural perspective. EMBO Rep 10:144–151. [PubMed][CrossRef]
48. Mizuuchi K, Nobbs TJ, Halford SE, Adzuma K, Qin J. 1999. A new method for determining the stereochemistry of DNA cleavage reactions: Application to the SfiI and HpaII restriction endonucleases and to the MuA transposase. Biochemistry 38:4640–4648. [PubMed][CrossRef]
49. van Gent DC, Mizuuchi K, Gellert M. 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594. [PubMed][CrossRef]
50. Gerton JL, Herschlag D, Brown PO. 1999. Stereospecificity of reactions catalyzed by HIV–1 integrase. J Biol Chem 274:33480–33487. [PubMed][CrossRef]
51. Kennedy AK, Haniford DB, Mizuuchi K. 2000. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Cell 101:295–305. [PubMed][CrossRef]
52. Vora AC, McCord M, Fitzgerald ML, Inman RB, Grandgenett DP. 1994. Efficient concerted integration of retrovirus–like DNA in vitro by avian myeloblastosis virus integrase. Nucleic Acids Res 22:4454–4461. [PubMed][CrossRef]
53. Yang F, Roth MJ. 2001. Assembly and catalysis of concerted two–end integration events by Moloney murine leukemia virus integrase. J Virol 75:9561–9670. [PubMed][CrossRef]
54. Cherepanov P. 2007. LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Res 35:113–124. [PubMed][CrossRef]
55. Ballandras-Colas A, Naraharisetty H, Li X, Serrao E, Engelman A. 2013. Biochemical characterization of novel retroviral integrase proteins. PLoS One 8:e76638. [PubMed][CrossRef]
56. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. 2009. Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37:243–255. [PubMed][CrossRef]
57. Sinha S, Pursley MH, Grandgenett DP. 2002. Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 76:3105–3113. [PubMed][CrossRef]
58. Faure A, Calmels C, Desjobert C, Castroviejo M, Caumont–Sarcos A, Tarrago–Litvak L, Litvak S, Parissi V. 2005. HIV-1 integrase crosslinked oligomers are active in vitro. Nucleic Acids Res 33:977–986. [PubMed][CrossRef]
59. Li M, Craigie R. 2005. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. J Biol Chem 280:29334–29339. [PubMed][CrossRef]
60. Carteau S, Gorelick RJ, Bushman FD. 1999. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: Stimulation by the viral nucleocapsid protein. J Virol 73:6670–6679. [PubMed]
61. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2009. A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog. 5:e1000259. [PubMed][CrossRef]
62. Pandey KK, Bera S, Grandgenett DP. 2011. The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration. Biochemistry 50:9788–9796. [PubMed][CrossRef]
63. Delelis O, Carayon K, Guiot E, Leh H, Tauc P, Brochon JC, Mouscadet JF, Deprez E. 2008. Insight into the integrase-DNA recognition mechanism. A specific DNA-binding mode revealed by an enzymatically labeled integrase. J Biol Chem 283:27838–27849. [PubMed][CrossRef]
64. Gupta K, Curtis JE, Krueger S, Hwang Y, Cherepanov P, Bushman FD, Van Duyne GD. 2012. Solution conformations of prototype foamy virus integrase and its stable synaptic complex with U5 viral DNA. Structure 20:1918–1928. [PubMed][CrossRef]
65. Jenkins T, Hickman A, Dyda F, Ghirlando R, Davies D, Craigie R. 1995. Catalytic domain of human immunodeficiency virus type 1 integrase: Identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci USA 92:6057–6061. [PubMed][CrossRef]
66. Chen JC-H, Krucinski J, Miercke LJW, Finer–Moore JS, Tang AH, Leavitt AD, Stroud RM. 2000. Crystal structure of the HIV-1 integrase catalytic core and C–terminal domains: A model for viral DNA binding. Proc Natl Acad Sci USA 97:8233–8238. [PubMed][CrossRef]
67. Busschots K, Vercammen J, Emiliani S, Benarous R, Engelborghs Y, Christ F, Debyser Z. 2005. The interaction of LEDGF/p75 with integrase is lentivirus–specific and promotes DNA binding. J Biol Chem 280:17841–17847. [PubMed][CrossRef]
68. Michel F, Crucifix C, Granger F, Eiler S, Mouscadet JF, Korolev S, Agapkina J, Ziganshin R, Gottikh M, Nazabal A, Emiliani S, Benarous R, Moras D, Schultz P, Ruff M. 2009. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J. 28:980–991. [PubMed][CrossRef]
69. Cherepanov P, Ambrosio ALB, Rahman S, Ellenberger T, Engelman A. 2005. From the Cover: Structural basis for the recognition between HIV–1 integrase and transcriptional coactivator p75. Proc Natl Acad Sci USA 102:17308–17313. [PubMed][CrossRef]
70. Hare S, Di Nunzio F, Labeja A, Wang J, Engelman A, Cherepanov P. 2009. Structural basis for functional tetramerization of lentiviral integrase. PLoS Pathog. 5:e1000515. [PubMed][CrossRef]
71. Khan E, Mack JPG, Katz RA, Kulkosky J, Skalka AM. 1991. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res 19:851–860. [PubMed][CrossRef]
72. Burke CJ, Sanyal G, Bruner MW, Ryan JA, LaFemina RL, Robbins HL, Zeft AS, Middaugh CR, Cordingley MG. 1992. Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. J Biol Chem 267:9639–9644. [PubMed]
73. Engelman A, Craigie R. 1992. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66:6361–6369. [PubMed]
74. Bushman FD, Engelman A, Palmer I, Wingfield P, Craigie R. 1993. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc Natl Acad Sci USA 90:3428–3432. [PubMed][CrossRef]
75. Woerner AM, Klutch M, Levin JG, Marcus–Sekura CJ. 1992. Localization of DNA binding activity of HIV-1 integrase to the C-terminal half of the protein. AIDS Res Hum Retroviruses 8:297–304. [PubMed][CrossRef]
76. Vink C, Oude Groeneger AM, Plasterk RHA. 1993. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. Nucleic Acids Res 21:1419–1425. [PubMed][CrossRef]
77. Li X, Krishnan L, Cherepanov P, Engelman A. 2011. Structural biology of retroviral DNA integration. Virology 411:194–205. [PubMed][CrossRef]
78. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338. [PubMed]
79. Drelich M, Wilhelm R, Mous J. 1992. Identification of amino acid residues critical for endonuclease and integration activities of HIV-1 IN protein in vitro. Virology 188:459–468. [PubMed][CrossRef]
80. Leavitt AD, Shiue L, Varmus HE. 1993. Site-directed mutagenesis of HIV–1 integrase demonstrates differential effects on integrase functions in vitro. J Biol Chem 268:2113–2119. [PubMed]
81. Fayet O, Ramond P, Polard P, Prère MF, Chandler M. 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol Microbiol 4:1771–1777. [PubMed][CrossRef]
82. Yuan Y-W, Wessler SR. 2011. The catalytic domain of all eukaryotic cut–and–paste transposase superfamilies. Proc Natl Acad Sci USA 108:7884–7889. [PubMed][CrossRef]
83. Kojima KK, Jurka J. 2013. A superfamily of DNA transposons targeting multicopy small RNA genes. PLoS One 8:e68260. [PubMed][CrossRef]
84. Guérillot R, Siguier P, Gourbeyre E, Chandler M, Glaser P. 2014. The diversity of prokaryotic DDE transposases of the mutator superfamily, insertion specificity, and association with conjugation machineries. Genome Biol Evol 6:260–272. [PubMed][CrossRef]
85. Hare S, Maertens GN, Cherepanov P. 2012. 3′–Processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J. 31:3020–3028. [PubMed][CrossRef]
86. Jenkins TM, Esposito D, Engelman A, Craigie R. 1997. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. 16:6849–6859. [PubMed][CrossRef]
87. Esposito D, Craigie R. 1998. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein–DNA interaction. EMBO J. 17:5832–5843. [PubMed][CrossRef]
88. Gerton JL, Brown PO. 1997. The core domain of HIV-1 integrase recognizes key features of its DNA substrates. J Biol Chem 272:25809–25815. [PubMed][CrossRef]
89. Gerton JL, Ohgi S, Olsen M, DeRisi J, Brown PO. 1998. Effects of mutations in residues near the active site of human immunodeficiency virus type 1 integrase on specific enzyme-substrate interactions. J Virol 72:5046–5055. [PubMed]
90. Heuer TS, Brown PO. 1997. Mapping features of HIV–1 integrase near selected sites on viral and target DNA molecules in an active enzyme–DNA complex by photo–cross–linking. Biochemistry 36:10655–10665. [PubMed][CrossRef]
91. Chen A, Weber IT, Harrison RW, Leis J. 2006. Identification of amino acids in HIV–1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat ends. J Biol Chem 281:4173–4182. [PubMed][CrossRef]
92. Johnson AA, Santos W, Pais GCG, Marchand C, Amin R, Burke TR, Jr., Verdine G, Pommier Y. 2006. Integration requires a specific interaction of the donor DNA terminal 5′–cytosine with glutamine 148 of the HIV–1 integrase flexible loop. J Biol Chem 281:461–467. [PubMed][CrossRef]
93. Hobaika Z, Zargarian L, Boulard Y, Maroun RG, Mauffret O, Fermandjian S. 2009. Specificity of LTR DNA recognition by a peptide mimicking the HIV–1 integrase α4 helix. Nucleic Acids Res 37:7691–7700. [PubMed][CrossRef]
94. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P. 2010. Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236. [PubMed][CrossRef]
95. Appa RS, Shin C-G, Lee P, Chow SA. 2001. Role of the nonspecific DNA-binding region and alpha helices within the core domain of retroviral integrase in selecting target DNA sites for integration. J Biol Chem 276:45848–45855. [PubMed][CrossRef]
96. Harper AL, Skinner LM, Sudol M, Katzman M. 2001. Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection. J Virol 75:7756–7762. [PubMed][CrossRef]
97. Harper AL, Sudol M, Katzman M. 2003. An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. J Virol 77:3838–3845. [PubMed][CrossRef]
98. Maertens GN, Hare S, Cherepanov P. 2010. The mechanism of retroviral integration through X-ray structures of its key intermediates. Nature 468:326–329. [PubMed][CrossRef]
99. Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM. 1997. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577. [PubMed][CrossRef]
100. Eijkelenboom AP, van den Ent FM, Vos A, Doreleijers JF, Hard K, Tullius TD, Plasterk RH, Kaptein R, Boelens R. 1997. The solution structure of the amino–terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol 7:739–746. [PubMed][CrossRef]
101. Lee SP, Han MK. 1996. Zinc stimulates Mg2+–dependent 3′–processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry 35:3837–3844. [PubMed][CrossRef]
102. Zheng R, Jenkins TM, Craigie R. 1996. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci USA 93:13659–13664. [PubMed][CrossRef]
103. van den Ent FMI, Vos A, Plasterk RHA. 1999. Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans–complementation analysis. J Virol 73:3176–3183. [PubMed]
104. Zhao Z, McKee CJ, Kessl JJ, Santos WL, Daigle JE, Engelman A, Verdine G, Kvaratskhelia M. 2008. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 integrase during viral DNA binding. J Biol Chem 283:5632–5641. [PubMed][CrossRef]
105. Krishnan L, Li X, Naraharisetty HL, Hare S, Cherepanov P, Engelman A. 2010. Structure–based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci USA 107:15010–15915. [PubMed][CrossRef]
106. Cannon PM, Byles ED, Kingsman SM, Kingsman AJ. 1996. Conserved sequences in the carboxyl terminus of integrase that are essential for human immunodeficiency virus type 1 replication. J Virol 70:651–657. [PubMed]
107. Engelman A, Hickman AB, Craigie R. 1994. The core and carboxyl–terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J Virol 68:5911–5917. [PubMed]
108. Puras Lutzke RA, Plasterk RHA. 1998. Structure-based mutational analysis of the C–terminal DNA-binding domain of human immunodeficiency virus type 1 integrase: Critical residues for protein oligomerization and DNA binding. J Virol 72:4841–4848.
