1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Adeno-associated Virus as a Mammalian DNA Vector

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Max Salganik1, Matthew L. Hirsch3, Richard Jude Samulski5
  • Editors: Mick Chandler7, Nancy Craig8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 2: Lineberger Comprehensive Cancer Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 3: Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 4: Department of Ophthalmology, Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 5: Gene Therapy Center, Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 6: Department of Pharmacology, University of North Carolina, Chapel Hill, NC; 7: Université Paul Sabatier, Toulouse, France; 8: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014
  • Received 19 August 2014 Accepted 02 February 2015 Published 02 July 2015
  • R.J. Samulski, rjs@med.unc.edu
image of Adeno-associated Virus as a Mammalian DNA Vector
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Adeno-associated Virus as a Mammalian DNA Vector, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/4/MDNA3-0052-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/4/MDNA3-0052-2014-2.gif
  • Abstract:

    In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells.

  • Citation: Salganik M, Hirsch M, Samulski R. 2015. Adeno-associated Virus as a Mammalian DNA Vector. Microbiol Spectrum 3(4):MDNA3-0052-2014. doi:10.1128/microbiolspec.MDNA3-0052-2014.

References

1. Atchison RW, Casto BC, Hammon WM. 1965. Adenovirus-associated defective virus particles. Science 149:754–756. [PubMed][CrossRef]
2. Rose JA, Berns KI, Hoggan MD, Koczot FJ. 1969. Evidence for a single-stranded adenovirus-associated virus genome: formation of a DNA density hybrid on release of viral DNA. Proc Natl Acad Sci USA 64:863–869. [PubMed][CrossRef]
3. Zhong L, Zhou X, Li Y, Qing K, Xiao X, Samulski RJ, Srivastava A. 2008. Single-polarity recombinant adeno-associated virus 2 vector-mediated transgene expression in vitro and in vivo : mechanism of transduction. Mol Ther 16:290–295. [PubMed][CrossRef]
4. Samulski RJ, Berns KI, Tan M, Muzyczka N. 1982. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc Natl Acad Sci USA 79:2077–2081. [PubMed][CrossRef]
5. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA, McLaughlin S, Muzyczka N, Rocchi M, Berns KI. 1990. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 87:2211–2215. [PubMed][CrossRef]
6. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA. 1991. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950. [PubMed]
7. Linden RM, Ward P, Giraud C, Winocour E, Berns KI. 1996. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 93:11288–11294. [PubMed][CrossRef]
8. Sonntag F, Schmidt K, Kleinschmidt JA. 2010. A viral assembly factor promotes AAV2 capsid formation in the nucleolus. Proc Natl Acad Sci USA 107:10220–10225. [PubMed][CrossRef]
9. Mitchell AM, Nicolson SC, Warischalk JK, Samulski RJ. 2010. AAV's anatomy: roadmap for optimizing vectors for translational success. Curr Gene Ther 10:319–340. [PubMed][CrossRef]
10. McCarty DM, Young SM, Samulski RJ. 2004. Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845. [PubMed][CrossRef]
11. Young SM, Mccarty DM, Degtyareva N, Samulski RJ. 2000. Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 74:3953–3966. [PubMed][CrossRef]
12. Kern A, Schmidt K, Leder C, Müller OJ, Wobus CE, Bettinger K, Lieth Von der CW, King JA, Kleinschmidt JA. 2003. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 77:11072–11081. [PubMed][CrossRef]
13. Opie SR, Warrington KH, Agbandje-McKenna M, Zolotukhin S, Muzyczka N. 2003. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J Virol 77:6995–7006. [PubMed][CrossRef]
14. Gurda BL, Raupp C, Popa-Wagner R, Naumer M, Olson NH, Ng R, McKenna R, Baker TS, Kleinschmidt JA, Agbandje-McKenna M. 2012. Mapping a neutralizing epitope onto the capsid of adeno-associated virus serotype 8. J Virol 86:7739–7751. [PubMed][CrossRef]
15. Gurda BL, Dimattia MA, Miller EB, Bennett A, McKenna R, Weichert WS, Nelson CD, Chen W-J, Muzyczka N, Olson NH, Sinkovits RS, Chiorini JA, Zolotutkhin S, Kozyreva OG, Samulski RJ, Baker TS, Parrish CR, Agbandje-McKenna M. 2013. Capsid antibodies to different adeno-associated virus serotypes bind common regions. J Virol 87:9111–9124. [PubMed][CrossRef]
16. Bleker S, Sonntag F, Kleinschmidt JA. 2005. Mutational analysis of narrow pores at the fivefold symmetry axes of adeno-associated virus type 2 capsids reveals a dual role in genome packaging and activation of phospholipase A2 activity. J Virol 79:2528–2540. [PubMed][CrossRef]
17. Kronenberg S, Böttcher B, Lieth von der CW, Bleker S, Kleinschmidt JA. 2005. A conformational change in the adeno-associated virus type 2 capsid leads to the exposure of hidden VP1 N termini. J Virol 79:5296–5303. [PubMed][CrossRef]
18. Muzyczka N. 1992. Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158:97–129. [PubMed][CrossRef]
19. Buller RM, Rose JA. 1978. Characterization of adenovirus-associated virus-induced polypeptides in KB cells. J Virol 25:331–338. [PubMed]
20. Wistuba A, Kern A, Weger S, Grimm D, Kleinschmidt JA. 1997. Subcellular compartmentalization of adeno-associated virus type 2 assembly. J Virol 71:1341–1352. [PubMed]
21. Rolling F, Samulski RJ. 1995. AAV as a viral vector for human gene therapy. Generation of recombinant virus. Mol Biotechnol 3:9–15. [PubMed][CrossRef]
22. Warrington KH, Gorbatyuk OS, Harrison JK, Opie SR, Zolotukhin S, Muzyczka N. 2004. Adeno-associated virus type 2 VP2 capsid protein is nonessential and can tolerate large peptide insertions at its N terminus. J Virol 78:6595–6609. [PubMed][CrossRef]
23. Gao G, Vandenberghe LH, Wilson JM. 2005. New recombinant serotypes of AAV vectors. Curr Gene Ther 5:285–297. [PubMed][CrossRef]
24. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS. 2002. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci USA 99:10405–10410. [PubMed][CrossRef]
25. DiMattia M, Govindasamy L, Levy HC, Gurda-Whitaker B, Kalina A, Kohlbrenner E, Chiorini JA, McKenna R, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. 2005. Production, purification, crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 5. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:917–921. [PubMed][CrossRef]
26. Xie Q, Ongley HM, Hare J, Chapman MS. 2008. Crystallization and preliminary X-ray structural studies of adeno-associated virus serotype 6. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1074–1078. [PubMed][CrossRef]
27. Padron E, Bowman V, Kaludov N, Govindasamy L, Levy H, Nick P, McKenna R, Muzyczka N, Chiorini JA, Baker TS, Agbandje-McKenna M. 2005. Structure of adeno-associated virus type 4. J Virol 79:5047–5058. [PubMed][CrossRef]
28. Kaludov N, Padron E, Govindasamy L, McKenna R, Chiorini JA, Agbandje-McKenna M. 2003. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 4. Virology 306:1–6. [PubMed][CrossRef]
