1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Ty1 LTR-Retrotransposon of Budding Yeast,

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    315.13 Kb
  • HTML
    300.36 Kb
  • PDF
    1.07 MB
  • Authors: M. Joan Curcio1, Sheila Lutz2, Pascale Lesage3
  • Editors: Suzanne Sandmeyer4, Nancy Craig5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratory of Molecular Genetics, Wadsworth Center, and Department of Biomedical Sciences, University at Albany-SUNY; Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY, 12208; 2: Laboratory of Molecular Genetics, Wadsworth Center, and Department of Biomedical Sciences, University at Albany-SUNY; Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY, 12208; 3: Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Hôpital St. Louis, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 944, Centre National de la Recherche Scientifique (CNRS) UMR 7212, Paris cedex 10, France; 4: University of California, Irvine, CA; 5: Johns Hopkins University, Baltimore, MD
  • Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
  • Received 08 September 2014 Accepted 22 January 2015 Published 19 March 2015
  • Joan Curcio, joan.curcio@health.ny.gov
image of The Ty1 LTR-Retrotransposon of Budding Yeast, <span class="jp-italic">Saccharomyces cerevisiae</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Ty1 LTR-Retrotransposon of Budding Yeast, , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/2/MDNA3-0053-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/2/MDNA3-0053-2014-2.gif
  • Abstract:

    Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses. The Ty1 element of the budding yeast was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the genome but also the ease and breadth of genomic, biochemical, and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host cofactors known to influence retrotransposition, and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.

  • Citation: Curcio M, Lutz S, Lesage P. 2015. The Ty1 LTR-Retrotransposon of Budding Yeast, . Microbiol Spectrum 3(2):MDNA3-0053-2014. doi:10.1128/microbiolspec.MDNA3-0053-2014.

Key Concept Ranking

RNA Polymerase II
0.5033784
RNA Polymerase III
0.5033784
RNA Polymerase II
0.5033784
RNA Polymerase III
0.5033784
RNA Polymerase II
0.5033784
RNA Polymerase III
0.5033784
RNA Polymerase II
0.5033784
RNA Polymerase III
0.5033784
0.5033784