109. Puras Lutzke RA, Vink C, Plasterk RHA. 1994. Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res 22:4125–4131. [CrossRef]
110. Andrake MD, Skalka AM. 1995. Multimerization determinants reside in both the catalytic core and C terminus of avian sarcoma virus integrase. J Biol Chem 270:29299–29306. [CrossRef]
111. Engelman A, Bushman FD, Craigie R. 1993. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12:3269–3275. [PubMed]
112. van Gent DC, Oude Groeneger AAM, Plasterk RHA. 1993. Identification of amino acids in HIV-2 integrase involved in site–specific hydrolysis and alcoholysis of viral DNA termini. Nucleic Acids Res 21:3373–3377. [PubMed][CrossRef]
113. Bushman FD, Wang B. 1994. Rous sarcoma virus integrase protein: Mapping functions for catalysis and substrate binding. J Virol 68:2215–2223. [PubMed]
114. Kulkosky J, Katz RA, Merkel G, Skalka AM. 1995. Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase. Virology 206:448–456. [CrossRef]
115. Pahl A, Flügel RM. 1995. Characterization of the human spuma retrovirus integrase by site–directed mutagenesis, by complementation analysis, and by swapping the zinc finger domain of HIV-1. J Biol Chem 270:2957–2966. [PubMed][CrossRef]
116. Jonsson C, Donzella G, Gaucan E, Smith C, Roth M. 1996. Functional domains of Moloney murine leukemia virus integrase defined by mutation and complementation analysis. J Virol 70:4585–4597. [PubMed]
117. Jones KS, Coleman J, Merkel GW, Laue TM, Skalka AM. 1992. Retroviral integrase functions as a multimer and can turn over catalytically. J Biol Chem 267:16037–16040. [PubMed]
118. Bao KK, Wang H, Miller JK, Erie DA, Skalka AM, Wong I. 2003. Functional oligomeric state of avian sarcoma virus integrase. J Biol Chem 278:1323–1327. [PubMed][CrossRef]
119. Cherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z. 2003. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278:372–381. [PubMed][CrossRef]
120. Li M, Mizuuchi M, Burke TRJ, Craigie R. 2006. Retroviral DNA integration: Reaction pathway and critical intermediates. EMBO J. 25:1295–1304. [PubMed][CrossRef]
121. Bera S, Pandey KK, Vora AC, Grandgenett DP. 2009. Molecular interactions between HIV–1 integrase and the two viral DNA ends within the synaptic complex that mediates concerted integration. J Mol Biol 389:183–198. [PubMed][CrossRef]
122. van Gent DC, Vink C, Groeneger AAMO, Plasterk RHA. 1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12:3261–3267. [PubMed]
123. Ellison V, Gerton J, Vincent KA, Brown PO. 1995. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer. J Biol Chem 270:3320–3326. [PubMed][CrossRef]
124. Vink C, van Gent DC, Elgersma Y, Plasterk RH. 1991. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. J Virol 65:4636–4644. [PubMed]
125. Leavitt AD, Rose RB, Varmus HE. 1992. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. J Virol 66:2359–2368. [PubMed]
126. Sherman PA, Dickson ML, Fyfe JA. 1992. Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. J Virol 66:3593–3601. [PubMed]
127. Masuda T, Planelles V, Krogstad P, Chen IS. 1995. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger–like domain. J Virol 69:6687–6696. [PubMed]
128. Oh J, Chang KW, Alvord WG, Hughes SH. 2006. Alternate polypurine tracts affect Rous sarcoma virus integration in vivo. J Virol 80:10281–10284. [PubMed][CrossRef]
129. Oh J, Chang KW, Hughes SH. 2006. Mutations in the U5 sequences adjacent to the primer binding site do not affect tRNA cleavage by Rous sarcoma virus RNase H but do cause aberrant integrations in vivo. J Virol 80:451–459. [PubMed][CrossRef]
130. Chaconas G. 1999. Studies on a “jumping gene machine”: Higher–order nucleoprotein complexes in Mu DNA transposition. Biochem Cell Biol 77:487–491. [PubMed]
131. Krishnan L, Engelman A. 2012. Retroviral integrase proteins and HIV–1 DNA integration. J Biol Chem 287:40858–40866. [PubMed][CrossRef]
132. Wei S–Q, Mizuuchi K, Craigie R. 1997. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16:7511–7520. [PubMed][CrossRef]
133. Chen H, Wei S–Q, Engelman A. 1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J Biol Chem 274:17358–17364. [PubMed][CrossRef]
134. Kotova S, Li M, Dimitriadis EK, Craigie R. 2010. Nucleoprotein intermediates in HIV–1 DNA integration visualized by atomic force microscopy. J Mol Biol 399:491–500. [PubMed][CrossRef]
135. Kessl JJ, Li M, Ignatov M, Shkriabai N, Eidahl JO, Feng L, Musier–Forsyth K, Craigie R, Kvaratskhelia M. 2011. FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Nucleic Acids Res 39:9009–9022. [PubMed][CrossRef]
136. Guiot E, Carayon K, Delelis O, Simon F, Tauc P, Zubin E, Gottikh M, Mouscadet J–F, Brochon J–C, Deprez E. 2006. Relationship between the oligomeric status of HIV-1 integrase on DNA and enzymatic activity. J Biol Chem 281:22707–22719. [PubMed][CrossRef]
137. Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O, Henderson A, Kummerling M, Skalka AM. 2011. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. J Biol Chem 286:17047–17059. [PubMed][CrossRef]
