1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Pup-Proteasome System of Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    137.14 Kb
  • PDF
    339.43 Kb
  • XML
    112.69 Kb
  • Authors: Nadine J. Bode1, K. Heran Darwin2
  • Editors: Graham F. Hatfull3, William R. Jacobs Jr.4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236, New York, NY 10016; 2: New York University School of Medicine, Department of Microbiology, 550 First Avenue, MSB 236, New York, NY 10016; 3: University of Pittsburgh, Pittsburgh, PA; 4: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0008-2013
  • Received 08 April 2013 Accepted 26 July 2013 Published 12 September 2014
  • K. H. Darwin, heran.darwin@med.nyu.edu
image of The Pup-Proteasome System of Mycobacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Pup-Proteasome System of Mycobacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/MGM2-0008-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/MGM2-0008-2013-2.gif
  • Abstract:

    Proteasomes are ATP-dependent, barrel-shaped proteases found in all three domains of life. In eukaryotes, proteins are typically targeted for degradation by posttranslational modification with the small protein ubiquitin. In 2008, the first bacterial protein modifier, Pup (rokaryotic biquitin-like rotein), was identified in . Functionally analogous to ubiquitin, conjugation with Pup serves as a signal for degradation by the mycobacterial proteasome. Proteolysis-dependent and -independent functions of the proteasome are essential for virulence of this successful pathogen. In this article we describe the discovery of the proteasome as a key player in tuberculosis pathogenesis and the biology and biochemistry of the Pup-proteasome system.

  • Citation: Bode N, Darwin K. 2014. The Pup-Proteasome System of Mycobacteria. Microbiol Spectrum 2(5):MGM2-0008-2013. doi:10.1128/microbiolspec.MGM2-0008-2013.

Key Concept Ranking

Bacteria and Archaea
0.4853081
Bacterial Proteins
0.44821882
Nuclear Magnetic Resonance Spectroscopy
0.42527366
0.4853081