References

1. Malik HS, Henikoff S, Eickbush TH. 2000. Poised for contagion: evolutionary origins of the infectious abilities of invertebrate retroviruses. Genome Res 10:1307–1318. [PubMed][CrossRef]
2. Boeke JD, Garfinkel DJ, Styles CA, Fink GR. 1985. Ty elements transpose through an RNA intermediate. Cell 40:491–500. [PubMed][CrossRef]
3. Clare JJ, Belcourt M, Farabaugh PJ. 1988. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc Natl Acad Sci U S A 85:6816–6820. [PubMed][CrossRef]
4. Curcio MJ, Derbyshire KM. 2003. The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877. [PubMed][CrossRef]
5. Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF. 2012. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res 22:704–713. [PubMed][CrossRef]
6. Garfinkel DJ, Nyswaner KM, Stefanisko KM, Chang C, Moore SP. 2005. Ty1 copy number dynamics in Saccharomyces. Genetics 169:1845–1857. [PubMed][CrossRef]
7. Sharon G, Burkett TJ, Garfinkel DJ. 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol Cell Biol 14:6540–6551. [PubMed]
8. Radford SJ, Boyle ML, Sheely CJ, Graham J, Haeusser DP, Zimmerman L, Keeney JB. 2004. Increase in Ty1 cDNA recombination in yeast sir4 mutant strains at high temperature. Genetics 168:89–101. [PubMed][CrossRef]
9. Curcio MJ, Garfinkel DJ. 1991. Single-step selection for Ty1 element retrotransposition. Proc Natl Acad Sci U S A 88:936–940. [PubMed][CrossRef]
10. Boeke JD, Xu H, Fink GR. 1988. A general method for the chromosomal amplification of genes in yeast. Science 239:280–282. [PubMed][CrossRef]
11. Mellor J, Malim MH, Gull K, Tuite MF, McCready S, Dibbayawan T, Kingsman SM, Kingsman AJ. 1985. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature 318:583–586. [PubMed][CrossRef]
12. Garfinkel DJ, Boeke JD, Fink GR. 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42:507–517. [PubMed][CrossRef]
13. Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ. 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 11:255–269. [PubMed][CrossRef]
14. Cousineau B, Smith D, Lawrence-Cavanagh S, Mueller JE, Yang J, Mills D, Manias D, Dunny G, Lambowitz AM, Belfort M. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94:451–462. [PubMed][CrossRef]
15. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927. [PubMed][CrossRef]
16. An W, Han JS, Wheelan SJ, Davis ES, Coombes CE, Ye P, Triplett C, Boeke JD. 2006. Active retrotransposition by a synthetic L1 element in mice. Proc Natl Acad Sci U S A 103:18662–18667. [PubMed][CrossRef]
17. Esnault C, Maestre J, Heidmann T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367. [PubMed][CrossRef]
18. Curcio MJ, Garfinkel DJ. 1994. Heterogeneous functional Ty1 elements are abundant in the Saccharomyces cerevisiae genome. Genetics 136:1245–1259. [PubMed]
19. Bolton EC, Coombes C, Eby Y, Cardell M, Boeke JD. 2005. Identification and characterization of critical cis-acting sequences within the yeast Ty1 retrotransposon. RNA 11:308–322. [PubMed][CrossRef]
20. Huang Q, Purzycka KJ, Lusvarghi S, Li D, Legrice SF, Boeke JD. 2013. Retrotransposon Ty1 RNA contains a 5′-terminal long-range pseudoknot required for efficient reverse transcription. RNA 19:320–332. [PubMed][CrossRef]
21. Xu H, Boeke JD. 1990. Localization of sequences required in cis for yeast Ty1 element transposition near the long terminal repeats: analysis of mini-Ty1 elements. Mol Cell Biol 10:2695–2702. [PubMed]
22. Checkley MA, Mitchell JA, Eizenstat LD, Lockett SJ, Garfinkel DJ. 2013. Ty1 Gag enhances the stability and nuclear export of Ty1 mRNA. Traffic 14:57–69. [PubMed]
23. Carr M, Bensasson D, Bergman CM. 2012. Evolutionary genomics of transposable elements in Saccharomyces cerevisiae. PLoS One 7:e50978. [PubMed][CrossRef]
24. Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. 1998. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8:464–478. [PubMed]
25. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O'Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ. 2009. Population genomics of domestic and wild yeasts. Nature 458:337–341. [PubMed][CrossRef]
26. Jordan IK, McDonald JF. 1999. Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. Genetics 151:1341–1351. [PubMed]
27. Jordan IK, McDonald JF. 1998. Evidence for the role of recombination in the regulatory evolution of Saccharomyces cerevisiae Ty elements. J Mol Evol 47:14–20. [PubMed][CrossRef]
28. Jordan IK, McDonald JF. 1999. Comparative genomics and evolutionary dynamics of Saccharomyces cerevisiae Ty elements. Genetica 107:3–13. [PubMed][CrossRef]
29. Moore SP, Liti G, Stefanisko KM, Nyswaner KM, Chang C, Louis EJ, Garfinkel DJ. 2004. Analysis of a Ty1-less variant of Saccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast 21:649–660. [PubMed][CrossRef]
30. Promislow DE, Jordan IK, McDonald JF. 1999. Genomic demography: a life-history analysis of transposable element evolution. Proc R Soc B 266:1555–1560. [PubMed][CrossRef]
31. Curcio MJ, Hedge AM, Boeke JD, Garfinkel DJ. 1990. Ty RNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol Gen Genet 220:213–221. [PubMed][CrossRef]
32. Garfinkel DJ, Nyswaner K, Wang J, Cho JY. 2003. Post-transcriptional cosuppression of Ty1 retrotransposition. Genetics 165:83–99. [PubMed]
33. Matsuda E, Garfinkel DJ. 2009. Posttranslational interference of Ty1 retrotransposition by antisense RNAs. Proc Natl Acad Sci U S A 106:15657–15662. [PubMed][CrossRef]
34. Morillon A, Springer M, Lesage P. 2000. Activation of the Kss1 invasive-filamentous growth pathway induces Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 20:5766–5776. [PubMed][CrossRef]
35. Todeschini AL, Morillon A, Springer M, Lesage P. 2005. Severe adenine starvation activates Ty1 transcription and retrotransposition in Saccharomyces cerevisiae. Mol Cell Biol 25:7459–7472. [PubMed][CrossRef]
36. Conte D Jr, Curcio MJ. 2000. Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol Microbiol 35:415–427. [PubMed][CrossRef]
37. Lawler JF Jr, Haeusser DP, Dull A, Boeke JD, Keeney JB. 2002. Ty1 defect in proteolysis at high temperature. J Virol 76:4233–4240. [CrossRef]
38. Staleva Staleva L, Venkov P. 2001. Activation of Ty transposition by mutagens. Mutat Res 474:93–103. [PubMed][CrossRef]
39. Morawetz C. 1987. Effect of irradiation and mutagenic chemicals on the generation of ADH2-constitutive mutants in yeast. Significance for the inducibility of Ty transposition. Mutat Res 177:53–60. [PubMed][CrossRef]
40. Bradshaw VA, McEntee K. 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474. [PubMed][CrossRef]
41. Sacerdot C, Mercier G, Todeschini AL, Dutreix M, Springer M, Lesage P. 2005. Impact of ionizing radiation on the life cycle of Saccharomyces cerevisiae Ty1 retrotransposon. Yeast 22:441–455. [PubMed][CrossRef]
42. Mules EH, Uzun O, Gabriel A. 1998. In vivo Ty1 reverse transcription can generate replication intermediates with untidy ends. J Virol 72:6490–6503. [PubMed]
43. Elder RT, Loh EY, Davis RW. 1983. RNA from the yeast transposable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci U S A 80:2432–2436. [PubMed][CrossRef]
44. Hou W, Russnak R, Platt T. 1994. Poly(A) site selection in the yeast Ty retroelement requires an upstream region and sequence-specific titratable factor(s) in vitro. EMBO J 13:446–452. [PubMed]
45. Dudley AM, Gansheroff LJ, Winston F. 1999. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics 151:1365–1378. [PubMed]
46. Servant G, Pennetier C, Lesage P. 2008. Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 28:5543–5554. [PubMed][CrossRef]
47. Yu K, Elder RT. 1989. Some of the signals for 3′-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol Cell Biol 9:2431–2443. [PubMed]
48. Ciriacy M, Freidel K, Lohning C. 1991. Characterization of trans-acting mutations affecting Ty and Ty-mediated transcription in Saccharomyces cerevisiae. Curr Genet 20:441–448. [PubMed][CrossRef]
49. Company M, Errede B. 1987. Cell-type-dependent gene activation by yeast transposon Ty1 involves multiple regulatory determinants. Mol Cell Biol 7:3205–3211. [PubMed]
50. Errede B. 1993. MCM1 binds to a transcriptional control element in Ty1. Mol Cell Biol 13:57–62. [PubMed]
51. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650. [PubMed][CrossRef]
52. Gray WM, Fassler JS. 1996. Isolation and analysis of the yeast TEA1 gene, which encodes a zinc cluster Ty enhancer-binding protein. Mol Cell Biol 16:347–358. [PubMed]
53. Kent NA, Karabetsou N, Politis PK, Mellor J. 2001. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626. [PubMed][CrossRef]
54. Laloux I, Dubois E, Dewerchin M, Jacobs E. 1990. TEC1, a gene involved in the activation of Ty1 and Ty1-mediated gene expression in Saccharomyces cerevisiae: cloning and molecular analysis. Mol Cell Biol 10:3541–3550. [PubMed]
55. Madison JM, Dudley AM, Winston F. 1998. Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae. Mol Cell Biol 18:1879–1890. [PubMed]
56. Morillon A, Benard L, Springer M, Lesage P. 2002. Differential effects of chromatin and Gcn4 on the 50-fold range of expression among individual yeast Ty1 retrotransposons. Mol Cell Biol 22:2078–2088. [PubMed][CrossRef]
57. Pollard KJ, Peterson CL. 1997. Role for ADA/GCN5 products in antagonizing chromatin-mediated transcriptional repression. Mol Cell Biol 17:6212–6222. [PubMed]
58. Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. 2012. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 40:5271–5282. [PubMed][CrossRef]