29. Nam H-J, Lane MD, Padron E, Gurda B, McKenna R, Kohlbrenner E, Aslanidi G, Byrne B, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. 2007. Structure of adeno-associated virus serotype 8, a gene therapy vector. J Virol 81:12260–12271. [PubMed][CrossRef]
30. Lerch TF, Xie Q, Ongley HM, Hare J, Chapman MS. 2009. Twinned crystals of adeno-associated virus serotype 3b prove suitable for structural studies. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:177–183. [PubMed][CrossRef]
31. Mitchell M, Nam H-J, Carter A, McCall A, Rence C, Bennett A, Gurda B, McKenna R, Porter M, Sakai Y, Byrne BJ, Muzyczka N, Aslanidi G, Zolotukhin S, Agbandje-McKenna M. 2009. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9. Acta Crystallogr Sect F Struct Biol Cryst Commun 65:715–718. [PubMed][CrossRef]
32. Miller EB, Gurda-Whitaker B, Govindasamy L, McKenna R, Zolotukhin S, Muzyczka N, Agbandje-McKenna M. 2006. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:1271–1274. [PubMed][CrossRef]
33. Quesada O, Gurda B, Govindasamy L, McKenna R, Kohlbrenner E, Aslanidi G, Zolotukhin S, Muzyczka N, Agbandje-McKenna M. 2007. Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 7. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:1073–1076. [PubMed][CrossRef]
34. Lane MD, Nam H-J, Padron E, Gurda-Whitaker B, Kohlbrenner E, Aslanidi G, Byrne B, McKenna R, Muzyczka N, Zolotukhin S, Agbandje-McKenna M. 2005. Production, purification, crystallization and preliminary X-ray analysis of adeno-associated virus serotype 8. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:558–561. [PubMed][CrossRef]
35. Govindasamy L, Padron E, McKenna R, Muzyczka N, Kaludov N, Chiorini JA, Agbandje-McKenna M. 2006. Structurally mapping the diverse phenotype of adeno-associated virus serotype 4. J Virol 80:11556–11570. [PubMed][CrossRef]
36. Walters RW, Agbandje-McKenna M, Bowman VD, Moninger TO, Olson NH, Seiler M, Chiorini JA, Baker TS, Zabner J. 2004. Structure of adeno-associated virus serotype 5. J Virol 78:3361–3371. [PubMed][CrossRef]
37. O'Donnell J, Taylor KA, Chapman MS. 2009. Adeno-associated virus-2 and its primary cellular receptor--Cryo-EM structure of a heparin complex. Virology 385:434–443. [PubMed][CrossRef]
38. Levy HC, Bowman VD, Govindasamy L, McKenna R, Nash K, Warrington K, Chen W, Muzyczka N, Yan X, Baker TS, Agbandje-McKenna M. 2009. Heparin binding induces conformational changes in Adeno-associated virus serotype 2. J Struct Biol 165:146–156. [PubMed][CrossRef]
39. Lerch TF, Xie Q, Chapman MS. 2010. The structure of adeno-associated virus serotype 3B (AAV-3B): insights into receptor binding and immune evasion. Virology 403:26–36. [PubMed][CrossRef]
40. Ng R, Govindasamy L, Gurda BL, McKenna R, Kozyreva OG, Samulski RJ, Parent KN, Baker TS, Agbandje-McKenna M. 2010. Structural characterization of the dual glycan binding adeno-associated virus serotype 6. J Virol 84:12945–12957. [PubMed][CrossRef]
41. Rabinowitz JE, Bowles DE, Faust SM, Ledford JG, Cunningham SE, Samulski RJ. 2004. Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups. J Virol 78:4421–4432. [PubMed][CrossRef]
42. Wobus CE, Hügle-Dörr B, Girod A, Petersen G, Hallek M, Kleinschmidt JA. 2000. Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection. J Virol 74:9281–9293. [PubMed][CrossRef]
43. Horowitz ED, Rahman KS, Bower BD, Dismuke DJ, Falvo MR, Griffith JD, Harvey SC, Asokan A. 2013. Biophysical and ultrastructural characterization of adeno-associated virus capsid uncoating and genome release. J Virol 87:2994–3002. [PubMed][CrossRef]
44. Cavalier-Smith T. 1974. Palindromic base sequences and replication of eukaryote chromosome ends. Nature 250:467–470. [PubMed][CrossRef]
45. Snyder RO, Im DS, Ni T, Xiao X, Samulski RJ, Muzyczka N. 1993. Features of the adeno-associated virus origin involved in substrate recognition by the viral Rep protein. J Virol 67:6096–6104. [PubMed]
46. Chiorini JA, Wiener SM, Owens RA, Kyöstiö SR, Kotin RM, Safer B. 1994. Sequence requirements for stable binding and function of Rep68 on the adeno-associated virus type 2 inverted terminal repeats. J Virol 68:7448–7457. [PubMed]
47. Mccarty DM, Pereira DJ, Zolotukhin I, Zhou X, Ryan JH, Muzyczka N. 1994. Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein. J Virol 68:4988–4997. [PubMed]
48. Mccarty DM, Ryan JH, Zolotukhin S, Zhou X, Muzyczka N. 1994. Interaction of the adeno-associated virus Rep protein with a sequence within the A palindrome of the viral terminal repeat. J Virol 68:4998–5006. [PubMed]
49. Weitzman MD, Kyöstiö SR, Kotin RM, Owens RA. 1994. Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 91:5808–5812. [PubMed][CrossRef]
50. Straus SE, Sebring ED, Rose JA. 1976. Concatemers of alternating plus and minus strands are intermediates in adenovirus-associated virus DNA synthesis. Proc Natl Acad Sci USA 73:742–746. [PubMed][CrossRef]
51. Lusby E, Bohenzky R, Berns KI. 1981. Inverted terminal repetition in adeno-associated virus DNA: independence of the orientation at either end of the genome. J Virol 37:1083–1086. [PubMed]
52. Snyder RO, Im DS, Muzyczka N. 1990. Evidence for covalent attachment of the adeno-associated virus (AAV) rep protein to the ends of the AAV genome. J Virol 64:6204–6213. [PubMed]
53. Im DS, Muzyczka N. 1989. Factors that bind to adeno-associated virus terminal repeats. J Virol 63:3095–3104. [PubMed]
54. Im DS, Muzyczka N. 1990. The AAV origin binding protein Rep68 is an ATP-dependent site-specific endonuclease with DNA helicase activity. Cell 61:447–457. [PubMed][CrossRef]
55. Owens RA, Weitzman MD, Kyöstiö SR, Carter BJ. 1993. Identification of a DNA-binding domain in the amino terminus of adeno-associated virus Rep proteins. J Virol 67:997–1005. [PubMed]
56. Chiorini JA, Weitzman MD, Owens RA, Urcelay E, Safer B, Kotin RM. 1994. Biologically active Rep proteins of adeno-associated virus type 2 produced as fusion proteins in Escherichia coli. J Virol 68:797–804. [PubMed]
57. Brister JR, Muzyczka N. 1999. Rep-mediated nicking of the adeno-associated virus origin requires two biochemical activities, DNA helicase activity and transesterification. J Virol 73:9325–9336. [PubMed]
58. Wonderling RS, Kyöstiö SR, Owens RA. 1995. A maltose-binding protein/adeno-associated virus Rep68 fusion protein has DNA–RNA helicase and ATPase activities. J Virol 69:3542–3548. [PubMed]
59. Snyder RO, Samulski RJ, Muzyczka N. 1990. In vitro resolution of covalently joined AAV chromosome ends. Cell 60:105–113. [PubMed][CrossRef]
60. Naumer M, Sonntag F, Schmidt K, Nieto K, Panke C, Davey NE, Popa-Wagner R, Kleinschmidt JA. 2012. Properties of the adeno-associated virus assembly-activating protein. J Virol 86:13038–13048. [PubMed][CrossRef]
61. Hermonat PL, Labow MA, Wright R, Berns KI, Muzyczka N. 1984. Genetics of adeno-associated virus: isolation and preliminary characterization of adeno-associated virus type 2 mutants. J Virol 51:329–339. [PubMed]
62. Samulski RJ, Chang LS, Shenk T. 1989. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 63:3822–3828. [PubMed]
