1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Two-Component Regulatory Systems of Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    133.76 Kb
  • HTML
    127.21 Kb
  • PDF
    338.16 Kb
  • Author: Tanya Parish1
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Infectious Disease Research Institute, Seattle, WA and Queen Mary University of London, London, United Kingdom; 2: University of Pittsburgh, Pittsburgh, PA 15260; 3: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0010-2013
  • Received 08 August 2013 Accepted 27 August 2013 Published 31 January 2014
  • Tanya Parish, tanya.parish@idri.org
image of Two-Component Regulatory Systems of Mycobacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Two-Component Regulatory Systems of Mycobacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0010-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0010-2013-2.gif
  • Abstract:

    Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular

  • Citation: Parish T. 2014. Two-Component Regulatory Systems of Mycobacteria. Microbiol Spectrum 2(1):MGM2-0010-2013. doi:10.1128/microbiolspec.MGM2-0010-2013.

References

1. Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu Rev Biochem 69:183215. [PubMed][CrossRef]
2. Hoch JA. 2000. Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165170. [PubMed]
3. Wuichet K, Cantwell BJ, Zhulin IB. 2010. Evolution and phyletic distribution of two-component signal transduction systems. Curr Opin Microbiol 13:219225. [PubMed][CrossRef]
4. West AH, Stock AM. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369376. [PubMed]
5. Jung K, Fried L, Behr S, Heermann R. 2012. Histidine kinases and response regulators in networks. Curr Opin Microbiol 15:118124. [PubMed][CrossRef]
6. Ashby MK. 2004. Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. FEMS Microbiol Lett 231:277281. [PubMed][CrossRef]
7. Barrett JF, Hoch JA. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 42:15291536. [PubMed]
8. Wolanin PM, Thomason PA, Stock JB. 2002. Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3:3013.30113013.3018. [PubMed]
9. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544. [PubMed][CrossRef]
10. Lee HN, Jung KE, Ko IJ, Baik HS, Oh JI. 2012. Protein-protein interactions between histidine kinases and response regulators of Mycobacterium tuberculosis H37Rv. J Microbiol 50:270277. [PubMed][CrossRef]
11. Gonzalo-Asensio J, Mostowy S, Harders-Westerveen J, Huygen K, Hernandez-Pando R, Thole J, Behr M, Gicquel B, Martin C. 2008. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS One 3(10):e3496. [PubMed][CrossRef]
12. Wang S, Engohang-Ndong J, Smith I. 2007. Structure of the DNA binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochemistry 46:1475114761. [PubMed][CrossRef]
13. Gupta S, Sinha A, Sarkar D. 2006. Transcriptional autoregulation by Mycobacterium tuberculosis PhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Lett 580:53285338. [PubMed][CrossRef]
14. Gonzalo-Asensio J, Soto CY, Arbues A, Sancho J, del Carmen Menendez M, Garcia MJ, Gicquel B, Martin C. 2008. The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J Bacteriol 190:70687078. [PubMed][CrossRef]
15. Sinha A, Gupta S, Bhutani S, Pathak A, Sarkar D. 2008. PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J Bacteriol 190:13171328. [PubMed][CrossRef]
16. Gupta S, Pathak A, Sinha A, Sarkar D. 2009. Mycobacterium tuberculosis PhoP recognizes two adjacent direct-repeat sequences to form head-to-head dimers. J Bacteriol 191:74667476. [PubMed][CrossRef]
17. Menon S, Wang S. 2011. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 50:59485957. [PubMed][CrossRef]
18. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312330. [PubMed][CrossRef]
19. Gao CH, Yang M, He ZG. 2011. An ArsR-like transcriptional factor recognizes a conserved sequence motif and positively regulates the expression of phoP in mycobacteria. Biochem Biophys Res Commun 411:726731. [PubMed][CrossRef]
20. Gao CH, Yang M, He ZG. 2012. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 7:e36255. [PubMed][CrossRef]
21. Pathak A, Goyal R, Sinha A, Sarkar D. 2010. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulator-promoter interaction(s). J Biol Chem 285:3430934318. [PubMed][CrossRef]
22. Goyal R, Das AK, Singh R, Singh PK, Korpole S, Sarkar D. 2011. Phosphorylation of PhoP protein plays a direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286:4519745208. [PubMed][CrossRef]
23. Zeng J, Cui T, He ZG. 2012. A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res 11:46824692. [PubMed][CrossRef]
24. Cimino M, Thomas C, Namouchi A, Dubrac S, Gicquel B, Gopaul DN. 2012. Identification of DNA binding motifs of the Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system. PLoS One 7:e42876. [PubMed][CrossRef]
25. Ludwiczak P, Gilleron M, Bordat Y, Martin C, Gicquel B, Puzo G. 2002. Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. Microbiology 148:30293037. [PubMed]
26. Goude R, Amin AG, Chatterjee D, Parish T. 2008. The critical role of embC in Mycobacterium tuberculosis. J Bacteriol 190:43354341. [PubMed][CrossRef]