59. Turkel S, Liao XB, Farabaugh PJ. 1997. GCR1-dependent transcriptional activation of yeast retrotransposon Ty2-917. Yeast 13:917–930. [PubMed][CrossRef]
60. Happel AM, Swanson MS, Winston F. 1991. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128:69–77. [PubMed]
61. Winston F, Carlson M. 1992. Yeast SNF/SWI transcriptional activators and the SPT/SIN chromatin connection. Trends Genet 8:387–391. [PubMed][CrossRef]
62. Lopez MC, Baker HV. 2000. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns. J Bacteriol 182:4970–4978. [PubMed][CrossRef]
63. Elder RT, St John TP, Stinchcomb DT, Davis RW, Scherer S. 1981. Studies on the transposable element Ty1 of yeast. I. RNA homologous to Ty1. II. Recombination and expression of Ty1 and adjacent sequences. Cold Spring Harb Symp Quant Biol 45:581–591. [PubMed][CrossRef]
64. Munchel SE, Shultzaberger RK, Takizawa N, Weis K. 2011. Dynamic profiling of mRNA turnover reveals gene-specific and system-wide regulation of mRNA decay. Mol Biol Cell 22:2787–2795. [PubMed][CrossRef]
65. Malagon F, Jensen TH. 2008. The T body, a new cytoplasmic RNA granule in Saccharomyces cerevisiae. Mol Cell Biol 28:6022–6032. [PubMed][CrossRef]
66. Tucker M, Parker R. 2000. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu Rev Biochem 69:571–595. [PubMed][CrossRef]
67. Lesage P, Todeschini AL. 2005. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 110:70–90. [PubMed][CrossRef]
68. Berretta J, Pinskaya M, Morillon A. 2008. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 22:615–626. [PubMed][CrossRef]
69. van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M, Roche V, Bertrand C, Silvain M, Legoix-Ne P, Loeillet S, Nicolas A, Thermes C, Morillon A. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114–117. [PubMed][CrossRef]
70. Checkley MA, Nagashima K, Lockett SJ, Nyswaner KM, Garfinkel DJ. 2010. P-body components are required for Ty1 retrotransposition during assembly of retrotransposition-competent virus-like particles. Mol Cell Biol 30:382–398. [PubMed][CrossRef]
71. Dutko JA, Kenny AE, Gamache ER, Curcio MJ. 2010. 5′ to 3′ mRNA decay factors colocalize with Ty1 gag and human APOBEC3G and promote Ty1 retrotransposition. J Virol 84:5052–5066. [PubMed][CrossRef]
72. Curcio MJ, Garfinkel DJ. 1992. Posttranslational control of Ty1 retrotransposition occurs at the level of protein processing. Mol Cell Biol 12:2813–2825. [PubMed]
73. Ringner M, Krogh M. 2005. Folding free energies of 5′-UTRs impact post-transcriptional regulation on a genomic scale in yeast. PLoS Comput Biol 1:e72. [PubMed][CrossRef]
74. Purzycka KJ, Legiewicz M, Matsuda E, Eizentstat LD, Lusvarghi S, Saha A, Grice SF, Garfinkel DJ. 2013. Exploring Ty1 retrotransposon RNA structure within virus-like particles. Nucleic Acids Res 41:463–473. [PubMed][CrossRef]
75. del Alamo M, Hogan DJ, Pechmann S, Albanese V, Brown PO, Frydman J. 2011. Defining the specificity of cotranslationally acting chaperones by systematic analysis of mRNAs associated with ribosome-nascent chain complexes. PLoS Biol 9:e1001100. [PubMed][CrossRef]
76. Doh JH, Lutz S, Curcio MJ. 2014. Co-translational Localization of an LTR-Retrotransposon RNA to the Endoplasmic Reticulum Nucleates Virus-Like Particle Assembly Sites. PLoS Genet 10:e1004219. [PubMed][CrossRef]
77. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223. [PubMed][CrossRef]
78. Dakshinamurthy A, Nyswaner KM, Farabaugh PJ, Garfinkel DJ. 2010. BUD22 affects Ty1 retrotransposition and ribosome biogenesis in Saccharomyces cerevisiae. Genetics 185:1193–1205. [PubMed][CrossRef]
79. Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970. [PubMed][CrossRef]
80. Saraogi I, Shan SO. 2011. Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 12:535–542. [PubMed][CrossRef]
81. Surjit M, Jameel S, Lal SK. 2007. Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. J Virol 81:3339–3345. [PubMed][CrossRef]
82. Duriez M, Rossignol JM, Sitterlin D. 2008. The hepatitis B virus precore protein is retrotransported from endoplasmic reticulum (ER) to cytosol through the ER-associated degradation pathway. J Biol Chem 283:32352–32360. [PubMed][CrossRef]
83. Byun H, Gou Y, Zook A, Lozano MM, Dudley JP. 2014. ERAD and how viruses exploit it. Front Microbiol 5:330. [PubMed][CrossRef]
84. Brodsky JL, Skach WR. 2011. Protein folding and quality control in the endoplasmic reticulum: Recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475. [PubMed][CrossRef]
85. Weissenbach J, Dirheimer G, Falcoff R, Sanceau J, Falcoff E. 1977. Yeast tRNALeu (anticodon U--A--G) translates all six leucine codons in extracts from interferon treated cells. FEBS Lett 82:71–76. [CrossRef]
86. Sundararajan A, Michaud WA, Qian Q, Stahl G, Farabaugh PJ. 1999. Near-cognate peptidyl-tRNAs promote +1 programmed translational frameshifting in yeast. Mol Cell 4:1005–1015. [CrossRef]
87. Belcourt MF, Farabaugh PJ. 1990. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 62:339–352. [CrossRef]
88. Kawakami K, Pande S, Faiola B, Moore DP, Boeke JD, Farabaugh PJ, Strathern JN, Nakamura Y, Garfinkel DJ. 1993. A rare tRNA-Arg(CCU) that regulates Ty1 element ribosomal frameshifting is essential for Ty1 retrotransposition in Saccharomyces cerevisiae. Genetics 135:309–320. [PubMed]
89. Dinman JD. 2012. Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip Rev RNA 3:661–673. [PubMed][CrossRef]
90. Tumer NE, Parikh BA, Li P, Dinman JD. 1998. The pokeweed antiviral protein specifically inhibits Ty1-directed +1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae. J Virol 72:1036–1042. [PubMed]
91. Xu H, Boeke JD. 1990. Host genes that influence transposition in yeast: the abundance of a rare tRNA regulates Ty1 transposition frequency. Proc Natl Acad Sci U S A 87:8360–8364. [PubMed][CrossRef]
92. Harger JW, Dinman JD. 2003. An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA 9:1019–1024. [CrossRef]
93. Balasundaram D, Dinman JD, Tabor CW, Tabor H. 1994. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in Saccharomyces cerevisiae. J Bacteriol 176:7126–7128. [PubMed]
94. Balasundaram D, Dinman JD, Wickner RB, Tabor CW, Tabor H. 1994. Spermidine deficiency increases +1 ribosomal frameshifting efficiency and inhibits Ty1 retrotransposition in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 91:172–176. [PubMed][CrossRef]
95. Jouvenet N, Laine S, Pessel-Vivares L, Mougel M. 2011. Cell biology of retroviral RNA packaging. RNA Biol 8:572–580. [PubMed][CrossRef]
96. Garbitt-Hirst R, Kenney SP, Parent LJ. 2009. Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 83:6790–6797. [PubMed][CrossRef]
97. Jouvenet N, Simon SM, Bieniasz PD. 2009. Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci U S A 106:19114–19119. [PubMed][CrossRef]
98. Malagon F, Jensen TH. 2011. T-body formation precedes virus-like particle maturation in S. cerevisiae. RNA Biol 8:184–189. [CrossRef]
99. Decker CJ, Parker R. 2012. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286. [PubMed][CrossRef]
100. Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122:875–886. [PubMed][CrossRef]
101. Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B. 2000. A Sm-like protein complex that participates in mRNA degradation. EMBO J 19:1661–1671. [PubMed][CrossRef]
102. Tharun S, He W, Mayes AE, Lennertz P, Beggs JD, Parker R. 2000. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 404:515–518. [PubMed][CrossRef]
103. Tharun S, Parker R. 2001. Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8:1075–1083. [PubMed][CrossRef]
104. Stevens A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′ leads to 3′ mode of hydrolysis. J Biol Chem 255:3080–3085. [PubMed]
105. Buchan JR. 2014. mRNP granules: assembly, function, and connections with disease. RNA Biol 11:1019–1030. [PubMed][CrossRef]
106. Luschnig C, Bachmair A. 1997. RNA packaging of yeast retrotransposon Ty1 in the heterologous host, Escherichia coli. Biol Chem 378:39–46. [PubMed][CrossRef]
107. Luschnig C, Hess M, Pusch O, Brookman J, Bachmair A. 1995. The gag homologue of retrotransposon Ty1 assembles into spherical particles in Escherichia coli. Eur J Biochem 228:739–744. [PubMed][CrossRef]
108. Brookman JL, Stott AJ, Cheeseman PJ, Adamson CS, Holmes D, Cole J, Burns NR. 1995. Analysis of TYA protein regions necessary for formation of the Ty1 virus-like particle structure. Virology 212:69–76. [PubMed][CrossRef]
109. Martin-Rendon E, Marfany G, Wilson S, Ferguson DJ, Kingsman SM, Kingsman AJ. 1996. Structural determinants within the subunit protein of Ty1 virus-like particles. Mol Microbiol 22:667–679. [PubMed][CrossRef]
110. Roth JF. 2000. The yeast Ty virus-like particles. Yeast 16:785–795. [PubMed][CrossRef]
111. AL-Khayat HA, Bhella D, Kenney JM, Roth JF, Kingsman AJ, Martin-Rendon E, Saibil HR. 1999. Yeast Ty retrotransposons assemble into virus-like particles whose T-numbers depend on the C-terminal length of the capsid protein. J Mol Biol 292:65–73. [PubMed][CrossRef]
112. Burns NR, Saibil HR, White NS, Pardon JF, Timmins PA, Richardson SM, Richards BM, Adams SE, Kingsman SM, Kingsman AJ. 1992. Symmetry, flexibility and permeability in the structure of yeast retrotransposon virus-like particles. EMBO J 11:1155–1164. [PubMed]
113. Palmer KJ, Tichelaar W, Myers N, Burns NR, Butcher SJ, Kingsman AJ, Fuller SD, Saibil HR. 1997. Cryo-electron microscopy structure of yeast Ty retrotransposon virus-like particles. J Virol 71:6863–6868. [PubMed]
114. Dutko JA, Schafer A, Kenny AE, Cullen BR, Curcio MJ. 2005. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases. Curr Biol 15:661–666. [PubMed][CrossRef]