References

1. MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248. [PubMed][CrossRef]
2. Nathan C, Shiloh MU. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848. [PubMed][CrossRef]
3. Alvarez B, Radi R. 2003. Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25:295–311. [PubMed][CrossRef]
4. Fang FC. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832. [PubMed][CrossRef]
5. Szabo C. 2003. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett 140–141:105–112. [PubMed][CrossRef]
6. Ernst JD. 2012. The immunological life cycle of tuberculosis. Nat Rev Immunol 12:581–591. [PubMed][CrossRef]
7. Darwin KH, Ehrt S, Gutierrez-Ramos JC, Weich N, Nathan CF. 2003. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 302:1963–1966. [PubMed][CrossRef]
8. Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R, Baumeister W. 1998. Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 277:13–25. [PubMed][CrossRef]
9. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. [PubMed][CrossRef]
10. Murata S, Yashiroda H, Tanaka K. 2009. Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol 10:104–115. [PubMed][CrossRef]
11. Finley D. 2009. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513. [PubMed][CrossRef]
12. Rubin DM, Finley D. 1995. Proteolysis. The proteasome: a protein-degrading organelle? Curr Biol 5:854–858. [PubMed][CrossRef]
13. Kisselev AF, Akopian TN, Woo KM, Goldberg AL. 1999. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274:3363–3371. [PubMed][CrossRef]
14. Schrader EK, Harstad KG, Matouschek A. 2009. Targeting proteins for degradation. Nat Chem Biol 5:815–822. [PubMed][CrossRef]
15. Dahlmann B, Kopp F, Kuehn L, Niedel B, Pfeifer G, Hegerl R, Baumeister W. 1989. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett 251:125–131. [PubMed][CrossRef]
16. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539. [PubMed][CrossRef]
17. Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W. 1995. The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766–774. [PubMed][CrossRef]
18. Knipfer N, Shrader TE. 1997. Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol Microbiol 25:375–383. [PubMed][CrossRef]
19. Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R. 1998. The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180:5448–5453. [PubMed]
20. Pouch MN, Cournoyer B, Baumeister W. 2000. Characterization of the 20S proteasome from the actinomycete Frankia. Mol Microbiol 35:368–377. [PubMed][CrossRef]
21. Lupas A, Zuhl F, Tamura T, Wolf S, Nagy N, De Mot R, Baumeister W. 1997. Eubacterial proteasomes. Mol Biol Rep 24:125–131. [PubMed][CrossRef]
22. Ram RJ, Verberkmoes NC, Thelen MP, Tyson GW, Baker BJ, Blake RC, 2nd, Shah M, Hettich RL, Banfield JF. 2005. Community proteomics of a natural microbial biofilm. Science 308:1915–1920. [PubMed][CrossRef]
23. Gille C, Goede A, Schloetelburg C, Preissner R, Kloetzel PM, Gobel UB, Frommel C. 2003. A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol 326:1437–1448. [PubMed][CrossRef]
24. De Mot R. 2007. Actinomycete-like proteasomes in a Gram-negative bacterium. Trends Microbiol 15:335–338. [PubMed][CrossRef]
25. Wang T, Li H, Lin G, Tang C, Li D, Nathan C, Darwin KH, Li H. 2009. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17:1377–1385. [PubMed][CrossRef]
26. Hu G, Lin G, Wang M, Dick L, Xu RM, Nathan C, Li H. 2006. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol Microbiol 59:1417–1428. [PubMed][CrossRef]
27. Lin G, Hu G, Tsu C, Kunes YZ, Li H, Dick L, Parsons T, Li P, Chen Z, Zwickl P, Weich N, Nathan C. 2006. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol Microbiol 59:1405–1416. [PubMed][CrossRef]
28. Butler SM, Festa RA, Pearce MJ, Darwin KH. 2006. Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60:553–562. [PubMed][CrossRef]
29. Husnjak K, Dikic I. 2012. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322. [PubMed][CrossRef]
30. Kerscher O, Felberbaum R, Hochstrasser M. 2006. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180. [PubMed][CrossRef]
31. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One 3:e1487. [PubMed][CrossRef]
32. Deshaies RJ, Joazeiro CA. 2009. RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434. [PubMed][CrossRef]
33. Rotin D, Kumar S. 2009. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409. [PubMed][CrossRef]
34. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. 2000. Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102. [PubMed][CrossRef]
35. Shabek N, Herman-Bachinsky Y, Buchsbaum S, Lewinson O, Haj-Yahya M, Hejjaoui M, Lashuel HA, Sommer T, Brik A, Ciechanover A. 2012. The size of the proteasomal substrate determines whether its degradation will be mediated by mono- or polyubiquitylation. Mol Cell 48:87–97. [PubMed][CrossRef]
36. Pearce MJ, Arora P, Festa RA, Butler-Wu SM, Gokhale RS, Darwin KH. 2006. Identification of substrates of the Mycobacterium tuberculosis proteasome. EMBO J 25:5423–5432. [PubMed][CrossRef]
37. Darwin KH, Lin G, Chen Z, Li H, Nathan CF. 2005. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue. Mol Microbiol 55:561–571. [PubMed][CrossRef]
38. Karimova G, Pidoux J, Ullmann A, Ladant D. 1998. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA 95:5752–5756. [PubMed][CrossRef]
39. Singh A, Mai D, Kumar A, Steyn AJ. 2006. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci USA 103:11346–11351. [PubMed][CrossRef]
40. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. 2008. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322:1104–1107. [PubMed][CrossRef]
41. Burns KE, Liu WT, Boshoff HI, Dorrestein PC, Barry CE, 3rd. 2009. Proteasomal protein degradation in mycobacteria is dependent upon a prokaryotic ubiquitin-like protein. J Biol Chem 284:3069–3075. [PubMed][CrossRef]
42. Chen X, Solomon WC, Kang Y, Cerda-Maira F, Darwin KH, Walters KJ. 2009. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J Mol Biol 392:208–217. [PubMed][CrossRef]
43. Liao S, Shang Q, Zhang X, Zhang J, Xu C, Tu X. 2009. Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem J 422:207–215. [PubMed][CrossRef]
44. Sutter M, Striebel F, Damberger FF, Allain FH, Weber-Ban E. 2009. A distinct structural region of the prokaryotic ubiquitin-like protein (Pup) is recognized by the N-terminal domain of the proteasomal ATPase Mpa. FEBS Lett 583:3151–3157. [PubMed][CrossRef]
45. Hochstrasser M. 2009. Origin and function of ubiquitin-like proteins. Nature 458:422–429. [PubMed][CrossRef]
46. Festa RA, Pearce MJ, Darwin KH. 2007. Characterization of the proteasome accessory factor (paf) operon in Mycobacterium tuberculosis. J Bacteriol 189:3044–3050. [PubMed][CrossRef]
47. Iyer LM, Burroughs AM, Aravind L. 2008. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol Direct 3:45. [PubMed][CrossRef]
48. Striebel F, Imkamp F, Sutter M, Steiner M, Mamedov S, Weber-Ban E. 2009. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nat Struct Mol Biol 16:647–651. [PubMed][CrossRef]