63. Ferrari FK, Xiao X, McCarty D, Samulski RJ. 1997. New developments in the generation of Ad-free, high-titer rAAV gene therapy vectors. Nat Med 3:1295–1297. [PubMed][CrossRef]
64. Grieger JC, Samulski RJ. 2012. Adeno-associated virus vectorology, manufacturing, and clinical applications. Meth Enzymol 507:229–254. [PubMed][CrossRef]
65. Fisher KJ, Gao GP, Weitzman MD, DeMatteo R, Burda JF, Wilson JM. 1996. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 70:520–532. [PubMed]
66. Ferrari FK, Samulski T, Shenk T, Samulski RJ. 1996. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70:3227–3234. [PubMed]
67. Jooss K, Yang Y, Fisher KJ, Wilson JM. 1998. Transduction of dendritic cells by DNA viral vectors directs the immune response to transgene products in muscle fibers. J Virol 72:4212–4223. [PubMed]
68. Thomas CE, Storm TA, Huang Z, Kay MA. 2004. Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 78:3110–3122. [PubMed][CrossRef]
69. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ. 2006. Alpha2,3 and alpha2,6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 80:9093–9103. [PubMed][CrossRef]
70. Summerford C, Samulski RJ. 1998. Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445. [PubMed]
71. Kaludov N, Brown KE, Walters RW, Zabner J, Chiorini JA. 2001. Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J Virol 75:6884–6893. [PubMed][CrossRef]
72. Walters RW, Yi SM, Keshavjee S, Brown KE, Welsh MJ, Chiorini JA, Zabner J. 2001. Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276:20610–20616. [PubMed][CrossRef]
73. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A. 2011. Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 286:13532–13540. [PubMed][CrossRef]
74. Müller OJ, Leuchs B, Pleger ST, Grimm D, Franz W-M, Katus HA, Kleinschmidt JA. 2006. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 70:70–78. [PubMed][CrossRef]
75. Asokan A, Conway JC, Phillips JL, Li C, Hegge J, Sinnott R, Yadav S, DiPrimio N, Nam H-J, Agbandje-McKenna M, McPhee S, Wolff J, Samulski RJ. 2010. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat Biotechnol 28:79–82. [PubMed][CrossRef]
76. Shen S, Horowitz ED, Troupes AN, Brown SM, Pulicherla N, Samulski RJ, Agbandje-McKenna M, Asokan A. 2013. Engraftment of a galactose receptor footprint onto adeno-associated viral capsids improves transduction efficiency. J Biol Chem 288:28814–28823. [PubMed][CrossRef]
77. Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, Deléage G, Hallek M. 1999. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nat Med 5:1052–1056. [PubMed][CrossRef]
78. Yang Q, Mamounas M, Yu G, Kennedy S, Leaker B, Merson J, Wong-Staal F, Yu M, Barber JR. 1998. Development of novel cell surface CD34-targeted recombinant adenoassociated virus vectors for gene therapy. Human Gene Ther 9:1929–1937. [PubMed][CrossRef]
79. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R, Weitzman MD. 2001. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 3:964–975. [PubMed][CrossRef]
80. Loiler SA, Conlon TJ, Song S, Tang Q, Warrington KH, Agarwal A, Kapturczak M, Li C, Ricordi C, Atkinson MA, Muzyczka N, Flotte TR. 2003. Targeting recombinant adeno-associated virus vectors to enhance gene transfer to pancreatic islets and liver. Gene Ther 10:1551–1558. [PubMed][CrossRef]
81. Rabinowitz JE, Xiao W, Samulski RJ. 1999. Insertional mutagenesis of AAV2 capsid and the production of recombinant virus. Virology 265:274–285. [PubMed][CrossRef]
82. Shi W, Arnold GS, Bartlett JS. 2001. Insertional mutagenesis of the adeno-associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors. Hum Gene Ther 12:1697–1711. [PubMed][CrossRef]
83. Müller OJ, Kaul F, Weitzman MD, Pasqualini R, Arap W, Kleinschmidt JA, Trepel M. 2003. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 21:1040–1046. [PubMed][CrossRef]
84. Judd J, Wei F, Nguyen PQ, Tartaglia LJ, Agbandje-McKenna M, Silberg JJ, Suh J. 2012. Random insertion of mCherry into VP3 domain of adeno-associated virus yields fluorescent capsids with no loss of infectivity. Mol Ther Nucleic Acids 1:e54. [PubMed][CrossRef]
85. Nam H-J, Gurda BL, McKenna R, Potter M, Byrne B, Salganik M, Muzyczka N, Agbandje-McKenna M. 2011. Structural studies of adeno-associated virus serotype 8 capsid transitions associated with endosomal trafficking. J Virol 85:11791–11799. [PubMed][CrossRef]
86. Salganik M, Venkatakrishnan B, Bennett A, Lins B, Yarbrough J, Muzyczka N, Agbandje-McKenna M, McKenna R. 2012. Evidence for pH-dependent protease activity in the adeno-associated virus capsid. J Virol 86:11877–11885. [PubMed][CrossRef]
87. Münch RC, Janicki H, Völker I, Rasbach A, Hallek M, Büning H, Buchholz CJ. 2013. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther 21:109–118. [PubMed][CrossRef]
88. Sonntag F, Bleker S, Leuchs B, Fischer R, Kleinschmidt JA. 2006. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J Virol 80:11040–11054. [PubMed][CrossRef]
89. White AF, Mazur M, Sorscher EJ, Zinn KR, Ponnazhagan S. 2008. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells. Hum Gene Ther 19:1407–1414. [PubMed][CrossRef]
90. Nicklin SA, Buening H, Dishart KL, de Alwis M, Girod A, Hacker U, Thrasher AJ, Ali RR, Hallek M, Baker AH. 2001. Efficient and selective AAV2-mediated gene transfer directed to human vascular endothelial cells. Mol Ther 4:174–181. [PubMed][CrossRef]
91. White SJ, Nicklin SA, Büning H, Brosnan MJ, Leike K, Papadakis ED, Hallek M, Baker AH. 2004. Targeted gene delivery to vascular tissue in vivo by tropism-modified adeno-associated virus vectors. Circulation 109:513–519. [PubMed][CrossRef]
92. Work LM, Büning H, Hunt E, Nicklin SA, Denby L, Britton N, Leike K, Odenthal M, Drebber U, Hallek M, Baker AH. 2006. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol Ther 13:683–693. [PubMed][CrossRef]
93. Yu C-Y, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X. 2009. A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16:953–962. [PubMed][CrossRef]
94. Girod A, Wobus CE, Zádori Z, Ried M, Leike K, Tijssen P, Kleinschmidt JA, Hallek M. 2002. The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity. J Gen Virol 83:973–978. [PubMed]
95. Perabo L, Büning H, Kofler DM, Ried MU, Girod A, Wendtner CM, Enssle J, Hallek M. 2003. In vitro selection of viral vectors with modified tropism: the adeno-associated virus display. Mol Ther 8:151–157. [PubMed][CrossRef]
96. Waterkamp DA, Müller OJ, Ying Y, Trepel M, Kleinschmidt JA. 2006. Isolation of targeted AAV2 vectors from novel virus display libraries. J Gene Med 8:1307–1319. [PubMed][CrossRef]
97. Michelfelder S, Lee M-K, deLima-Hahn E, Wilmes T, Kaul F, Müller O, Kleinschmidt JA, Trepel M. 2007. Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 35:1766–1776. [PubMed][CrossRef]
98. Michelfelder S, Kohlschütter J, Skorupa A, Pfennings S, Müller O, Kleinschmidt JA, Trepel M. 2009. Successful expansion but not complete restriction of tropism of adeno-associated virus by in vivo biopanning of random virus display peptide libraries. PLoS ONE 4:e5122. [PubMed][CrossRef]
99. Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, Kay MA. 2008. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82:5887–5911. [PubMed][CrossRef]
100. Popa-Wagner R, Porwal M, Kann M, Reuss M, Weimer M, Florin L, Kleinschmidt JA. 2012. Impact of VP1-specific protein sequence motifs on adeno-associated virus type 2 intracellular trafficking and nuclear entry. J Virol 86:9163–9174. [PubMed][CrossRef]
101. Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. 2006. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24:198–204. [PubMed][CrossRef]
102. Perabo L, Endell J, King S, Lux K, Goldnau D, Hallek M, Büning H. 2006. Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus. J Gene Med 8:155–162. [PubMed][CrossRef]
103. Grieger JC, Snowdy S, Samulski RJ. 2006. Separate basic region motifs within the adeno-associated virus capsid proteins are essential for infectivity and assembly. J Virol 80:5199–5210. [PubMed][CrossRef]
104. Johnson JS, Li C, DiPrimio N, Weinberg MS, McCown TJ, Samulski RJ. 2010. Mutagenesis of adeno-associated virus type 2 capsid protein VP1 uncovers new roles for basic amino acids in trafficking and cell-specific transduction. J Virol 84:8888–8902. [PubMed][CrossRef]
105. Li W, Asokan A, Wu Z, Van Dyke T, DiPrimio N, Johnson JS, Govindaswamy L, Agbandje-McKenna M, Leichtle S, Redmond DE, McCown TJ, Petermann KB, Sharpless NE, Samulski RJ. 2008. Engineering and selection of shuffled AAV genomes: a new strategy for producing targeted biological nanoparticles. Mol Ther 6:1252–1260. [PubMed][CrossRef]
106. Maguire CA, Gianni D, Meijer DH, Shaket LA, Wakimoto H, Rabkin SD, Gao G, Sena-Esteves M. 2010. Directed evolution of adeno-associated virus for glioma cell transduction. J Neurooncol 96:337–347. [PubMed][CrossRef]
107. Ward P, Walsh CE. 2009. Chimeric AAV Cap sequences alter gene transduction. Virology 386:237–248. [PubMed][CrossRef]
108. Farr GA, Zhang L-G, Tattersall P. 2005. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc Natl Acad Sci USA 102:17148–17153. [PubMed][CrossRef]
109. Yang L, Jiang J, Drouin LM, Agbandje-McKenna M, Chen C, Qiao C, Pu D, Hu X, Wang D-Z, Li J, Xiao X. 2009. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci USA 106:3946–3951. [PubMed][CrossRef]
110. Mani B, Baltzer C, Valle N, Almendral JM, Kempf C, Ros C. 2006. Low pH-dependent endosomal processing of the incoming parvovirus minute virus of mice virion leads to externalization of the VP1 N-terminal sequence (N-VP1), N-VP2 cleavage, and uncoating of the full-length genome. J Virol 80:1015–1024. [PubMed][CrossRef]
111. Gray SJ, Blake BL, Criswell HE, Nicolson SC, Samulski RJ, McCown TJ, Li W. 2010. Directed evolution of a novel adeno-associated virus (AAV) vector that crosses the seizure-compromised blood-brain barrier (BBB). Mol Ther 18:570–578. [PubMed][CrossRef]
112. Cohen S, Marr AK, Garcin P, Panté N. 2011. Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle. J Virol 85:4863–4874. [PubMed][CrossRef]
113. Lisowski L, Dane AP, Chu K, Zhang Y, Cunningham SC, Wilson EM, Nygaard S, Grompe M, Alexander IE, Kay MA. 2013. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506(7488):382–366. [PubMed][CrossRef]
114. Xiao P-J, Samulski RJ. 2012. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J Virol 86:10462–10473. [PubMed][CrossRef]
115. Duan D, Li Q, Kao AW, Yue Y, Pessin JE, Engelhardt JF. 1999. Dynamin is required for recombinant adeno-associated virus type 2 infection. J Virol 73:10371–10376. [PubMed]
116. Bartlett JS, Wilcher R, Samulski RJ. 2000. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 74:2777–2785. [PubMed][CrossRef]
117. Uhrig S, Coutelle O, Wiehe T, Perabo L, Hallek M, Büning H. 2012. Successful target cell transduction of capsid-engineered rAAV vectors requires clathrin-dependent endocytosis. Gene Ther 19:210–218. [PubMed][CrossRef]
118. Liu Y, Joo K-I, Wang P. 2012. Endocytic processing of adeno-associated virus type 8 vectors for transduction of target cells. Gene Ther 20:308–317. [PubMed][CrossRef]
119. Zhong L, Li B, Jayandharan G, Mah CS, Govindasamy L, Agbandje-McKenna M, Herzog RW, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A. 2008. Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression. Virology 381:194–202. [PubMed][CrossRef]
120. Bantel-Schaal U, Braspenning-Wesch I, Kartenbeck J. 2009. Adeno-associated virus type 5 exploits two different entry pathways in human embryo fibroblasts. J Gen Virol 90:317–322. [PubMed][CrossRef]
121. Douar AM, Poulard K, Stockholm D, Danos O. 2001. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 75:1824–1833. [PubMed][CrossRef]
122. Nonnenmacher M, Weber T. 2011. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 10:563–576. [PubMed][CrossRef]
123. Zhong L, Li B, Mah CS, Govindasamy L, Agbandje-McKenna M, Cooper M, Herzog RW, Zolotukhin I, Warrington KH, Weigel-Van Aken KA, Hobbs JA, Zolotukhin S, Muzyczka N, Srivastava A. 2008. Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci USA 105:7827–7832. [PubMed][CrossRef]
124. Nicolson SC, Samulski RJ. 2014. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus. J Virol 88:4132–4144. [PubMed][CrossRef]
125. Johnson JS, Samulski RJ. 2009. Enhancement of adeno-associated virus infection by mobilizing capsids into and out of the nucleolus. J Virol 83:2632–2644. [PubMed][CrossRef]
126. Salganik M, Aydemir F, Nam H-J, McKenna R, Agbandje-McKenna M, Muzyczka N. 2014. Adeno-associated virus capsid proteins may play a role in transcription and second-strand synthesis of recombinant genomes. J Virol 88:1071–1079. [PubMed][CrossRef]
127. Ding W, Zhang LN, Yeaman C, Engelhardt JF. 2006. rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther 13:671–682. [PubMed][CrossRef]
128. Cervelli T, Palacios JA, Zentilin L, Mano M, Schwartz RA, Weitzman MD, Giacca M. 2008. Processing of recombinant AAV genomes occurs in specific nuclear structures that overlap with foci of DNA-damage-response proteins. J Cell Sci 121:349–357. [PubMed][CrossRef]
129. Hauck B, Zhao W, High K, Xiao W. 2004. Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction. J Virol 78:13678–13686. [PubMed][CrossRef]
130. Samulski RJ, Srivastava A, Berns KI, Muzyczka N. 1983. Rescue of adeno-associated virus from recombinant plasmids: gene correction within the terminal repeats of AAV. Cell 33:135–143. [PubMed][CrossRef]
131. Hauswirth WW, Berns KI. 1979. Adeno-associated virus DNA replication: nonunit-length molecules. Virology 93:57–68. [PubMed][CrossRef]
132. Ni TH, McDonald WF, Zolotukhin I, Melendy T, Waga S, Stillman B, Muzyczka N. 1998. Cellular proteins required for adeno-associated virus DNA replication in the absence of adenovirus coinfection. J Virol 72:2777–2787. [PubMed]
133. Nash K, Chen W, McDonald WF, Zhou X, Muzyczka N. 2007. Purification of host cell enzymes involved in adeno-associated virus DNA replication. J Virol 81:5777–5787. [PubMed][CrossRef]
134. Nakai H, Storm TA, Kay MA. 2000. Recruitment of single-stranded recombinant adeno-associated virus vector genomes and intermolecular recombination are responsible for stable transduction of liver in vivo. J Virol 74:9451–9463. [PubMed][CrossRef]