138. Bojja RS, Andrake MD, Merkel G, Weigand S, Dunbrack RLJ, Skalka AM. 2013. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates. J Biol Chem 288:7373–7386. [PubMed][CrossRef]
139. Hickman AB, Palmer I, Engelman A, Craigie R, Wingfield P. 1994. Biophysical and enzymatic properties of the catalytic domain of HIV-1 integrase. J Biol Chem 269:29279–29287. [PubMed]
140. Bujacz G, Jaskolski M, Alexandratos J, Wlodawer A, Merkel G, Katz RA, Skalka AM. 1995. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J Mol Biol 253:333–346. [PubMed][CrossRef]
141. Eijkelenboom AP, van den Ent FM, Wechselberger R, Plasterk RH, Kaptein R, Boelens R. 2000. Refined solution structure of the dimeric N-terminal HHCC domain of HIV-2 integrase. J Biomol NMR 18:119–128. [PubMed][CrossRef]
142. Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM. 1995. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–9833. [PubMed][CrossRef]
143. Eijkelenboom APAM, Puras Lutzke RA, Boelens R, Plasterk RHA, Kaptein R, Hård K. 1995. The DNA-binding domain of HIV–1 integrase has an SH3-like fold. Nat Struct Biol 2:807–810. [CrossRef]
144. Eijkelenboom APAM, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RHA, Boelens R, Kaptein R. 1999. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Proteins 36:556–564. [CrossRef]
145. Kaneko T, Li L, Li SS. 2008. The SH3 domain—a family of versatile peptide- and protein-recognition module. Front Biosci 13:4938–4952. [PubMed][CrossRef]
146. Baumann H, Knapp S, Lundbäck T, Ladenstein R, Härd T. 1994. Solution structure and DNA-binding properties of a thermostable protein from the archaeon Sulfolobus solfataricus. Nat Struct Biol 1:808–819. [PubMed][CrossRef]
147. Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V. 2000. X–ray structure of simian immunodeficiency virus integrase containing the core and C–terminal domain (residues 50–293) – an initial glance of the viral DNA binding platform. J Mol Biol 296:521–533. [PubMed][CrossRef]
148. Yang Z-N, Mueser TC, Bushman FD, Hyde CC. 2000. Crystal structure of an active two–domain derivative of Rous sarcoma virus integrase. J Mol Biol 296:535–548. [PubMed][CrossRef]
149. Wang J–Y, Ling H, Yang W, Craigie R. 2001. Structure of a two–domain fragment of HIV–1 integrase: implications for domain organization in the intact protein. EMBO J. 20:7333–7343. [PubMed][CrossRef]
150. Engelman A, Cherepanov P. 2008. The lentiviral integrase binding protein LEDGF/p75 and HIV-1 replication. PLoS Pathog. 4:e1000046. [PubMed][CrossRef]
151. Poeschla EM. 2008. Integrase, LEDGF/p75 and HIV replication. Cell Mol Life Sci 65:1403–1424. [PubMed][CrossRef]
152. Cherepanov P, Devroe E, Silver PA, Engelman A. 2004. Identification of an evolutionarily-conserved domain in LEDGF/p75 that binds HIV-1 integrase. J Biol Chem 279:48883–48892. [PubMed][CrossRef]
153. Maertens G, Cherepanov P, Pluymers W, Busschots K, De Clercq E, Debyser Z, Engelborghs Y. 2003. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J Biol Chem 278:33528–33539. [PubMed][CrossRef]
154. Cherepanov P, Sun Z–YJ, Rahman S, Maertens G, Wagner G, Engelman A. 2005. Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat Struct Mol Biol 12:526–532. [PubMed][CrossRef]
155. Christ F, Voet A, Marchand A, Nicolet S, Desimmie BA, Marchand D, Bardiot D, Van der Veken NJ, Van Remoortel B, Strelkov SV, De Maeyer M, Chaltin P, Debyser Z. 2010. Rational design of small-molecule inhibitors of the LEDGF/p75-integrase interaction and HIV replication. Nat Chem Biol 6:442–448. [PubMed][CrossRef]
156. Jurado KA, Engelman A. 2013. Multimodal mechanism of action of allosteric HIV-1 integrase inhibitors. Expert Rev Mol Med 15:e14. [PubMed][CrossRef]
157. Wang H, Shun MC, Li X, Di Nunzio F, Hare S, Cherepanov P, Engelman A. 2014. Efficient transduction of LEDGF/p75 mutant cells by complementary gain-of-function HIV-1 integrase mutant viruses. Mol Ther Methods Clin Dev 1:2. [CrossRef]
158. Stevens SW, Griffith JD. 1996. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol 70:6459–6462. [PubMed]
159. Carteau S, Hoffmann C, Bushman F. 1998. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: Centromeric alphoid repeats are a disfavored target. J Virol 72:4005–4014. [PubMed]
160. Holman AG, Coffin JM. 2005. Symmetrical base preferences surrounding HIV-1, avian sarcoma/leukosis virus, and murine leukemia virus integration sites. Proc Natl Acad Sci USA 102:6103–6107. [PubMed][CrossRef]
161. Wu X, Li Y, Crise B, Burgess SM, Munroe DJ. 2005. Weak palindromic consensus sequences are a common feature found at the integration target sites of many retroviruses. J Virol 79:5211–5214. [PubMed][CrossRef]
162. Berry C, Hannenhalli S, Leipzig J, Bushman FD. 2006. Selection of target sites for mobile DNA integration in the human genome. PLoS Comput Biol 2:e157. [PubMed][CrossRef]