49. Cerda-Maira FA, Pearce MJ, Fuortes M, Bishai WR, Hubbard SR, Darwin KH. 2010. Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol Microbiol 77:1123–1135. [PubMed][CrossRef]
50. Guth E, Thommen M, Weber-Ban E. 2011. Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated pup intermediate. J Biol Chem 286:4412–4419. [PubMed][CrossRef]
51. Sutter M, Damberger FF, Imkamp F, Allain FH, Weber-Ban E. 2010. Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. J Am Chem Soc 132:5610–5612. [PubMed][CrossRef]
52. Burns KE, Darwin KH. 2010. Pupylation: a signal for proteasomal degradation in Mycobacterium tuberculosis. Subcell Biochem 54:149–157. [PubMed][CrossRef]
53. Komander D, Clague MJ, Urbe S. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563. [PubMed][CrossRef]
54. Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH. 2010. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol Cell 39:821–827. [PubMed][CrossRef]
55. Imkamp F, Striebel F, Sutter M, Ozcelik D, Zimmermann N, Sander P, Weber-Ban E. 2010. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep 11:791–797. [PubMed][CrossRef]
56. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. 2009. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473. [PubMed][CrossRef]
57. Imkamp F, Rosenberger T, Striebel F, Keller PM, Amstutz B, Sander P, Weber-Ban E. 2010. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol Microbiol 75:744–754. [PubMed][CrossRef]
58. Burns KE, Pearce MJ, Darwin KH. 2010. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J Bacteriol 192:2933–2935. [PubMed][CrossRef]
59. Ozcelik D, Barandun J, Schmitz N, Sutter M, Guth E, Damberger FF, Allain FH, Ban N, Weber-Ban E. 2012. Structures of Pup ligase PafA and depupylase Dop from the prokaryotic ubiquitin-like modification pathway. Nat Commun 3:1014. [PubMed][CrossRef]
60. Cerda-Maira FA, McAllister F, Bode NJ, Burns KE, Gygi SP, Darwin KH. 2011. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli. EMBO Rep 12:863–870. [PubMed][CrossRef]
61. Burns KE, McAllister FE, Schwerdtfeger C, Mintseris J, Cerda-Maira F, Noens EE, Wilmanns M, Hubbard SR, Melandri F, Ovaa H, Gygi SP, Darwin KH. 2012. Mycobacterium tuberculosis prokaryotic ubiquitin-like protein-deconjugating enzyme is an unusual aspartate amidase. J Biol Chem 287:37522–37529. [PubMed][CrossRef]
62. Barandun J, Delley CL, Weber-Ban E. 2012. The pupylation pathway and its role in mycobacteria. BMC Biol 10:95. [PubMed][CrossRef]
63. Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A. 2012. Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191. [PubMed]
64. Wang T, Darwin KH, Li H. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17:1352–1357. [PubMed][CrossRef]
65. Festa RA, McAllister F, Pearce MJ, Mintseris J, Burns KE, Gygi SP, Darwin KH. 2010. Prokaryotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis [corrected]. PLoS One 5:e8589. [PubMed][CrossRef]
66. Watrous J, Burns K, Liu WT, Patel A, Hook V, Bafna V, Barry CE, 3rd, Bark S, Dorrestein PC. 2010. Expansion of the mycobacterial “PUPylome.” Mol Biosyst 6:376–385. [PubMed][CrossRef]
67. Poulsen C, Akhter Y, Jeon AH, Schmitt-Ulms G, Meyer HE, Stefanski A, Stuhler K, Wilmanns M, Song YH. 2010. Proteome-wide identification of mycobacterial pupylation targets. Mol Syst Biol 6:386. [PubMed][CrossRef]
68. Gareau JR, Lima CD. 2010. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871. [PubMed][CrossRef]
69. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350. [PubMed][CrossRef]
70. Lamichhane G, Raghunand TR, Morrison NE, Woolwine SC, Tyagi S, Kandavelou K, Bishai WR. 2006. Deletion of a Mycobacterium tuberculosis proteasomal ATPase homologue gene produces a slow-growing strain that persists in host tissues. J Infect Dis 194:1233–1240. [PubMed][CrossRef]
71. Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84. [PubMed][CrossRef]
72. Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. 2007. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 13:1515–1520. [PubMed][CrossRef]
73. Gandotra S, Lebron MB, Ehrt S. 2010. The Mycobacterium tuberculosis proteasome active site threonine is essential for persistence yet dispensable for replication and resistance to nitric oxide. PLoS Pathog 6:e1001040. [PubMed][CrossRef]
74. Gottesman S. 2003. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol 19:565–587. [PubMed][CrossRef]
75. Gur E, Biran D, Ron EZ. 2011. Regulated proteolysis in Gram-negative bacteria: how and when? Nat Rev Microbiol 9:839–848. [PubMed][CrossRef]
76. Collins GA, Tansey WP. 2006. The proteasome: a utility tool for transcription? Curr Opin Genet Dev 16:197–202. [PubMed][CrossRef]
77. Maciag A, Dainese E, Rodriguez GM, Milano A, Provvedi R, Pasca MR, Smith I, Palu G, Riccardi G, Manganelli R. 2007. Global analysis of the Mycobacterium tuberculosis Zur (FurB) regulon. J Bacteriol 189:730–740. [PubMed][CrossRef]
78. Serafini A, Boldrin F, Palu G, Manganelli R. 2009. Characterization of a Mycobacterium tuberculosis ESX-3 conditional mutant: essentiality and rescue by iron and zinc. J Bacteriol 191:6340–6344. [PubMed][CrossRef]
79. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, Fortune SM, Moody DB, Rubin EJ. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106:18792–18797. [PubMed][CrossRef]
80. Nanamiya H, Akanuma G, Natori Y, Murayama R, Kosono S, Kudo T, Kobayashi K, Ogasawara N, Park SM, Ochi K, Kawamura F. 2004. Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. Mol Microbiol 52:273–283. [PubMed][CrossRef]
81. Natori Y, Nanamiya H, Akanuma G, Kosono S, Kudo T, Ochi K, Kawamura F. 2007. A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. Mol Microbiol 63:294–307. [PubMed][CrossRef]
82. Pruteanu M, Baker TA. 2009. Proteolysis in the SOS response and metal homeostasis in Escherichia coli. Res Microbiol 160:677–683. [PubMed][CrossRef]
83. Festa RA, Jones MB, Butler-Wu S, Sinsimer D, Gerads R, Bishai WR, Peterson SN, Darwin KH. 2011. A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol Microbiol 79:133–148. [PubMed][CrossRef]
84. Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C. 2008. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4:609–616. [PubMed][CrossRef]
85. Samanovic MI, Ding C, Thiele DJ, Darwin KH. 2012. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 11:106–115. [PubMed][CrossRef]
86. Prentice AM, Ghattas H, Cox SE. 2007. Host-pathogen interactions: can micronutrients tip the balance? J Nutr 137:1334–1337. [PubMed]
87. Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, Zhou G, Chen S, Wells L, Maupin-Furlow JA. 2010. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54–60. [PubMed][CrossRef]
88. Delley CL, Striebel F, Heydenreich FM, Ozcelik D, Weber-Ban E. 2012. Activity of the mycobacterial proteasomal ATPase Mpa is reversibly regulated by pupylation. J Biol Chem 287:7907–7914. [PubMed][CrossRef]
microbiolspec.MGM2-0008-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0008-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0008-2013
2014-09-12
2017-09-26