135. Choi VW, McCarty DM, Samulski RJ. 2006. Host cell DNA repair pathways in adeno-associated viral genome processing. J Virol 80:10346–10356. [PubMed][CrossRef]
136. Song S, Laipis PJ, Berns KI, Flotte TR. 2001. Effect of DNA-dependent protein kinase on the molecular fate of the rAAV2 genome in skeletal muscle. Proc Natl Acad Sci USA 98:4084–4088. [PubMed][CrossRef]
137. Inagaki K, Ma C, Storm TA, Kay MA, Nakai H. 2007. The role of DNA-PKcs and artemis in opening viral DNA hairpin termini in various tissues in mice. J Virol 81:11304–11321. [PubMed][CrossRef]
138. Duan D, Sharma P, Yang J, Yue Y, Dudus L, Zhang Y, Fisher KJ, Engelhardt JF. 1998. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 72:8568–8577. [PubMed]
139. Xiao X, Li J, Samulski RJ. 1996. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 70:8098–8108. [PubMed]
140. Sanlioglu S, Duan D, Engelhardt JF. 1999. Two independent molecular pathways for recombinant adeno-associated virus genome conversion occur after UV-C and E4orf6 augmentation of transduction. Hum Gene Ther 10:591–602. [PubMed][CrossRef]
141. Zentilin L, Marcello A, Giacca M. 2001. Involvement of cellular double-stranded DNA break binding proteins in processing of the recombinant adeno-associated virus genome. J Virol 75:12279–12287. [PubMed][CrossRef]
142. Russell DW, Alexander IE, Miller AD. 1995. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci USA 92:5719–5723. [PubMed][CrossRef]
143. Miller JL, Donahue RE, Sellers SE, Samulski RJ, Young NS, Nienhuis AW. 1994. Recombinant adeno-associated virus (rAAV)-mediated expression of a human gamma-globin gene in human progenitor-derived erythroid cells. Proc Natl Acad Sci USA 91:10183–10187. [PubMed][CrossRef]
144. Li C, He Y, Nicolson S, Hirsch M, Weinberg MS, Zhang P, Kafri T, Samulski RJ. 2013. Adeno-associated virus capsid antigen presentation is dependent on endosomal escape. J Clin Invest 123:1390–1401. [PubMed][CrossRef]
145. Schwartz RA, Palacios JA, Cassell GD, Adam S, Giacca M, Weitzman MD. 2007. The Mre11/Rad50/Nbs1 complex limits adeno-associated virus transduction and replication. J Virol 81:12936–12945. [PubMed][CrossRef]
146. Lovric J, Mano M, Zentilin L, Eulalio A, Zacchigna S, Giacca M. 2012. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins. Mol Ther 20:2087–2097. [PubMed][CrossRef]
147. Rahman SH, Bobis-Wozowicz S, Chatterjee D, Gellhaus K, Pars K, Heilbronn R, Jacobs R, Cathomen T. 2013. The nontoxic cell cycle modulator indirubin augments transduction of adeno-associated viral vectors and zinc-finger nuclease-mediated gene targeting. Hum Gene Ther 24:67–77. [PubMed][CrossRef]
148. Raj K, Ogston P, Beard P. 2001. Virus-mediated killing of cells that lack p53 activity. Nature 412:914–917. [PubMed][CrossRef]
149. Winocour E, Callaham MF, Huberman E. 1988. Perturbation of the cell cycle by adeno-associated virus. Virology 167:393–399. [PubMed][CrossRef]
150. Fragkos M, Beard P. 2011. Mitotic catastrophe occurs in the absence of apoptosis in p53-null cells with a defective G1 checkpoint. PLoS ONE 6:e22946. [PubMed][CrossRef]
151. Hirsch ML, Fagan BM, Dumitru R, Bower JJ, Yadav S, Porteus MH, Pevny LH, Samulski RJ. 2011. Viral single-strand DNA induces p53-dependent apoptosis in human embryonic stem cells. PLoS ONE 6:e27520. [PubMed][CrossRef]
152. Fragkos M, Jurvansuu J, Beard P. 2009. H2AX is required for cell cycle arrest via the p53/p21 pathway. Mol Cell Biol 29:2828–2840. [PubMed][CrossRef]
153. Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA. 1998. The kinetics of rAAV integration in the liver. Nat Genet 19:13–15. [PubMed][CrossRef]
154. Yang CC, Xiao X, Zhu X, Ansardi DC, Epstein ND, Frey MR, Matera AG, Samulski RJ. 1997. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 71:9231–9247. [PubMed]
155. Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW. 2005. Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 79:11434–11442. [PubMed][CrossRef]
156. Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA. 2005. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614. [PubMed][CrossRef]
157. Flotte TR, Afione SA, Zeitlin PL. 1994. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol 11:517–521. [PubMed][CrossRef]
158. Hirata RK, Russell DW. 2000. Design and packaging of adeno-associated virus gene targeting vectors. J Virol 74:4612–4620. [PubMed][CrossRef]
159. Miller DG, Petek LM, Russell DW. 2004. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet 36:767–773. [PubMed][CrossRef]
160. Nakai H, Montini E, Fuess S, Storm TA, Grompe M, Kay MA. 2003. AAV serotype 2 vectors preferentially integrate into active genes in mice. Nat Genet 34:297–302. [PubMed][CrossRef]
161. Mccarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ. 2003. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10:2112–2118. [PubMed][CrossRef]
162. Xiao X, Xiao W, Li J, Samulski RJ. 1997. A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J Virol 71:941–948. [PubMed]
163. McCarty DM. 2008. Self-complementary AAV vectors; advances and applications. Mol Ther 16:1648–1656. [PubMed][CrossRef]
164. Hirsch ML, Agbandje-McKenna M, Samulski RJ. 2010. Little vector, big gene transduction: fragmented genome reassembly of adeno-associated virus. Mol Ther 18:6–8. [PubMed][CrossRef]
165. Lai Y, Zhao J, Yue Y, Wasala NB, Duan D. 2014. Partial restoration of cardiac function with ΔPDZ nNOS in aged mdx model of Duchenne cardiomyopathy. Hum Mol Genet 23:3189–3199. [PubMed][CrossRef]
166. Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE. 2014. Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Meth 25:166–177. [PubMed][CrossRef]
167. Hirsch ML, Li C, Bellon I, Yin C, Chavala S, Pryadkina M, Richard I, Samulski RJ. 2013. Oversized AAV transductifon is mediated via a DNA-PKcs-independent, Rad51C-dependent repair pathway. Mol Ther 21:2205–2216. [PubMed][CrossRef]
168. Russell DW, Hirata RK. 1998. Human gene targeting by viral vectors. Nat Genet 18:325–330. [PubMed][CrossRef]
169. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS. 1985. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234. [PubMed][CrossRef]
170. Thomas KR, Capecchi MR. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512. [PubMed][CrossRef]
171. Russell DW, Hirata RK. 2008. Human gene targeting favors insertions over deletions. Hum Gene Ther 19:907–914. [CrossRef]
172. Vasileva A, Linden RM, Jessberger R. 2006. Homologous recombination is required for AAV-mediated gene targeting. Nucleic Acids Res 34:3345–3360. [PubMed][CrossRef]
173. Trobridge G, Hirata RK, Russell DW. 2005. Gene targeting by adeno-associated virus vectors is cell-cycle dependent. Hum Gene Ther 16:522–526. [PubMed][CrossRef]
174. Paulk NK, Wursthorn K, Wang Z, Finegold MJ, Kay MA, Grompe M. 2010. Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology 51:1200–1208. [PubMed][CrossRef]
175. Petek LM, Fleckman P, Miller DG. 2010. Efficient KRT14 targeting and functional characterization of transplanted human keratinocytes for the treatment of epidermolysis bullosa simplex. Mol Ther 18:1624–1632. [PubMed][CrossRef]