115. Schumacher AJ, Nissley DV, Harris RS. 2005. APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci U S A 102:9854–9859. [PubMed][CrossRef]
116. Feng YX, Moore SP, Garfinkel DJ, Rein A. 2000. The genomic RNA in Ty1 virus-like particles is dimeric. J Virol 74:10819–10821. [PubMed][CrossRef]
117. Cristofari G, Ficheux D, Darlix JL. 2000. The GAG-like protein of the yeast Ty1 retrotransposon contains a nucleic acid chaperone domain analogous to retroviral nucleocapsid proteins. J Biol Chem 275:19210–19217. [PubMed][CrossRef]
118. Rein A, Datta SA, Jones CP, Musier-Forsyth K. 2011. Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci 36:373–380. [PubMed][CrossRef]
119. Lu K, Heng X, Summers MF. 2011. Structural determinants and mechanism of HIV-1 genome packaging. J Mol Biol 410:609–633. [PubMed][CrossRef]
120. Purzycka KJ, Garfinkel DJ, Boeke JD, Le Grice SF. 2013. Influence of RNA structural elements on Ty1 retrotransposition. Mob Genet Elements 3:e25060. [PubMed][CrossRef]
121. Maxwell PH, Coombes C, Kenny AE, Lawler JF, Boeke JD, Curcio MJ. 2004. Ty1 mobilizes subtelomeric Y′ elements in telomerase-negative Saccharomyces cerevisiae survivors. Mol Cell Biol 24:9887–9898. [PubMed][CrossRef]
122. Maxwell PH, Curcio MJ. 2007. Retrosequence formation restructures the yeast genome. Genes Dev 21:3308–3318. [PubMed][CrossRef]
123. Maxwell PH, Curcio MJ. 2008. Incorporation of Y′-Ty1 cDNA destabilizes telomeres in Saccharomyces cerevisiae telomerase mutants Genetics 179:2313–2317. [PubMed][CrossRef]
124. Garfinkel DJ, Hedge AM, Youngren SD, Copeland TD. 1991. Proteolytic processing of pol-TYB proteins from the yeast retrotransposon Ty1. J Virol 65:4573–4581. [PubMed]
125. Merkulov GV, Lawler JF Jr, Eby Y, Boeke JD. 2001. Ty1 proteolytic cleavage sites are required for transposition: all sites are not created equal. J Virol 75:638–644. [PubMed][CrossRef]
126. Youngren SD, Boeke JD, Sanders NJ, Garfinkel DJ. 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol Cell Biol 8:1421–1431. [PubMed]
127. Merkulov GV, Swiderek KM, Brachmann CB, Boeke JD. 1996. A critical proteolytic cleavage site near the C terminus of the yeast retrotransposon Ty1 Gag protein. J Virol 70:5548–5556. [PubMed]
128. Moore SP, Garfinkel DJ. 1994. Expression and partial purification of enzymatically active recombinant Ty1 integrase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 91:1843–1847. [PubMed][CrossRef]
129. Chapman KB, Bystrom AS, Boeke JD. 1992. Initiator methionine tRNA is essential for Ty1 transposition in yeast. Proc Natl Acad Sci U S A 89:3236–3240. [PubMed][CrossRef]
130. Keeney JB, Chapman KB, Lauermann V, Voytas DF, Astrom SU, von Pawel-Rammingen U, Bystrom A, Boeke JD. 1995. Multiple molecular determinants for retrotransposition in a primer tRNA. Mol Cell Biol 15:217–226. [PubMed]
131. Wilhelm M, Wilhelm FX, Keith G, Agoutin B, Heyman T. 1994. Yeast Ty1 retrotransposon: the minus-strand primer binding site and a cis-acting domain of the Ty1 RNA are both important for packaging of primer tRNA inside virus-like particles. Nucleic Acids Res 22:4560–4565. [PubMed][CrossRef]
132. Friant S, Heyman T, Wilhelm ML, Wilhelm FX. 1996. Extended interactions between the primer tRNAi(Met) and genomic RNA of the yeast Ty1 retrotransposon. Nucleic Acids Res 24:441–449. [PubMed][CrossRef]
133. Friant S, Heyman T, Bystrom AS, Wilhelm M, Wilhelm FX. 1998. Interactions between Ty1 retrotransposon RNA and the T and D regions of the tRNA(iMet) primer are required for initiation of reverse transcription in vivo. Mol Cell Biol 18:799–806. [PubMed]
134. Cristofari G, Bampi C, Wilhelm M, Wilhelm FX, Darlix JL. 2002. A 5′-3′ long-range interaction in Ty1 RNA controls its reverse transcription and retrotransposition. EMBO J 21:4368–4379. [PubMed][CrossRef]
135. Bolton EC, Mildvan AS, Boeke JD. 2002. Inhibition of reverse transcription in vivo by elevated manganese ion concentration. Mol Cell 9:879–889. [CrossRef]
136. Pandey M, Patel S, Gabriel A. 2004. Insights into the role of an active site aspartate in Ty1 reverse transcriptase polymerization. J Biol Chem 279:47840–47848. [PubMed][CrossRef]
137. Wilhelm M, Boutabout M, Wilhelm FX. 2000. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities. Biochem J 348:337–342. [PubMed][CrossRef]
138. Pandey M, Patel SS, Gabriel A. 2008. Kinetic pathway of pyrophosphorolysis by a retrotransposon reverse transcriptase. PLoS One 3:e1389. [PubMed][CrossRef]
139. Yarrington RM, Chen J, Bolton EC, Boeke JD. 2007. Mn2+ suppressor mutations and biochemical communication between Ty1 reverse transcriptase and RNase H domains. J Virol 81:9004–9012. [PubMed][CrossRef]
140. Wilhelm M, Wilhelm FX. 2005. Role of integrase in reverse transcription of the Saccharomyces cerevisiae retrotransposon Ty1. Eukaryot Cell 4:1057–1065. [PubMed][CrossRef]
141. Wilhelm M, Wilhelm FX. 2006. Cooperation between reverse transcriptase and integrase during reverse transcription and formation of the preintegrative complex of Ty1. Eukaryot Cell 5:1760–1769. [PubMed][CrossRef]
142. Le Grice SF. 2003. “In the beginning”: initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. Biochemistry 42:14349–14355. [PubMed][CrossRef]
143. Muller F, Laufer W, Pott U, Ciriacy M. 1991. Characterization of products of TY1-mediated reverse transcription in Saccharomyces cerevisiae. Mol Gen Genet 226:145–153. [PubMed][CrossRef]
144. Lauermann V, Boeke JD. 1997. Plus-strand strong-stop DNA transfer in yeast Ty retrotransposons. EMBO J 16:6603–6612. [PubMed][CrossRef]
145. Heyman T, Agoutin B, Friant S, Wilhelm FX, Wilhelm ML. 1995. Plus-strand DNA synthesis of the yeast retrotransposon Ty1 is initiated at two sites, PPT1 next to the 3′ LTR and PPT2 within the pol gene. PPT1 is sufficient for Ty1 transposition. J Mol Biol 253:291–303. [PubMed][CrossRef]
146. Pochart P, Agoutin B, Rousset S, Chanet R, Doroszkiewicz V, Heyman T. 1993. Biochemical and electron microscope analyses of the DNA reverse transcripts present in the virus-like particles of the yeast transposon Ty1. Identification of a second origin of Ty1DNA plus strand synthesis. Nucleic Acids Res 21:3513–3520. [PubMed][CrossRef]
147. Friant S, Heyman T, Wilhelm FX, Wilhelm M. 1996. Role of RNA primers in initiation of minus-strand and plus-strand DNA synthesis of the yeast retrotransposon Ty1. Biochimie 78:674–680. [PubMed][CrossRef]
148. Garfinkel DJ, Stefanisko KM, Nyswaner KM, Moore SP, Oh J, Hughes SH. 2006. Retrotransposon suicide: formation of Ty1 circles and autointegration via a central DNA flap. J Virol 80:11920–11934. [PubMed][CrossRef]
149. Heyman T, Wilhelm M, Wilhelm FX. 2003. The central PPT of the yeast retrotransposon Ty1 is not essential for transposition. J Mol Biol 331:315–320. [PubMed][CrossRef]
150. Chapman KB, Boeke JD. 1991. Isolation and characterization of the gene encoding yeast debranching enzyme. Cell 65:483–492. [PubMed][CrossRef]
151. Griffith JL, Coleman LE, Raymond AS, Goodson SG, Pittard WS, Tsui C, Devine SE. 2003. Functional genomics reveals relationships between the retrovirus-like Ty1 element and its host Saccharomyces cerevisiae. Genetics 164:867–879. [PubMed]
152. Karst SM, Rutz ML, Menees TM. 2000. The yeast retrotransposons Ty1 and Ty3 require the RNA Lariat debranching enzyme, Dbr1p, for efficient accumulation of reverse transcripts. Biochem Biophys Res Commun 268:112–117. [PubMed][CrossRef]
153. Mou Z, Kenny AE, Curcio MJ. 2006. Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae. Genetics 172:2157–2167. [PubMed][CrossRef]
154. Cheng Z, Menees TM. 2004. RNA branching and debranching in the yeast retrovirus-like element Ty1. Science 303:240–243. [PubMed][CrossRef]
155. Ye Y, De Leon J, Yokoyama N, Naidu Y, Camerini D. 2005. DBR1 siRNA inhibition of HIV-1 replication. Retrovirology 2:63. [PubMed][CrossRef]
156. Coombes CE, Boeke JD. 2005. An evaluation of detection methods for large lariat RNAs. RNA 11:323–331. [PubMed][CrossRef]
157. Pratico ED, Silverman SK. 2007. Ty1 reverse transcriptase does not read through the proposed 2′,5′-branched retrotransposition intermediate in vitro. RNA 13:1528–1536. [PubMed][CrossRef]
158. Lawler JF Jr, Merkulov GV, Boeke JD. 2002. A nucleocapsid functionality contained within the amino terminus of the Ty1 protease that is distinct and separable from proteolytic activity. J Virol 76:346–354. [CrossRef]
159. Eichinger DJ, Boeke JD. 1988. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 54:955–966. [CrossRef]
160. Lee BS, Lichtenstein CP, Faiola B, Rinckel LA, Wysock W, Curcio MJ, Garfinkel DJ. 1998. Posttranslational inhibition of Ty1 retrotransposition by nucleotide excision repair/transcription factor TFIIH subunits Ssl2p and Rad3p. Genetics 148:1743–1761. [PubMed]
161. Nyswaner KM, Checkley MA, Yi M, Stephens RM, Garfinkel DJ. 2008. Chromatin-associated genes protect the yeast genome from Ty1 insertional mutagenesis. Genetics 178:197–214. [PubMed][CrossRef]
162. Curcio MJ, Kenny AE, Moore S, Garfinkel DJ, Weintraub M, Gamache ER, Scholes DT. 2007. S-phase checkpoint pathways stimulate the mobility of the retrovirus-like transposon Ty1. Mol Cell Biol 27:8874–8885. [PubMed][CrossRef]
163. Risler JK, Kenny AE, Palumbo RJ, Gamache ER, Curcio MJ. 2012. Host co-factors of the retrovirus-like transposon Ty1. Mob DNA 3:12. [PubMed][CrossRef]
164. Scholes DT, Banerjee M, Bowen B, Curcio MJ. 2001. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159:1449–1465. [PubMed]