163. Johnson RC, Stella S, Heiss JK. 2008. Bending and compaction of DNA by proteins, p. 176–220. In Rice PA, Correll CC (ed), Protein-Nucleic Acid Interactions: Structural Biology. RSC Publishing, London. [CrossRef]
164. Liao G-c, Rehm EJ, Rubin GM. 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc Natl Acad Sci USA 97:3347–3351. [CrossRef]
165. Haapa-Paananen S, Rita H, Savilahti H. 2002. DNA transposition of bacteriophage Mu: A quantitative analysis of target site selection in vitro. J Biol Chem 277:2843–2851. [PubMed][CrossRef]
166. Serrao E, Krishnan L, Shun M–C, Li X, Cherepanov P, Engelman A, Maertens GN. 2014. Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5146–5176. [PubMed][CrossRef]
167. Nowak MG, Sudol M, Lee NE, Konsavage WMJ, Katzman M. 2009. Identifying amino acid residues that contribute to the cellular–DNA binding site on retroviral integrase. Virology 389:141–148. [PubMed][CrossRef]
168. Mizuuchi K. 1992. Polynucleotidyl transfer reactions in transpositional DNA recombination. J Biol Chem 267:21273–21276. [PubMed]
169. Yang W, Lee JY, Nowotny M. 2006. Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. Mol Cell 22:5–13. [PubMed][CrossRef]
170. Rosta E, Nowotny M, Yang W, Hummer G. 2011. Catalytic mechanism of RNA backbone cleavage by ribonuclease H from quantum mechanics/molecular mechanics simulations. J Am Chem Soc 133:8934–8941. [PubMed][CrossRef]
171. Nowotny M, Yang W. 2006. Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release. EMBO J. 25:1924–1933. [PubMed][CrossRef]
172. Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. 2005. Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis. Cell 121:1005–1016. [PubMed][CrossRef]
173. Pryciak PM, Varmus HE. 1992. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69:769–780. [CrossRef]
174. Pryciak PM, Sil A, Varmus HE. 1992. Retroviral integration into minichromosomes in vitro. EMBO J. 11:291–303. [PubMed]
175. Pruss D, Bushman F, Wolffe A. 1994. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci USA 91:5913–5917. [PubMed][CrossRef]
176. Pruss D, Reeves R, Bushman FD, Wolffe AP. 1994. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 269:25031–25041. [PubMed]
177. Pryciak PM, Müller HP, Varmus HE. 1992. Simian virus 40 minichromosomes as targets for retroviral integration in vivo. Proc Natl Acad Sci USA 89:9237–9241. [PubMed][CrossRef]
178. Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD. 2007. HIV integration site selection: Analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194. [PubMed][CrossRef]
179. Roth SL, Malani N, Bushman FD. 2011. Gammaretroviral integration into nucleosomal target DNA in vivo. J Virol 85:7393–7401. [PubMed][CrossRef]
180. Coffin JM, Hughes SH, Varmus HE. 1997. Retroviruses. Cold Spring Harbor Laboratory Press, Plainville.
181. Turlure F, Devroe E, Silver PA, Engelman A. 2004. Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208. [PubMed][CrossRef]
182. Van Maele B, Busschots K, Vandekerckhove L, Christ F, Debyser Z. 2006. Cellular co-factors of HIV-1 integration. Trends Biochem Sci 31:98–105. [PubMed][CrossRef]
183. Engelman A. 2007. Host cell factors and HIV-1 integration. Future HIV Ther 1:415–426. [CrossRef]
184. Nishitsuji H, Hayashi T, Takahashi T, Miyano M, Kannagi M, Masuda T. 2009. Augmentation of reverse transcription by integrase through an interaction with host factor, SIP1/Gemin2 is critical for HIV-1 infection. PLoS One 4:e7825. [PubMed][CrossRef]
185. Gallay P, Hope T, Chin D, Trono D. 1997. HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci USA 94:9825–9830. [PubMed][CrossRef]
186. Fassati A, Gorlich D, Harrison I, Zaytseva L, Mingot JM. 2003. Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J. 22:3675–3685. [PubMed][CrossRef]
187. Ao Z, Danappa Jayappa K, Wang B, Zheng Y, Kung S, Rassart E, Depping R, Kohler M, Cohen EA, Yao X. 2010. Importin alpha3 interacts with HIV–1 integrase and contributes to HIV–1 nuclear import and replication. J Virol 84:8650–8663. [PubMed][CrossRef]
188. Ao Z, Huang G, Yao H, Xu Z, Labine M, Cochrane AW, Yao X. 2007. Interaction of human immunodeficiency virus type 1 integrase with cellular nuclear import receptor importin 7 and its impact on viral replication. J Biol Chem 282:13456–13467. [PubMed][CrossRef]
189. Christ F, Thys W, De Rijck J, Gijsbers R, Albanese A, Arosio D, Emiliani S, Rain JC, Benarous R, Cereseto A, Debyser Z. 2008. Transportin-SR2 imports HIV into the nucleus. Curr Biol 18:1192–1202. [PubMed][CrossRef]
190. Krishnan L, Matreyek KA, Oztop I, Lee K, Tipper CH, Li X, Dar MJ, Kewalramani VN, Engelman A. 2010. The requirement for cellular transportin 3 (TNPO3 or TRN-SR2) during infection maps to human immunodeficiency virus type 1 capsid and not integrase. J Virol 84:397–406. [PubMed][CrossRef]