176. Paulk NK, Wursthorn K, Haft A, Pelz C, Clarke G, Newell AH, Olson SB, Harding CO, Finegold MJ, Bateman RL, Witte JF, McClard R, Grompe M. 2012. In vivo selection of transplanted hepatocytes by pharmacological inhibition of fumarylacetoacetate hydrolase in wild-type mice. Mol Ther 20:1981–1987. [PubMed][CrossRef]
177. Mueller C, Flotte TR. 2008. Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863. [PubMed][CrossRef]
178. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ. 2002. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801. [PubMed][CrossRef]
179. Ellis BL, Hirsch ML, Barker JC, Connelly JP, Steininger RJ, Porteus MH. 2013. A survey of ex vivo/in vitro transduction efficiency of mammalian primary cells and cell lines with nine natural adeno-associated virus (AAV1-9) and one engineered adeno-associated virus serotype. Virol J 10:74. [PubMed][CrossRef]
180. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. 2008. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080. [PubMed][CrossRef]
181. Podsakoff G, Wong KK, Chatterjee S. 1994. Efficient gene transfer into nondividing cells by adeno-associated virus-based vectors. J Virol 68:5656–5666. [PubMed]
182. Berns KI, Pinkerton TC, Thomas GF, Hoggan MD. 1975. Detection of adeno-associated virus (AAV)-specific nucleotide sequences in DNA isolated from latently infected Detroit 6 cells. Virology 68:556–560. [PubMed][CrossRef]
183. Tenenbaum L, Lehtonen E, Monahan PE. 2003. Evaluation of risks related to the use of adeno-associated virus-based vectors. Curr Gene Ther 3:545–565. [PubMed][CrossRef]
184. Nathwani AC, Tuddenham EGD, Rangarajan S, Rosales C, McIntosh J, Linch DC, Chowdary P, Riddell A, Pie AJ, Harrington C, O'Beirne J, Smith K, Pasi J, Glader B, Rustagi P, Ng CYC, Kay MA, Zhou J, Spence Y, Morton CL, Allay J, Coleman J, Sleep S, Cunningham JM, Srivastava D, Basner-Tschakarjan E, Mingozzi F, High KA, Gray JT, Reiss UM, Nienhuis AW, Davidoff AM. 2011. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365. [PubMed][CrossRef]
185. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Rasko J, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M, Kaye R, Razavi M, Zajko A, Zehnder J, Rustagi PK, Nakai H, Chew A, Leonard D, Wright JF, Lessard RR, Sommer JM, Tigges M, Sabatino D, Luk A, Jiang H, Mingozzi F, Couto L, Ertl HC, High KA, Kay MA. 2006. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 12:342–347. [PubMed][CrossRef]
186. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, Wang D-J, Shera D, Hurh P, Rupin J, Saslow E, Goldfarb O, Goldberg M, Larijani G, Sharrar W, Liouterman L, Camp A, Kolodny E, Samulski J, Leone P. 2002. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther 13:1391–1412. [PubMed][CrossRef]
187. Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F. 2013. Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2. Ophthalmology 120:1283–1291. [PubMed][CrossRef]
188. Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 358:2231–2239. [PubMed][CrossRef]
189. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG. 2008. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990. [PubMed][CrossRef]
190. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying G-S, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JIW, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Bennett J. 2009. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605. [CrossRef]
191. Maguire AM, Simonelli F, Pierce EA, Pugh EN, Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma J-X, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358:2240–2248. [PubMed][CrossRef]
192. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, McCague S, Pierce EA, Chen Y, Bennicelli JL, Zhu X, Ying G-S, Sun J, Wright JF, Auricchio A, Simonelli F, Shindler KS, Mingozzi F, High KA, Maguire AM. 2012. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4:120ra15. [PubMed][CrossRef]
193. Bowles DE, McPhee SWJ, Li C, Gray SJ, Samulski JJ, Camp AS, Li J, Wang B, Monahan PE, Rabinowitz JE, Grieger JC, Govindasamy L, Agbandje-McKenna M, Xiao X, Samulski RJ. 2012. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20:443–455. [PubMed][CrossRef]
194. Hajjar RJ, Zsebo K, Deckelbaum L, Thompson C, Rudy J, Yaroshinsky A, Ly H, Kawase Y, Wagner K, Borow K, Jaski B, London B, Greenberg B, Pauly DF, Patten R, Starling R, Mancini D, Jessup M. 2008. Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14:355–367. [PubMed][CrossRef]
195. Barker SE, Broderick CA, Robbie SJ, Duran Y, Natkunarajah M, Buch P, Balaggan KS, MacLaren RE, Bainbridge JWB, Smith AJ, Ali RR. 2009. Subretinal delivery of adeno-associated virus serotype 2 results in minimal immune responses that allow repeat vector administration in immunocompetent mice. J Gene Med 11:486–497. [PubMed][CrossRef]
196. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A, Conlon TJ, Calcedo R, Pang J-J, Erger KE, Olivares MB, Mullins CL, Swider M, Kaushal S, Feuer WJ, Iannaccone A, Fishman GA, Stone EM, Byrne BJ, Hauswirth WW. 2012. Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24. [PubMed][CrossRef]
197. McClements ME, MacLaren RE. 2013. Gene therapy for retinal disease. Transl Res 161:241–254. [PubMed][CrossRef]
198. Cai X, Conley SM, Naash MI. 2009. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalm Genet 30:57–62. [PubMed][CrossRef]
199. Gaudet D, Méthot J, Kastelein J. 2012. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol 23:310–320. [PubMed][CrossRef]
200. Ross CJD, Twisk J, Bakker AC, Miao F, Verbart D, Rip J, Godbey T, Dijkhuizen P, Hermens WTJMC, Kastelein JJP, Kuivenhoven JA, Meulenberg JM, Hayden MR. 2006. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum Gene Ther 17:487–499. [PubMed][CrossRef]
201. Gaudet D, Méthot J, Déry S, Brisson D, Essiembre C, Tremblay G, Tremblay K, de Wal J, Twisk J, van den Bulk N, Sier-Ferreira V, van Deventer S. 2013. Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369. [PubMed][CrossRef]
202. Carpentier AC, Frisch F, Labbé SM, Gagnon R, de Wal J, Greentree S, Petry H, Twisk J, Brisson D, Gaudet D. 2012. Effect of alipogene tiparvovec (AAV1-LPL(S447X)) on postprandial chylomicron metabolism in lipoprotein lipase-deficient patients. J Clin Endocrinol Metab 97:1635–1644. [PubMed][CrossRef]
203. Stroes ES, Nierman MC, Meulenberg JJ, Franssen R, Twisk J, Henny CP, Maas MM, Zwinderman AH, Ross C, Aronica E, High KA, Levi MM, Hayden MR, Kastelein JJ, Kuivenhoven JA. 2008. Intramuscular administration of AAV1-lipoprotein lipase S447X lowers triglycerides in lipoprotein lipase-deficient patients. Arterioscler Thromb Vasc Biol 28:2303–2304. [PubMed][CrossRef]
204. Chuah M, VandenDriessche T. 2007. Gene therapy for hemophilia “A” and “B”: efficacy, safety and immune consequences. Verh K Acad Geneeskd Belg 69:315–334. [PubMed]
205. Zaiss A-K, Liu Q, Bowen GP, Wong NCW, Bartlett JS, Muruve DA. 2002. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J Virol 76:4580–4590. [CrossRef]