165. Curcio MJ, Garfinkel DJ. 1999. New lines of host defense: inhibition of Ty1 retrotransposition by Fus3p and NER/TFIIH. Trends Genet 15:43–45. [CrossRef]
166. Conte D Jr, Barber E, Banerjee M, Garfinkel DJ, Curcio MJ. 1998. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol Cell Biol 18:2502–2513. [PubMed]
167. Lee BS, Bi L, Garfinkel DJ, Bailis AM. 2000. Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol 20:2436–2445. [PubMed][CrossRef]
168. Scholes DT, Kenny AE, Gamache ER, Mou Z, Curcio MJ. 2003. Activation of a LTR-retrotransposon by telomere erosion. Proc Natl Acad Sci U S A 100:15736–15741. [PubMed][CrossRef]
169. Sundararajan A, Lee BS, Garfinkel DJ. 2003. The Rad27 (Fen-1) nuclease inhibits Ty1 mobility in Saccharomyces cerevisiae. Genetics 163:55–67. [PubMed]
170. Braiterman LT, Boeke JD. 1994. In vitro integration of retrotransposon Ty1: a direct physical assay. Mol Cell Biol 14:5719–5730. [PubMed][CrossRef]
171. Moore SP, Garfinkel DJ. 2000. Correct integration of model substrates by Ty1 integrase. J Virol 74:11522–11530. [PubMed][CrossRef]
172. Voytas DF, Boeke JD. 2002. Ty1 and Ty5 of Saccharomyces cerevisiae, p 631–662. In Craig N, Craigie R, Gellert M, Lambowitz A (eds), Mobile DNA II. ASM Press, Washington DC. [CrossRef]
173. Eichinger DJ, Boeke JD. 1990. A specific terminal structure is required for Ty1 transposition. Genes Dev 4:324–330. [PubMed][CrossRef]
174. Wilhelm FX, Wilhelm M, Gabriel A. 2005. Reverse transcriptase and integrase of the Saccharomyces cerevisiae Ty1 element. Cytogenet Genome Res 110:269–287. [PubMed][CrossRef]
175. Moore SP, Garfinkel DJ. 2009. Functional analysis of N-terminal residues of Ty1 integrase. J Virol 83:9502–9511. [PubMed][CrossRef]
176. Friedl AA, Kiechle M, Maxeiner HG, Schiestl RH, Eckardt-Schupp F. 2010. Ty1 integrase overexpression leads to integration of non-Ty1 DNA fragments into the genome of Saccharomyces cerevisiae. Mol Genet Genom 284:231–242. [PubMed][CrossRef]
177. Kiechle M, Friedl AA, Manivasakam P, Eckardt-Schupp F, Schiestl RH. 2000. DNA integration by Ty integrase in yku70 mutant Saccharomyces cerevisiae cells. Mol Cell Biol 20:8836–8844. [PubMed][CrossRef]
178. Haren L, Ton-Hoang B, Chandler M. 1999. Integrating DNA: transposases and retroviral integrases. Annu Rev Microbiol 53:245–281. [PubMed][CrossRef]
179. Peterson-Burch BD, Voytas DF. 2002. Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol Biol Evol 19:1832–1845. [PubMed][CrossRef]
180. Kenna MA, Brachmann CB, Devine SE, Boeke JD. 1998. Invading the yeast nucleus: a nuclear localization signal at the C terminus of Ty1 integrase is required for transposition in vivo. Mol Cell Biol 18:1115–1124. [PubMed]
181. Moore SP, Rinckel LA, Garfinkel DJ. 1998. A Ty1 integrase nuclear localization signal required for retrotransposition. Mol Cell Biol 18:1105–1114. [PubMed]
182. McLane LM, Pulliam KF, Devine SE, Corbett AH. 2008. The Ty1 integrase protein can exploit the classical nuclear protein import machinery for entry into the nucleus. Nucleic Acids Res 36:4317–4326. [PubMed][CrossRef]
183. Wilke CM, Adams J. 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131:31–42. [PubMed]
184. Scheifele LZ, Cost GJ, Zupancic ML, Caputo EM, Boeke JD. 2009. Retrotransposon overdose and genome integrity. Proc Natl Acad Sci U S A 106:13927–13932. [PubMed][CrossRef]
185. Jiang YW. 2002. Transcriptional cosuppression of yeast Ty1 retrotransposons. Genes Dev 16:467–478. [PubMed][CrossRef]
186. Winston F, Durbin KJ, Fink GR. 1984. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell 39:675–682. [PubMed][CrossRef]
187. Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP. 2009. RNAi in budding yeast. Science 326:544–550. [PubMed][CrossRef]
188. Maxwell PH, Curcio MJ. 2007. Host factors that control long terminal repeat retrotransposons in Saccharomyces cerevisiae: implications for regulation of mammalian retroviruses. Eukaryot Cell 6:1069–1080. [PubMed][CrossRef]
189. Rattray AJ, Shafer BK, Garfinkel DJ. 2000. The Saccharomyces cerevisiae DNA recombination and repair functions of the RAD52 epistasis group inhibit Ty1 transposition. Genetics 154:543–556. [PubMed]
190. Bryk M, Banerjee M, Conte D Jr, Curcio MJ. 2001. The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays. Mol Cell Biol 21:5374–5388. [PubMed][CrossRef]
191. Stamenova R, Maxwell PH, Kenny AE, Curcio MJ. 2009. Rrm3 protects the Saccharomyces cerevisiae genome from instability at nascent sites of retrotransposition. Genetics 182:711–723. [PubMed][CrossRef]
192. Lundblad V, Blackburn EH. 1993. An alternative pathway for yeast telomere maintenance rescues est1- senescence. Cell 73:347–360. [PubMed][CrossRef]
193. Wellinger RJ, Zakian VA. 2012. Everything you ever wanted to know about Saccharomyces cerevisiae telomeres: beginning to end. Genetics 191:1073–1105. [PubMed][CrossRef]
194. Lawler JF Jr, Merkulov GV, Boeke JD. 2001. Frameshift signal transplantation and the unambiguous analysis of mutations in the yeast retrotransposon Ty1 Gag-Pol overlap region. J Virol 75:6769–6775. [PubMed][CrossRef]
195. McClanahan T, McEntee K. 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 4:2356–2363. [PubMed]
196. Morawetz C, Hagen U. 1990. Effect of irradiation and mutagenic chemicals on the generation of ADH2- and ADH4-constitutive mutants in yeast: the inducibility of Ty transposition by UV and ethyl methanesulfonate. Mutat Res 229:69–77. [PubMed][CrossRef]
197. Rolfe M, Spanos A, Banks G. 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319:339–340. [CrossRef]
198. Liu Y, Kao HI, Bambara RA. 2004. Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73:589–615. [PubMed][CrossRef]
199. Chan YA, Aristizabal MJ, Lu PY, Luo Z, Hamza A, Kobor MS, Stirling PC, Hieter P. 2014. Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-chip. PLoS Genet 10:e1004288. [PubMed][CrossRef]
200. Xu H, Boeke JD. 1991. Inhibition of Ty1 transposition by mating pheromones in Saccharomyces cerevisiae. Mol Cell Biol 11:2736–2743. [PubMed]
201. Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA. 2003. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol Cell 12:1525–1536. [PubMed][CrossRef]
202. Sekedat MD, Fenyo D, Rogers RS, Tackett AJ, Aitchison JD, Chait BT. 2010. GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome. Mol Syst Biol 6:353. [PubMed][CrossRef]
203. Deshpande AM, Newlon CS. 1996. DNA replication fork pause sites dependent on transcription. Science 272:1030–1033. [PubMed][CrossRef]
204. Eigel A, Feldmann H. 1982. Ty1 and delta elements occur adjacent to several tRNA genes in yeast. EMBO J 1:1245–1250. [PubMed]
205. Hani J, Feldmann H. 1998. tRNA genes and retroelements in the yeast genome. Nucleic Acids Res 26:689–696. [PubMed][CrossRef]
206. Blanc VM, Adams J. 2004. Ty1 insertions in intergenic regions of the genome of Saccharomyces cerevisiae transcribed by RNA polymerase III have no detectable selective effect. FEMS Yeast Res 4:487–491. [PubMed][CrossRef]
207. Boeke JD, Devine SE. 1998. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 93:1087–1089. [PubMed][CrossRef]
208. Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, Hunt E, Weinert T. 2006. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:159–173. [PubMed][CrossRef]
209. Cheng E, Vaisica JA, Ou J, Baryshnikova A, Lu Y, Roth FP, Brown GW. 2012. Genome rearrangements caused by depletion of essential DNA replication proteins in Saccharomyces cerevisiae. Genetics 192:147–160. [PubMed][CrossRef]
210. Ji H, Moore DP, Blomberg MA, Braiterman LT, Voytas DF, Natsoulis G, Boeke JD. 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73:1007–1018. [PubMed][CrossRef]
211. Devine SE, Boeke JD. 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 10:620–633. [PubMed][CrossRef]
212. Bachman N, Eby Y, Boeke JD. 2004. Local definition of Ty1 target preference by long terminal repeats and clustered tRNA genes. Genome Res 14:1232–1247. [PubMed][CrossRef]
213. Mularoni L, Zhou Y, Bowen T, Gangadharan S, Wheelan SJ, Boeke JD. 2012. Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots. Genome Res 22:693–703. [PubMed][CrossRef]
214. Moqtaderi Z, Struhl K. 2004. Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol 24:4118–4127. [PubMed][CrossRef]
215. Soragni E, Kassavetis GA. 2008. Absolute gene occupancies by RNA polymerase III, TFIIIB, and TFIIIC in Saccharomyces cerevisiae. J Biol Chem 283:26568–26576. [PubMed][CrossRef]
216. Gelbart ME, Bachman N, Delrow J, Boeke JD, Tsukiyama T. 2005. Genome-wide identification of Isw2 chromatin-remodeling targets by localization of a catalytically inactive mutant. Genes Dev 19:942–954. [PubMed][CrossRef]
217. Bachman N, Gelbart ME, Tsukiyama T, Boeke JD. 2005. TFIIIB subunit Bdp1p is required for periodic integration of the Ty1 retrotransposon and targeting of Isw2p to S. cerevisiae tDNAs. Genes Dev 19:955–964. [PubMed][CrossRef]
218. Picologlou S, Brown N, Liebman SW. 1990. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol Cell Biol 10:1017–1022. [PubMed]
219. Boeke J, Sandmeyer S. 1991. Yeast transposable elements, p 193–261. In Broach J, Jones E, Pringle J (ed), The Molecular and Cellular Biology of the Yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
220. Bolton EC, Boeke JD. 2003. Transcriptional interactions between yeast tRNA genes, flanking genes and Ty elements: a genomic point of view. Genome Res 13:254–263. [PubMed][CrossRef]