191. Maertens GN, Cook NJ, Wang W, Hare S, Gupta SS, Öztop I, Lee K, Pye VE, Cosnefroy O, Snijders AP, KewalRamani VN, Fassati A, Engelman A, Cherepanov P. 2014. Structural basis for nuclear import of splicing factors by human Transportin 3. Proc Natl Acad Sci USA 111:2728–2733. [PubMed][CrossRef]
192. Quashie PK, Mesplède T, Han Y–S, Oliveira M, Singhroy DN, Fujiwara T, Underwood MR, Wainberg MA. 2012. Characterization of the R263K mutation in HIV-1 integrase that confers low-level resistance to the second-generation integrase strand transfer inhibitor dolutegravir. J Virol 86:2696–2705. [PubMed][CrossRef]
193. Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH. 2013. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. J Mol Biol 425:2133–2146. [PubMed][CrossRef]
194. LaFemina R, Schneider C, Robbins H, Callahan P, LeGrow K, Roth E, Schleif W, Emini E. 1992. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J Virol. 66:7414–7419. [PubMed]
195. Sakai H, Kawamura M, Sakuragi J, Sakuragi S, Shibata R, Ishimoto A, Ono N, Ueda S, Adachi A. 1993. Integration is essential for efficient gene expression of human immunodeficiency virus type 1. J Virol 67:1169–1174. [PubMed]
196. Wolfe AL, Felock PJ, Hastings JC, Blau CU, Hazuda DJ. 1996. The role of manganese in promoting multimerization and assembly of human immunodeficiency virus type 1 integrase as a catalytically active complex on immobilized long terminal repeat substrates. J Virol 70:1424–1432. [PubMed]
197. Hazuda D, Felock PJ, Hastings JC, Pramanik B, Wolfe AL. 1997. Discovery and analysis of inhibitors of the human immunodeficiency integrase. Drug Des Discov 15:17–24. [PubMed]
198. Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF. 2002. Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 76:8518–8531. [PubMed][CrossRef]
199. Hazuda DJ, Felock P, Witmer M, Wolfe A, Stillmock K, Grobler JA, Espeseth A, Gabryelski L, Schleif W, Blau C, Miller MD. 2000. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287:646–650. [PubMed][CrossRef]
200. Espeseth AS, Felock P, Wolfe A, Witmer M, Grobler J, Anthony N, Egbertson M, Melamed JY, Young S, Hamill T, Cole JL, Hazuda DJ. 2000. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc Natl Acad Sci USA 97:11244–11249. [PubMed][CrossRef]
201. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ. 2002. Diketo acid inhibitor mechanism and HIV-1 integrase: Implications for metal binding in the active site of phosphotransferase enzymes. Proc Natl Acad Sci USA 99:6661–6666. [PubMed][CrossRef]
202. Summa V, Petrocchi A, Bonelli F, Crescenzi B, Donghi M, Ferrara M, Fiore F, Gardelli C, Gonzalez Paz O, Hazuda DJ, Jones P, Kinzel O, Laufer R, Monteagudo E, Muraglia E, Nizi E, Orvieto F, Pace P, Pescatore G, Scarpelli R, Stillmock K, Witmer MV, Rowley M. 2008. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J Med Chem 51:5843–5855. [PubMed][CrossRef]
203. Sato M, Motomura T, Aramaki H, Matsuda T, Yamashita M, Ito Y, Kawakami H, Matsuzaki Y, Watanabe W, Yamataka K, Ikeda S, Kodama E, Matsuoka M, Shinkai H. 2006. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J Med Chem 49:1506–1508. [PubMed][CrossRef]
204. Johns BA, Kawasuji T, Weatherhead JG, Taishi T, Temelkoff DP, Yoshida H, Akiyama T, Taoda Y, Murai H, Kiyama R, Fuji M, Tanimoto N, Jeffrey J, Foster SA, Yoshinaga T, Seki T, Kobayashi M, Sato A, Johnson MN, Garvey EP, Fujiwara T. 2013. Carbamoyl pyridone HIV-1 integrase inhibitors 3. A diastereomeric approach to chiral nonracemic tricyclic ring systems and the discovery of dolutegravir (S/GSK1349572) and (S/GSK1265744). J Med Chem 56:5901–5916. [PubMed][CrossRef]
205. Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M. 2008. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK–303/GS–9137). J Virol 82:764–774. [PubMed][CrossRef]
206. Koh Y, Matreyek KA, Engelman A. 2011. Differential sensitivities of retroviruses to integrase strand transfer inhibitors. J Virol 85:3677–3682. [PubMed][CrossRef]
207. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P. 2010. Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci USA 107:20057–20062. [PubMed][CrossRef]
208. Hare S, Smith SJ, Métifiot M, Jaxa–Chamiec A, Pommier Y, Hughes SH, Cherepanov P. 2011. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol Pharmacol 80:565–572. [PubMed][CrossRef]
209. Cooper DA, Steigbigel RT, Gatell JM, Rockstroh JK, Katlama C, Yeni P, Lazzarin A, Clotet B, Kumar PN, Eron JE, Schechter M, Markowitz M, Loutfy MR, Lennox JL, Zhao J, Chen J, Ryan DM, Rhodes RR, Killar JA, Gilde LR, Strohmaier KM, Meibohm AR, Miller MD, Hazuda DJ, Nessly ML, DiNubile MJ, Isaacs RD, Teppler H, Nguyen B–Y, the BENCHMRK Study Teams. 2008. Subgroup and resistance analyses of raltegravir for resistant HIV–1 infection. N Engl J Med 359:355–365. [PubMed][CrossRef]
210. Grobler JA, McKenna PM, Ly S, Stillmock KA, Bahnck CM, Danovich RM, Dornadula G, Hazuda DJ, Miller MD. 2009. HIV integrase inhibitor dissociation rates correlate with efficacy in vitro. Antiviral Ther 14 Suppl 1:A27.