206. Chen J, Wu Q, Yang P, Hsu H-C, Mountz JD. 2006. Determination of specific CD4 and CD8 T cell epitopes after AAV2- and AAV8-hF.IX gene therapy. Mol Ther 13:260–269. [PubMed][CrossRef]
207. Li C, Hirsch M, Asokan A, Zeithaml B, Ma H, Kafri T, Samulski RJ. 2007. Adeno-associated virus type 2 (AAV2) capsid-specific cytotoxic T lymphocytes eliminate only vector-transduced cells coexpressing the AAV2 capsid in vivo. J Virol 81:7540–7547. [PubMed][CrossRef]
208. Li H, Murphy SL, Giles-Davis W, Edmonson S, Xiang Z, Li Y, Lasaro MO, High KA, Ertl HC. 2007. Pre-existing AAV capsid-specific CD8+ T cells are unable to eliminate AAV-transduced hepatocytes. Mol Ther 15:792–800. [PubMed][CrossRef]
209. Wang Z, Allen JM, Riddell SR, Gregorevic P, Storb R, Tapscott SJ, Chamberlain JS, Kuhr CS. 2007. Immunity to adeno-associated virus-mediated gene transfer in a random-bred canine model of Duchenne muscular dystrophy. Hum Gene Ther 18:18–26. [PubMed][CrossRef]
210. Mingozzi F, Meulenberg JJ, Hui DJ, Basner-Tschakarjan E, Hasbrouck NC, Edmonson SA, Hutnick NA, Betts MR, Kastelein JJ, Stroes ES, High KA. 2009. AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells. Blood 114:2077–2086. [PubMed][CrossRef]
211. Li C, DiPrimio N, Bowles DE, Hirsch ML, Monahan PE, Asokan A, Rabinowitz J, Agbandje-McKenna M, Samulski RJ. 2012. Single amino acid modification of adeno-associated virus capsid changes transduction and humoral immune profiles. J Virol 86:7752–7759. [PubMed][CrossRef]
212. Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. 2002. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99:11854–11859. [PubMed][CrossRef]
213. Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, Manco-Johnson MJ, Monahan PE, Joint Outcome Study Investigators. 2012. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther 19:288–294. [PubMed][CrossRef]
214. Carlisle RC, Benjamin R, Briggs SS, Sumner-Jones S, McIntosh J, Gill D, Hyde S, Nathwani A, Subr V, Ulbrich K, Seymour LW, Fisher KD. 2008. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med 10:400–411. [PubMed][CrossRef]
215. Georg-Fries B, Biederlack S, Wolf J, Hausen zur H. 1984. Analysis of proteins, helper dependence, and seroepidemiology of a new human parvovirus. Virology 134:64–71. [CrossRef]
216. Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, Bowles D, Gray S, Li C, Galloway G, Malik V, Coley B, Clark KR, Li J, Xiao X, Samulski J, McPhee SW, Samulski RJ, Walker CM. 2010. Dystrophin immunity in Duchenne's muscular dystrophy. N Engl J Med 363:1429–1437. [PubMed][CrossRef]
217. Jacobson EM, Huber A, Tomer Y. 2008. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun 30:58–62. [PubMed][CrossRef]
218. Taneja V, David CS. 2001. Lessons from animal models for human autoimmune diseases. Nat Immunol 2:781–784. [PubMed][CrossRef]
219. Lee GK, Maheshri N, Kaspar B, Schaffer DV. 2005. PEG conjugation moderately protects adeno-associated viral vectors against antibody neutralization. Biotechnol Bioeng 92:24–34. [PubMed][CrossRef]
220. Erles K, Sebökovà P, Schlehofer JR. 1999. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 59:406–411. [CrossRef]
221. Scallan CD, Jiang H, Liu T, Patarroyo-White S, Sommer JM, Zhou S, Couto LB, Pierce GF. 2006. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood 107:1810–1817. [PubMed][CrossRef]
222. Grewal IS, Flavell RA. 1998. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 16:111–135. [PubMed][CrossRef]
223. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, Zhou S, Scallan CD, Sommer J, Vijay S, Mingozzi F, High KA, Pierce GF. 2006. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood 108:3321–3328. [PubMed][CrossRef]
224. Nathwani AC, Gray JT, McIntosh J, Ng CYC, Zhou J, Spence Y, Cochrane M, Gray E, Tuddenham EGD, Davidoff AM. 2007. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood 109:1414–1421. [PubMed][CrossRef]
225. Mingozzi F, Anguela XM, Pavani G, Chen Y, Davidson RJ, Hui DJ, Yazicioglu M, Elkouby L, Hinderer CJ, Faella A, Howard C, Tai A, Podsakoff GM, Zhou S, Basner-Tschakarjan E, Wright JF, High KA. 2013. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 5:194ra92. [PubMed][CrossRef]
226. Chen S, Kapturczak M, Loiler SA, Zolotukhin S, Glushakova OY, Madsen KM, Samulski RJ, Hauswirth WW, Campbell-Thompson M, Berns KI, Flotte TR, Atkinson MA, Tisher CC, Agarwal A. 2005. Efficient transduction of vascular endothelial cells with recombinant adeno-associated virus serotype 1 and 5 vectors. Hum Gene Ther 16:235–247. [PubMed][CrossRef]
227. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A. 1999. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5:71–77. [PubMed][CrossRef]
228. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K, Nakamura T, Watanabe M, Oshimi K, Daida H. 2005. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol 79:609–614. [PubMed][CrossRef]
229. Summerford C, Bartlett JS, Samulski RJ. 1999. AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82. [PubMed]
230. Asokan A, Hamra JB, Govindasamy L, Agbandje-McKenna M, Samulski RJ. 2006. Adeno-associated virus type 2 contains an integrin alpha5beta1 binding domain essential for viral cell entry. J Virol 80:8961–8969. [PubMed][CrossRef]
231. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. 2006. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 80:9831–9836. [PubMed][CrossRef]
232. Ling C, Lu Y, Kalsi JK, Jayandharan GR, Li B, Ma W, Cheng B, Gee SWY, McGoogan KE, Govindasamy L, Zhong L, Agbandje-McKenna M, Srivastava A. 2010. Human hepatocyte growth factor receptor is a cellular coreceptor for adeno-associated virus serotype 3. Hum Gene Ther 21:1741–1747. [PubMed][CrossRef]
233. Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A, Chiorini JA. 2003. Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 9:1306–1312. [PubMed][CrossRef]
234. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ. 2006. Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 80:11393–11397. [PubMed][CrossRef]
235. Weller ML, Amornphimoltham P, Schmidt M, Wilson PA, Gutkind JS, Chiorini JA. 2010. Epidermal growth factor receptor is a co-receptor for adeno-associated virus serotype 6. Nat Med 16:662–664. [PubMed][CrossRef]
236. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao G-P, Van Vliet K, Agbandje-McKenna M, Wilson JM. 2011. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest 121:2427–2435. [PubMed][CrossRef]
microbiolspec.MDNA3-0052-2014.citations
cm/3/4
content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0052-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0052-2014
2015-07-02
2017-08-19

Abstract:

In the nearly five decades since its accidental discovery, adeno-associated virus (AAV) has emerged as a highly versatile vector system for both research and clinical applications. A broad range of natural serotypes, as well as an increasing number of capsid variants, has combined to produce a repertoire of vectors with different tissue tropisms, immunogenic profiles and transduction efficiencies. The story of AAV is one of continued progress and surprising discoveries in a viral system that, at first glance, is deceptively simple. This apparent simplicity has enabled the advancement of AAV into the clinic, where despite some challenges it has provided hope for patients and a promising new tool for physicians. Although a great deal of work remains to be done, both in studying the basic biology of AAV and in optimizing its clinical application, AAV vectors are currently the safest and most efficient platform for gene transfer in mammalian cells.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The adeno-associated virus (AAV) genome is a linear ∼4.7-kb single-stranded DNA which is flanked by inverted terminal repeats. The genome contains three promoters that drive transcription of the viruses replication (REP), capsid (CAP) and assembly (AAP) genes. The first two promoters, p5 and p19, drive transcription of the large (78/68 kDa) and small (52/40 kDa) Rep proteins, respectively. In each case an alternate splice at the end of each transcript results in the smaller variant of each protein (Rep68 and Rep40). Transcription from the p40 promoter produces one large mRNA with an intron. A minor splice variant of this message contains the translational initiation codon (AUG) for the largest capsid protein (VP1), while the major splice variant truncates this sequence. The major splice variant contains a nontraditional translation initiation codon (ACG) at the start of VP2, which is often skipped for the downstream AUG of VP3, the smallest and most abundant capsid protein. The p40 transcripts also contain an alternate reading frame that encodes the assembly activating protein (AAP), which is translated from a nontraditional CUG. doi:10.1128/microbiolspec.MDNA3-0052-2014.f1

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Adeno-associated virus (AAV) genome replication is primed by the 3′ inverted terminal repeat (ITR), and primarily uses the host pol δ (A). The genome is replicated through the 5′ ITR (via strand displacement), yielding a double-stranded (dsDNA) intermediate (B). The newly generated 3′ ITR (produced when copying the 5′ ITR) then primes replication in the opposite direction (C). At the same time, the AAV Rep protein, bindings to the Rep-binding element (RBE) on the original 3′ ITR, and cuts the lower strand at the terminal resolution site (), generating a free 3′ end (C), which allows for the replication of the original 3′ ITR (D) and the production of a new single-stranded (ssDNA) genome as well as another dsDNA intermediate (E) which is fed back into the replication cascade. This replication mechanism results in the production of ssDNA genomes of both polarities, which are then packaged into the capsid. In the case of self-complementary (scDNA) vectors, one of the ITRs is mutanted (mITR) to remove the , and prevent resolution of the double-stranded intermediate. This resulting replication scheme (detailed in the right column) yields a self-complementary genome that at its center contains the mITR, which is never nicked and which serves as an intermolecular hinge. This hinge acts to form a duplex genome immediately upon uncoating and bypasses the typical need for second-strand synthesis that serves as a bottleneck for ssDNA vectors. doi:10.1128/microbiolspec.MDNA3-0052-2014.f2

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Adeno-associated virus (AAV) vector production. (A) Tradition AAV vector production begins with transfection of mammalian cells (commonly HEK 293) with three plasmids. The first provides the Cap proteins from the chosen AAV serotype in conjunction with Rep from AAV2. This plasmid lacks inverted terminal repeats (ITRs), ensuring that the Rep/Cap sequences are not packaged into AAV capsids and no replication-competent virus is made. The Genome plasmid contains the chosen transgene sequence flanked by ITRs, which are necessary for packaging and genome replication. In the case of ssDNA vectors, transgene cassettes up to 5 kbp can be packaged with high efficiency, whereas scDNA vectors can accommodate cassettes half that size. The third plasmid provides in the adenovirus genes that are necessary for AAV replication. It is common to see this plasmid and the Rep/Cap plasmid combined in a single large construct for simplified production. (B) After 48–72 hr cells are harvested and lysed. Vectors can be purified by either column chromatography or density gradient centrifugation, which can separate AAV from contaminating cellular proteins as well as separating empty capsids from genome-containing particles. It is not uncommon to see at least two purification steps employed for high purity vectors and column-based methods can vary depending on the serotype being purified. (C) Vector quantitation is most often performed by measuring DNase-resistant genomes by real-time PCR. In cases where verification is needed for the separation of full and empty capsids, this genome titering is combined with an ELISA-based assay for capsid protein. doi:10.1128/microbiolspec.MDNA3-0052-2014.f3

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Adeno-associated virus (AAV) vector infectious pathway. (A) Infection is initiated by capsid binding to cell-surface receptors. In the case of AAV serotype 2 this is a two-step process involving binding to a primary glycan receptor followed by binding to a protein receptor that mediates endocytosis. Classical AAV2 internalization is believed to be a clathrin-mediated, dynamin-dependent process, although other pathways have been implicated. (B) AAV traffics through the endosomal system where it is exposed to a low-pH environment that triggers the externalization of the VP1/2 unique regions and activation of the auto-catalytic capsid protease. Exposure to the low-pH environment is necessary for productive AAV infection. (C) Escape from the endosomal compartment is mediated by the VP1 PLA2 domain, and AAV uses several nuclear localization signaling motifs to traffic to the nucleus and enter, most likely via the nuclear pore complex (NPC). (D) AAV uncoats its genome in the nucleus. In the case of single-stranded DNA vectors, second-strand synthesis must first occur before transcription, creating a bottleneck in the transduction process. Self-complementary (sc) vectors use a single mutant inverted terminal repeat (ITR) in conjunction with both + and – strands to produce a genome that is double-stranded upon uncoating so bypassing second-strand synthesis, albeit at the cost of lower packaging capacity. After a double-stranded genome is formed transcription and translation are driven by the transgene cassette and are not virus-specific. doi:10.1128/microbiolspec.MDNA3-0052-2014.f4

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Known receptor usage for adeno-associated virus (AAV) serotypes 1–12

Source: microbiolspec July 2015 vol. 3 no. 4 doi:10.1128/microbiolspec.MDNA3-0052-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error