221. Chan JE, Kolodner RD. 2011. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLoS Genet 7:e1002089. [PubMed][CrossRef]
222. Koszul R, Caburet S, Dujon B, Fischer G. 2004. Eucaryotic genome evolution through the spontaneous duplication of large chromosomal segments. EMBO J 23:234–243. [PubMed][CrossRef]
223. Chaleff DT, Fink GR. 1980. Genetic events associated with an insertion mutation in yeast. Cell 21:227–237. [PubMed][CrossRef]
224. Roeder GS, Fink GR. 1980. DNA rearrangements associated with a transposable element in yeast. Cell 21:239–249. [PubMed][CrossRef]
225. Roeder GS, Fink GR. 1982. Movement of yeast transposable elements by gene conversion. Proc Natl Acad Sci U S A 79:5621–5625. [PubMed][CrossRef]
226. Downs KM, Brennan G, Liebman SW. 1985. Deletions extending from a single Ty1 element in Saccharomyces cerevisiae. Mol Cell Biol 5:3451–3457. [PubMed]
227. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D. 2002. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:16144–16149. [PubMed][CrossRef]
228. Putnam CD, Pennaneach V, Kolodner RD. 2005. Saccharomyces cerevisiae as a model system to define the chromosomal instability phenotype. Mol Cell Biol 25:7226–7238. [PubMed][CrossRef]
229. Surosky RT, Tye BK. 1985. Resolution of dicentric chromosomes by Ty-mediated recombination in yeast. Genetics 110:397–419. [PubMed]
230. Umezu K, Hiraoka M, Mori M, Maki H. 2002. Structural analysis of aberrant chromosomes that occur spontaneously in diploid Saccharomyces cerevisiae: retrotransposon Ty1 plays a crucial role in chromosomal rearrangements. Genetics 160:97–110. [PubMed]
231. Zhang H, Zeidler AF, Song W, Puccia CM, Malc E, Greenwell PW, Mieczkowski PA, Petes TD, Argueso JL. 2013. Gene copy-number variation in haploid and diploid strains of the yeast Saccharomyces cerevisiae. Genetics 193:785–801. [PubMed][CrossRef]
232. Argueso JL, Westmoreland J, Mieczkowski PA, Gawel M, Petes TD, Resnick MA. 2008. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc Natl Acad Sci U S A 105:11845–11850. [PubMed][CrossRef]
233. Scheifele LZ, Boeke JD. 2008. From the shards of a shattered genome, diversity. Proc Natl Acad Sci U S A 105:11593–11594. [PubMed][CrossRef]
234. Gresham D, Desai MM, Tucker CM, Jenq HT, Pai DA, Ward A, DeSevo CG, Botstein D, Dunham MJ. 2008. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast. PLoS Genet 4:e1000303. [PubMed][CrossRef]
235. Moore JK, Haber JE. 1996. Capture of retrotransposon DNA at the sites of chromosomal double-strand breaks. Nature 383:644–646. [PubMed][CrossRef]
236. Teng SC, Kim B, Gabriel A. 1996. Retrotransposon reverse-transcriptase-mediated repair of chromosomal breaks. Nature 383:641–644. [PubMed][CrossRef]
237. Yu X, Gabriel A. 1999. Patching broken chromosomes with extranuclear cellular DNA. Mol Cell 4:873–881. [PubMed][CrossRef]
238. Yu X, Gabriel A. 2003. Ku-dependent and Ku-independent end-joining pathways lead to chromosomal rearrangements during double-strand break repair in Saccharomyces cerevisiae. Genetics 163:843–856. [PubMed]
239. Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD. 2005. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120:587–598. [PubMed][CrossRef]
240. Casper AM, Greenwell PW, Tang W, Petes TD. 2009. Chromosome aberrations resulting from double-strand DNA breaks at a naturally occurring yeast fragile site composed of inverted ty elements are independent of Mre11p and Sae2p. Genetics 183:423–439. [PubMed][CrossRef]
241. Aguilera A, Garcia-Muse T. 2012. R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124. [PubMed][CrossRef]
242. Gan W, Guan Z, Liu J, Gui T, Shen K, Manley JL, Li X. 2011. R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25:2041–2056. [PubMed][CrossRef]
243. Ben-Aroya S, Mieczkowski PA, Petes TD, Kupiec M. 2004. The compact chromatin structure of a Ty repeated sequence suppresses recombination hotspot activity in Saccharomyces cerevisiae. Mol Cell 15:221–231. [PubMed][CrossRef]
244. Chang SL, Lai HY, Tung SY, Leu JY. 2013. Dynamic large-scale chromosomal rearrangements fuel rapid adaptation in yeast populations. PLoS Genet 9:e1003232. [PubMed][CrossRef]
245. Dhar R, Sagesser R, Weikert C, Yuan J, Wagner A. 2011. Adaptation of Saccharomyces cerevisiae to saline stress through laboratory evolution. J Evol Biol 24:1135–1153. [PubMed][CrossRef]
246. Kao KC, Sherlock G. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet 40:1499–1504. [PubMed][CrossRef]
247. Selmecki AM, Dulmage K, Cowen LE, Anderson JB, Berman J. 2009. Acquisition of aneuploidy provides increased fitness during the evolution of antifungal drug resistance. PLoS Genet 5:e1000705. [PubMed][CrossRef]
248. Lynch M. 2008. The cellular, developmental and population-genetic determinants of mutation-rate evolution. Genetics 180:933–943. [PubMed][CrossRef]
249. Botstein D, Fink GR. 2011. Yeast: an experimental organism for 21st Century biology. Genetics 189:695–704. [PubMed][CrossRef]
250. Torres EM, Sokolsky T, Tucker CM, Chan LY, Boselli M, Dunham MJ, Amon A. 2007. Effects of aneuploidy on cellular physiology and cell division in haploid yeast. Science 317:916–924. [PubMed][CrossRef]
251. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, Sanderson BW, Hattem GL, Li R. 2010. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature 468:321–325. [PubMed][CrossRef]
252. Maxwell PH, Burhans WC, Curcio MJ. 2011. Retrotransposition is associated with genome instability during chronological aging. Proc Natl Acad Sci U S A 108:20376–20381. [PubMed][CrossRef]
253. VanHoute D, Maxwell PH. 2014. Extension of Saccharomyces paradoxus chronological lifespan by retrotransposons in certain media conditions is associated with changes in reactive oxygen species. Genetics 198:531–545. [PubMed][CrossRef]
254. Stoycheva T, Pesheva M, Venkov P. 2010. The role of reactive oxygen species in the induction of Ty1 retrotransposition in Saccharomyces cerevisiae. Yeast 27:259–267. [PubMed][CrossRef]
255. Derr LK, Strathern JN. 1993. A role for reverse transcripts in gene conversion. Nature 361:170–173. [PubMed][CrossRef]
256. Derr LK, Strathern JN, Garfinkel DJ. 1991. RNA-mediated recombination in S. cerevisiae. Cell 67:355–364. [PubMed][CrossRef]
257. Roelants F, Potier S, Souciet JL, de Montigny J. 1997. Delta sequence of Ty1 transposon can initiate transcription of the distal part of the URA2 gene complex in Saccharomyces cerevisiae. FEMS Microbiol Lett 148:69–74. [PubMed][CrossRef]
258. Schacherer J, Tourrette Y, Souciet JL, Potier S, De Montigny J. 2004. Recovery of a function involving gene duplication by retroposition in Saccharomyces cerevisiae. Genome Res 14:1291–1297. [PubMed][CrossRef]
259. Fink GR. 1987. Pseudogenes in yeast? Cell 49:5–6. [PubMed][CrossRef]
260. Darai-Ramqvist E, Sandlund A, Mueller S, Klein G, Imreh S, Kost-Alimova M. 2008. Segmental duplications and evolutionary plasticity at tumor chromosome break-prone regions. Genome Res 18:370–379. [PubMed][CrossRef]
261. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, Zong C, Bai H, Chapman AR, Zhao J, Xu L, An T, Ma Q, Wang Y, Wu M, Sun Y, Wang S, Li Z, Yang X, Yong J, Su XD, Lu Y, Bai F, Xie XS, Wang J. 2013. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci U S A 110:21083–21088. [PubMed][CrossRef]
262. Gray WM, Fassler JS. 1993. Role of Saccharomyces cerevisiae Rap1 protein in Ty1 and Ty1-mediated transcription. Gene Expr 3:237–251. [PubMed]
263. Kang XL, Yadao F, Gietz RD, Kunz BA. 1992. Elimination of the yeast RAD6 ubiquitin conjugase enhances base-pair transitions and G.C → T.A transversions as well as transposition of the Ty element: implications for the control of spontaneous mutation. Genetics 130:285–294. [PubMed]
264. Liebman SW, Newnam G. 1993. A ubiquitin-conjugating enzyme, RAD6, affects the distribution of Ty1 retrotransposon integration positions. Genetics 133:499–508. [PubMed]
265. Qian Z, Huang H, Hong JY, Burck CL, Johnston SD, Berman J, Carol A, Liebman SW. 1998. Yeast Ty1 retrotransposition is stimulated by a synergistic interaction between mutations in chromatin assembly factor I and histone regulatory proteins. Mol Cell Biol 18:4783–4792. [PubMed]
266. Harger JW, Meskauskas A, Nielsen J, Justice MC, Dinman JD. 2001. Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 286:216–224. [PubMed][CrossRef]
267. Dubois E, Jacobs E, Jauniaux JC. 1982. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulatory elements and relation with the Ty1 transcription. EMBO J 1:1133–1139. [PubMed]
268. Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F. 2002. Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 12:165–170. [PubMed][CrossRef]
269. Dalgaard JZ, Banerjee M, Curcio MJ. 1996. A novel Ty1-mediated fragmentation method for native and artificial yeast chromosomes reveals that the mouse steel gene is a hotspot for Ty1 integration. Genetics 143:673–683. [PubMed]
270. Wilkinson KA, Vasa SM, Deigan KE, Mortimer SA, Giddings MC, Weeks KM. 2009. Influence of nucleotide identity on ribose 2′-hydroxyl reactivity in RNA. RNA 15:1314–1321. [PubMed][CrossRef]
271. Bridier-Nahmias A, Lesage P. 2012. Two large-scale analyses of Ty1 LTR-retrotransposon de novo insertion events indicate that Ty1 targets nucleosomal DNA near the H2A/H2B interface. Mob DNA 3:22. [PubMed][CrossRef]
microbiolspec.MDNA3-0053-2014.citations
cm/3/2
content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0053-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0053-2014
2015-03-19
2017-03-29