211. Hightower KE, Wang R, Deanda F, Johns BA, Weaver K, Shen Y, Tomberlin GH, Carter HLr, Broderick T, Sigethy S, Seki T, Kobayashi M, Underwood MR. 2011. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob Agents Chemother 55:4552–4559. [PubMed][CrossRef]
212. Goethals O, Vos A, Van Ginderen M, Geluykens P, Smits V, Schols D, Hertogs K, Clayton R. 2010. Primary mutations selected in vitro with raltegravir confer large fold changes in susceptibility to first-generation integrase inhibitors, but minor fold changes to inhibitors with second-generation resistance profiles. Virology 402:338–346. [PubMed][CrossRef]
213. Canducci F, Ceresola ER, Boeri E, Spagnuolo V, Cossarini F, Castagna A, Lazzarin A, Clementi M. 2011. Cross-resistance profile of the novel integrase inhibitor dolutegravir (S/GSK1349572) using clonal viral variants selected in patients failing raltegravir. J Infect Dis 204:1811–1815. [PubMed][CrossRef]
microbiolspec.MDNA3-0024-2014.citations
cm/2/6
content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0024-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0024-2014
2014-11-14
2017-10-20

Abstract:

Due to the importance of human immunodeficiency virus type 1 (HIV-1) integrase as a drug target, the biochemistry and structural aspects of retroviral DNA integration have been the focus of intensive research during the past three decades. The retroviral integrase enzyme acts on the linear double-stranded viral DNA product of reverse transcription. Integrase cleaves specific phosphodiester bonds near the viral DNA ends during the 3′ processing reaction. The enzyme then uses the resulting viral DNA 3′-OH groups during strand transfer to cut chromosomal target DNA, which simultaneously joins both viral DNA ends to target DNA 5′-phosphates. Both reactions proceed via direct transesterification of scissile phosphodiester bonds by attacking nucleophiles: a water molecule for 3′ processing, and the viral DNA 3′-OH for strand transfer. X-ray crystal structures of prototype foamy virus integrase-DNA complexes revealed the architectures of the key nucleoprotein complexes that form sequentially during the integration process and explained the roles of active site metal ions in catalysis. X-ray crystallography furthermore elucidated the mechanism of action of HIV-1 integrase strand transfer inhibitors, which are currently used to treat AIDS patients, and provided valuable insights into the mechanisms of viral drug resistance.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/6/MDNA3-0024-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0024-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Integration substrate and integrase activities. (A) Reverse transcription yields linear, double-stranded DNA with U3RU5 long terminal repeats. The 14 terminal bp of HIV-1 DNA are compared with their originating positions in viral RNA (italicized bases form part of the primer binding site (PBS) and polypurine tract (PPT) that are important for DNA synthesis). The positions of the invariant CA dinucleotides (underlined in the DNA) relative to the 3′ ends of the PBS and PPT determines whether 3′ processing is required to yield a CA 3′ terminus; 3′ processing by HIV-1 integrase liberates a pGpT dinucleotide from each viral DNA end. (B) Two monomers (oblong shape) of an HIV-1 integrase tetramer within the cleaved intasome (CI) use the viral DNA 3′-hydroxyl groups to cut the target DNA (thick bold lines) with a 5 bp stagger, which concomitantly joins the LTR ends to target DNA 5′ phosphates. Repair of the strand transfer complex (STC) yields a 5 bp duplication of target DNA flanking the integrated HIV-1 provirus. Open and filled triangles, U3 and U5 termini, respectively. Integrase was omitted from the drawing of the STC for simplicity. IN, integrase. doi:10.1128/microbiolspec.MDNA3-0024-2014.f1

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Retroviral integrase domain organization and HIV-1 integrase domain structures. (A) The N-terminal domain (NTD), catalytic core domain (CCD), and C-terminal domain (CTD) are common among all retroviral integrase proteins, whereas sequence analysis indicates that gammaretrovirus and epsilonretrovirus in addition to spumavirus proteins harbor an N-terminal extension domain (NED) ( 55 , 94 ). HIV-1 and PFV integrases were aligned by NTD N-termini, with positions of domain boundaries and lengths of interdomain linker and C-terminal tail regions indicated. Residues conserved across all retroviral integrase proteins are shown in single letter code. Bars and arrows indicate alpha helix and beta strand secondary elements as determined by X-ray crystallography for PFV integrase ( 94 ) and by a combination of X-ray crystallography ( 66 , 149 ) and molecular modeling ( 105 ) for HIV-1 integrase. (B) The X-ray crystal structure of the HIV-1 integrase CCD [protein database (pdb) code 1ITG] ( 43 ) highlights in red sticks the aspartate residues of the DDE catalytic triad (the glutamic acid was not visualized in this structure) and in blue sticks the Lys185 substitution that enhanced protein solubility and enabled protein crystallization (the Lys residue at the rear face of the dimer is barely visible in this projection). (C) The NMR structure of the integrase NTD (pdb code 1WJC) highlights the His (blue sticks) and Cys (yellow sticks) residues that coordinate a single zinc atom (grey sphere) ( 99 ). (D) The structure of the HIV-1 integrase CTD as determined by NMR (pdb code 1IHV) ( 142 ) highlights Arg231, which has been implicated in target DNA binding ( 108 , 166 ). doi:10.1128/microbiolspec.MDNA3-0024-2014.f2