Abstract:

Proteasomes are ATP-dependent, barrel-shaped proteases found in all three domains of life. In eukaryotes, proteins are typically targeted for degradation by posttranslational modification with the small protein ubiquitin. In 2008, the first bacterial protein modifier, Pup (rokaryotic biquitin-like rotein), was identified in . Functionally analogous to ubiquitin, conjugation with Pup serves as a signal for degradation by the mycobacterial proteasome. Proteolysis-dependent and -independent functions of the proteasome are essential for virulence of this successful pathogen. In this article we describe the discovery of the proteasome as a key player in tuberculosis pathogenesis and the biology and biochemistry of the Pup-proteasome system.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/MGM2-0008-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0008-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Eukaryotic ubiquitin-proteasome system. Ubiquitin (Ub) precursors are processed to expose a C-terminal di-glycine motif. The conjugation-competent Ub is adenylated and subsequently bound in a high-energy thioester bond by the E1-activating enzyme. Ub is then transferred to the catalytic cysteine of an E2-conjugating enzyme. Ub can be ligated to substrates with the help of E3-ligases. Typically, tetra-Ub chains linked at lysine 48 are recognized by the 26S proteasome. Deubiquitylases can remove Ub from substrates. doi:10.1128/microbiolspec.MGM2-0008-2013.f1

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0008-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Mycobacterial pupylation pathway. Pup is deamidated at the C-terminal glutamine by Dop (deamidase of Pup). The Pup ligase PafA phosphorylates the C-terminal γ-carboxylate of Pup and then conjugates Pup to lysine residues of target proteins via an isopeptide bond. The mycobacterial proteasome and its cognate ATPase Mpa degrade pupylated proteins. Dop also acts as a depupylase, allowing for Pup to be recycled. doi:10.1128/microbiolspec.MGM2-0008-2013.f2

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0008-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Genomic organization of PPS genes in mycobacteria. Gene data are from http://tuberculist.epfl.ch/. * and are cotranscribed with in H37Rv ( 46 ). However, no apparent contribution to pupylation has been demonstrated for PafB or PafC ( 40 ). doi:10.1128/microbiolspec.MGM2-0008-2013.f3

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0008-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Summary of phenotypes observed for mutants of the PPS

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0008-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error