Abstract:

Long-terminal repeat (LTR)-retrotransposons generate a copy of their DNA (cDNA) by reverse transcription of their RNA genome in cytoplasmic nucleocapsids. They are widespread in the eukaryotic kingdom and are the evolutionary progenitors of retroviruses. The Ty1 element of the budding yeast was the first LTR-retrotransposon demonstrated to mobilize through an RNA intermediate, and not surprisingly, is the best studied. The depth of our knowledge of Ty1 biology stems not only from the predominance of active Ty1 elements in the genome but also the ease and breadth of genomic, biochemical, and cell biology approaches available to study cellular processes in yeast. This review describes the basic structure of Ty1 and its gene products, the replication cycle, the rapidly expanding compendium of host cofactors known to influence retrotransposition, and the nature of Ty1's elaborate symbiosis with its host. Our goal is to illuminate the value of Ty1 as a paradigm to explore the biology of LTR-retrotransposons in multicellular organisms, where the low frequency of retrotransposition events presents a formidable barrier to investigations of retrotransposon biology.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/2/MDNA3-0053-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MDNA3-0053-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Structure of the Ty1 element relative to the simple retrovirus, avian leukemia virus (ALV). Ty1 consists of long terminal repeats (LTRs; boxed arrowheads) flanking a central coding region that contains two overlapping ORFs, () and (), which are analogous to retroviral and genes, respectively. Separate functional domains of that are conserved in LTR-retrotransposons and retroviruses and are synthesized as part of the Gag-Pol polyprotein and cleaved into separate proteins posttranslationally include protease (PR), reverse transcriptase-RNase H (RT-RH), and integrase (IN). The retroviral envelope gene () is not present in Ty1. doi:10.1128/microbiolspec.MDNA3-0053-2014.f1