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Structures of 2-domain HIV-1 integrase constructs. (A) The X-ray crystal structure of the HIV-1 integrase CCD-CTD dimer (pdb code 1EX4) ( 66 ), highlighting the CCD and CTD side chains that were shown in Fig. 2 . (B) The crystal structure of the NTD-CCD asymmetric unit (pdb code 1K6Y) ( 149 ) highlights NTD residue Glu11 and CCD residue Lys186 of the green and cyan molecules, respectively, which play important roles in integrase concerted integration activity and HIV-1 infection ( 70 ). The other pair of interacting residues (Glu11 from the cyan NTD and Lys186 from the green CCD) is not visible in this projection. The side chains of the DDE catalytic triad (red sticks) and NTD-coordinated zinc atoms (grey spheres) are also shown. doi:10.1128/microbiolspec.MDNA3-0024-2014.f3

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Lentiviral integrase-LEDGF/p75 IBD structures. (A) X-ray crystal structure of the IBD (magenta cartoon)-HIV-1 integrase CCD/F185K (cyan/green dimer) complex (pdb code 2B4J) ( 69 ). Highlighted is the Asp366 side-chain from the upper IBD molecule (red stick) hydrogen bonding (dashed lines) to backbone amides of integrase residues within the linker between CCD α helices 4 and 5. The extent to which integrase CCD α4/5 connector regions contribute to forming analogous CCD-CCD dimer interface pockets at least in part accounts for the lentiviral specificity of the LEDGF/p75-integrase interaction ( 54 , 69 ). The Asp and Glu side chains of the catalytic DDE triad are also painted red. (B) The crystal structure of the HIV-2 integrase NTD-CCD–IBD complex highlights the electrostatic interaction between the integrase NTD and the second helix-hairpin-helix unit of the IBD (pdb code 3F9K, chains A, B, and C) ( 61 ). Salt bridges between IBD residue Arg405 and integrase residue Glu10 are indicated by dashed lines; IBD residue Asp366 is behind the green CCD, hidden from view. doi:10.1128/microbiolspec.MDNA3-0024-2014.f4

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

PFV intasome structures. (A) Structure containing 19 bp pre-cleaved U5 DNA end ( 94 , 207 ) (pdb code 3OY9). The inner integrase monomers of the tetramer, which contact the viral DNA, are painted cyan and green; the outer integrase molecules are yellow. The transferred DNA strands with CA 3′ ends are painted magenta whereas the non-transferred strands are orange. The large grey spheres are NTD-coordinated zinc; small grey spheres are Mn atoms coordinated by the DDE active site residues (red sticks) and viral DNA end. (B) Structure of the TCC ( 98 ) (pdb code 3OS1). Although a 30 bp target DNA (tDNA) was utilized during crystallization, only 18 bp (grey plus strand sequence GCACGTG\CTAGCACGTGC) was resolved in the electron density maps. doi:10.1128/microbiolspec.MDNA3-0024-2014.f5

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Structural basis of integrase 3′ processing and strand transfer activities. (A) Structure of the manganese-bound SSC (pdb code 4E7I). The DNA and integrase backbones are colored magenta and green, respectively; red and orange sticks are oxygen and phosphorus atoms, respectively. Gray and red spheres are manganese ions and water molecules, respectively, with the nucleophilic water labeled W. Black dashed lines indicate metal ion interactions; the red dashed line connects the nucleophile and scissile phosphodiester bond. (B) Overlay of metal ion-bound TCC (pdb code 4E7K; DNA and protein in green) and STC (pdb code 4E7L; elements painted in cyan) structures. Both sets of metal ions are shown; the 3.8 Å spacing between ions in the TCC contracts to 3.2 Å in the STC ( 85 ). The curved black line indicates the displacement of the viral-target DNA phosphodiester bond after strand transfer relative to the scissile bond in target DNA. Other labeling is the same as in panel A. doi:10.1128/microbiolspec.MDNA3-0024-2014.f6

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Chemical structures of INSTIs raltegravir (RAL), elvitegravir (EVG), and dolutegravir (DTG). doi:10.1128/microbiolspec.MDNA3-0024-2014.f7

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Click to view

FIGURE 8

Structural basis of INSTI mechanism of action. (A) The active site from pdb code 3OY9 highlights PFV integrase DDE residues, Mn ions A and B, and the 3′-OH of the terminal deoxyadenylate. (B) Structure of raltegravir (cyan)-bound integrase active site (pdb code 3OYA) highlighting positions of supplanted deoxyadenylate 3′-OH, magnesium ions (grey), and integrase residue Tyr212. (C) The integrase active site in the context of the PFV SSC highlights the position of the unprocessed AT dinucleotide. Additional panel A-C coloring: green, integrase; magenta, transferred DNA strand; orange, non-transferred strand. (D) Overlaid structures of the PFV SSC (pdb code 4E7I; integrase and viral DNA in green), TCC (pdb code 4E7K; integrase and target DNA in cyan and viral DNA in blue), and raltegravir-bound CI (pdb code 3OYA; raltegravir in magenta) highlights the common positioning of raltegravir oxygen atoms with strand transfer and 3′ processing attacking and leaving groups. Subscript numbers denote target DNA bases. tDNA, target DNA; vDNA, viral DNA. doi:10.1128/microbiolspec.MDNA3-0024-2014.f8

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.MDNA3-0024-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error