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Ty1 replication cycle. The major steps in replication of Ty1, which results in the introduction of a new copy of Ty1 into the host genome, are illustrated. A Ty1 element in the host genome (blue double helix) is transcribed and the Ty1 RNA (wavy teal lines) is exported to the cytoplasm. The RNA is translated into Gag and Gag-Pol proteins and associates with these proteins to form Ty1 RNPs, also known as retrosomes. Ty1 RNPs give rise to virus-like particles (VLPs) that encapsidate a dimer of Ty1 RNA and tRNA . Within the VLP, Gag and Pol proteins are cleaved by protease (PR) (maroon ball) to form mature Gag, PR, integrase (IN), and reverse transcriptase (RT) proteins. Following VLP maturation, Ty1 RNA is reverse transcribed into cDNA by RT (blue ball) using tRNA as a primer. The cDNA is bound by IN (purple ball) to form the preintegation complex, which is imported into the nucleus. IN integrates Ty1 cDNA into the yeast genome. doi:10.1128/microbiolspec.MDNA3-0053-2014.f2

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Assay for Ty1 retromobility using a retrotranscript indicator gene (RIG). A chromosomal Ty1 element tagged with the RIG gives rise to Ty1 cDNA bearing a functional gene. The cDNA can enter the host genome (represented by a blue double helix) by two retromobility pathways. Retrotransposition occurs when Ty1 integrase (IN) mediates the integration of cDNA into the genome, while cDNA recombination occurs when the cDNA recombines homologously with an endogenous Ty1 element. The dashed lines represent the low frequency of Ty1 cDNA recombination in wild-type cells. Cells that sustain a Ty1 retromobility event give rise to His colonies. Other RIGs used in yeast include , which is selectable with G418 and , which is selectable by adenine prototrophy ( 268 , 269 ). doi:10.1128/microbiolspec.MDNA3-0053-2014.f3

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Helper-donor assay for separation of mRNA and gRNA functions. In this assay, expression of both Ty1 elements is driven from the promoter in a strain, which lacks endogenous Ty1 expression. The helper-Ty1 encodes a functional mRNA with and ORFs and silent mutations at the 5′ end of (indicated by an asterisk) that disrupt -acting signals required for reverse transcription. The absence of a 3′ long terminal repeat (LTR) also precludes the use of the helper-Ty1 RNA as a template for reverse transcription. The donor-Ty1 RNA encodes a functional gRNA that lacks ORFs but contains -acting signals for dimerization, packaging, and reverse transcription. The RIG is also contained in this element to detect retromobility of mini-Ty1 cDNA. The minimal donor element capable of retromobility is depicted. doi:10.1128/microbiolspec.MDNA3-0053-2014.f4

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Ty1 transcription. (A) Sense and antisense RNAs transcribed from Ty1. The Ty1 sense-strand transcript starts at the U3/R junction of the 5′ LTR and ends at the R/U5 junction of the 3′ LTR. The 5 kb Ty1 RNA species is detected in mutants. Ty1AS RNA 5′ and 3′ extremities have been mapped by RACE to positions 661 ( 68 ) and 760 ( 33 ) of Ty1-H3 and to positions 136 and 178 of Ty1-H3 ( 33 ), respectively. (B) Organization of the Ty1 promoter. Ty1 contains two TATA boxes, T and T (at positions 159 to 165 and 167 to 173, respectively) and two termination sequences TS (5,776 to 5,781) and TS (5,837 to 5,842). The arrow and lollipop indicate sites of transcription initiation and termination, respectively. The Ty1 promoter extends over 1 kb including the 5′ LTR and part of the ORF. The positions of the Ty1 activator binding sites are: Gcn4 (five binding sites: 12 to 17, 79 to 84, 98 to 103, 155 to 160, and 318 to 323), Gcr1 (115 to 119), Ste12 (395 to 401), Tec1 (418 to 422), Tye7 (three binding sites: 463 to 468, 661 to 666, and 727 to 732), Mcm1 (833 to 848), Tea1/Ibf1 (884 to 899), and Rap1 (911 to 923). The filamentous response element (FRE) comprises Ste12 and Tec1 binding sites, while MIR comprises Mcm1, Tea1/Ibf1, and Rap1 binding sites. The positions of the Ty1 repressor binding sites are: Mot3 (several binding sites in the 5′ LTR; higher affinity site at positions 147 to 150) and a1/α2 (832 to 863). Positions are given relative to Ty1-H3 sequence ( 10 ). doi:10.1128/microbiolspec.MDNA3-0053-2014.f5

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Expression of individual endogenous Ty1 elements. Relative transcriptional activities of 31 Ty1 elements present in the S288C strain (adapted from Morillon et al. [ 56 ]). Ty1/Ty2 hybrid elements are indicated by black filled bars and Ty′ elements are indicated by gray filled bars. doi:10.1128/microbiolspec.MDNA3-0053-2014.f6

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Secondary structure model of the 5′ end of Ty1 RNA. (Reproduced from Purzycka et al. [ 74 ].) Full-length Ty1 RNA within virus-like particles (VLPs) () was analyzed to determine the SHAPE reactivities of nucleotides 1 to 1,482, which are individually represented by a color-coded ball. The color is indicative of the reactivity of that nucleotide to the SHAPE reagent, N-methyisatoic anhydride (NMIA). The secondary structure model in which regions predicted to be based-paired (illustrated as bars linking balls) and regions predicted to be single stranded are shown was obtained from the SHAPE reactivities using RNAstructure 4.6 software ( 270 ). Nucleotide positions at which SHAPE reactivities changed when the proteins were gently stripped away from VLP-associated Ty1 RNA () are marked with blue diamonds (increased reactivity) or gray diamonds (decreased reactivity). Annotated regions include the following: PAL1, PAL2, and PAL3 motifs, at which the differences in nucleotide reactivity versus suggest that the Ty1 RNA pairs with a second molecule of Ty1 RNA to form a dimer; the AUG codon of (nucleotides 54 to 57); CYC5, a region that hybridizes to the CYC3 domain near the 3′ end of Ty1 RNA; primer binding sequence (PBS), Box 0, and Box 1, where the tRNA primer (shown in gray) hybridizes to Ty1 RNA to initiate reverse transcription; and the Gag-Pol frameshift site at nucleotides 1,356 to 1,362. doi:10.1128/microbiolspec.MDNA3-0053-2014.f7

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Click to view

FIGURE 8

The Ty1 retrosome. Retrosomes are cytoplasmic foci in which Gag and retrotransposon RNA colocalize, as visualized by fluorescence microscopy. Ty1 retrosomes are detected in fixed cells after fluorescence hybridization and immunofluorescence. Ty1 RNA is detected using a DNA oligomer end-labeled with Cy3, and Gag is detected using anti-VLP antibodies that are bound by a secondary antibody coupled to Alexa Fluor® 488 (Life Technologies, Grand Island, NY) doi:10.1128/microbiolspec.MDNA3-0053-2014.f8

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9

Click to view

FIGURE 9

Steps in reverse transcription of Ty1 cDNA. Details of each step are provided in the text. Gag and protease (PR) have nucleic acid chaperone activities required for reverse transcription and integrase (IN) facilitates the reverse transcription reaction carried out by reverse transcriptase/RNase H (RT/RH). In this schematic, minus-strand strong-stop (msss) cDNA is shown being transferred to the second Ty1 RNA in the VLP for minus strand cDNA synthesis. However, it is formally possible that msss cDNA transfers to the 3′ end of the first Ty1 RNA, as long as this RNA, following RNAse H-mediated degradation, contains a remnant of R-U5 sequence to template minus-strand cDNA synthesis so that minus-strand cDNA can hybridize to plus-strand strong-stop (psss) cDNA in the final step of the RT reaction. Single strands of cDNA are represented by thin green lines; the presence of an arrowhead indicates strands being extended by reverse transcription. Blue wavy line, Ty1 RNA; short blue squiggles, polypurine tracts of Ty1 RNA, cPPT and PPT, remaining after RNase H endonucleolytic activity; blue pacman shape, RNase H activity of RT/RH; LTR, long terminal repeat; PBS, primer binding sequence. doi:10.1128/microbiolspec.MDNA3-0053-2014.f9

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10

Click to view

FIGURE 10

Integrase and the integration target region. (A) Schematic representation of Ty1 integrase domains. Amino acid residues in the zinc binding motif (ZBD) and the catalytic core domain that are conserved in retroviral integrases, or residues in the C-terminal domain that are conserved in the family of long terminal repeat-retrotransposons are indicated. Identical clusters of basic residues that define the bipartite nuclear localization signal (NLS) are also indicated. (B) Plot of Ty1 insertions upstream of tRNA genes. (Reproduced from Bridier-Nahmias and Lesage [ 271 ].) The blue curve above the midline represents Ty1 insertions in tandem with the tRNA genes and that below the midline represents elements inserted in inverted orientation. doi:10.1128/microbiolspec.MDNA3-0053-2014.f10

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

List of verified host factors that regulate Ty1 retromobility

Source: microbiolspec March 2015 vol. 3 no. 2 doi:10.1128/microbiolspec.MDNA3-0053-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error