27. Goude R, Parish T. 2008. The genetics of cell wall biosynthesis in Mycobacterium tuberculosis. Future Microbiol 3:299313. [PubMed][CrossRef]
28. Brennan PJ. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:9197. [PubMed]
29. Asensio JG, Maia C, Ferrer NL, Barilone N, Laval F, Soto CY, Winter N, Daffe M, Gicquel B, Martin C, Jackson M. 2006. The virulence-associated two component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281:13131316. [PubMed][CrossRef]
30. Abramovitch RB, Rohde KH, Hsu FF, Russell DG. 2011. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol Microbiol 80:678694. [PubMed][CrossRef]
31. Frigui W, Bottai D, Majlessi L, Monot M, Josselin E, Brodin P, Garnier T, Gicquel B, Martin C, Leclerc C, Cole ST, Brosch R. 2008. Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. PLoS Pathog 4:e33. [PubMed][CrossRef]
32. Lee JS, Krause R, Schreiber J, Mollenkopf HJ, Kowall J, Stein R, Jeon BY, Kwak JY, Song MK, Patron JP, Jorg S, Roh K, Cho SN, Kaufmann SH. 2008. Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. Cell Host Microbe 3:97103. [PubMed][CrossRef]
33. Chesne-Seck ML, Barilone N, Boudou F, Gonzalo Asensio J, Kolattukudy PE, Martin C, Cole ST, Gicquel B, Gopaul DN, Jackson M. 2008. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bacteriol 190:13291334.
34. Li AH, Waddell SJ, Hinds J, Malloff CA, Bains M, Hancock RE, Lam WL, Butcher PD, Stokes RW. 2010. Contrasting transcriptional responses of a virulent and an attenuated strain of Mycobacterium tuberculosis infecting macrophages. PLoS One 5:e11066. [PubMed][CrossRef]
35. Ferrer NL, Gomez AB, Neyrolles O, Gicquel B, Martin C. 2010. Interactions of attenuated Mycobacterium tuberculosisphoP mutant with human macrophages. PLoS One 5(9):e12978. [PubMed][CrossRef]
36. Aporta A, Arbues A, Aguilo JI, Monzon M, Badiola JJ, de Martino A, Ferrer N, Marinova D, Anel A, Martin C, Pardo J. 2012. Attenuated Mycobacterium tuberculosis SO2 vaccine candidate is unable to induce cell death. PLoS One 7:e45213. [PubMed][CrossRef]
37. Perez E, Samper S, Bordas Y, Guilhot C, Gicquel B, Martin C. 2001. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol Microbiol 41:179187. [PubMed]
38. Asensio JA, Arbues A, Perez E, Gicquel B, Martin C. 2008. Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials. Expert Opin Biol Ther 8:201211. [PubMed][CrossRef]
39. Martin C, Williams A, Hernandez-Pando R, Cardona PJ, Gormley E, Bordat Y, Soto CY, Clark SO, Hatch GJ, Aguilar D, Ausina V, Gicquel B. 2006. The live Mycobacterium tuberculosisphoP mutant strain is more attenuated than BCG and confers protective immunity against tuberculosis in mice and guinea pigs. Vaccine 24:34083419. [PubMed][CrossRef]
40. Verreck FA, Vervenne RA, Kondova I, van Kralingen KW, Remarque EJ, Braskamp G, van der Werff NM, Kersbergen A, Ottenhoff TH, Heidt PJ, Gilbert SC, Gicquel B, Hill AV, Martin C, McShane H, Thomas AW. 2009. MVA.85A boosting of BCG and an attenuated, phoP deficient M. tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus macaques. PLoS One 4:e5264. [PubMed][CrossRef]
41. Cardona PJ, Asensio JG, Arbues A, Otal I, Lafoz C, Gil O, Caceres N, Ausina V, Gicquel B, Martin C. 2009. Extended safety studies of the attenuated live tuberculosis vaccine SO2 based on phoP mutant. Vaccine 27:24992505. [PubMed][CrossRef]
42. Soto CY, Menendez MC, Perez E, Samper S, Gomez AB, Garcia MJ, Martin C. 2004. IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212219. [PubMed]
43. Leung AS, Tran V, Wu Z, Yu X, Alexander DC, Gao GF, Zhu B, Liu J. 2008. Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics 9:413. [PubMed][CrossRef]
44. Zahrt TC, Deretic V. 2001. Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci USA 98:1270612711. [PubMed][CrossRef]
45. Zahrt TC, Wozniak C, Jones D, Trevett A. 2003. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect Immun 71:69626970. [PubMed]
46. He H, Zahrt TC. 2005. Identification and characterization of a regulatory sequence recognized by Mycobacterium tuberculosis persistence regulator MprA. J Bacteriol 187:202212. [PubMed][CrossRef]
47. Dona V, Rodrigue S, Dainese E, Palu G, Gaudreau L, Manganelli R, Provvedi R. 2008. Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor sigmaE in Mycobacterium tuberculosis. J Bacteriol 190:59635971.
48. Pang X, Vu P, Byrd TF, Ghanny S, Soteropoulos P, Mukamolova GV, Wu S, Samten B, Howard ST. 2007. Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. Microbiology 153:12291242. [PubMed][CrossRef]
49. Sureka K, Dey S, Datta P, Singh AK, Dasgupta A, Rodrigue S, Basu J, Kundu M. 2007. Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. Mol Microbiol 65:261276. [PubMed][CrossRef]
50. Sureka K, Ghosh B, Dasgupta A, Basu J, Kundu M, Bose I. 2008. Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One 3:e1771. [PubMed][CrossRef]
51. White MJ, He H, Penoske RM, Twining SS, Zahrt TC. 2010. PepD participates in the mycobacterial stress response mediated through MprAB and SigE. J Bacteriol 192:14981510. [PubMed][CrossRef]
52. White MJ, Savaryn JP, Bretl DJ, He H, Penoske RM, Terhune SS, Zahrt TC. 2011. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One 6:e18175. [PubMed][CrossRef]
53. He H, Bretl DJ, Penoske RM, Anderson DM, Zahrt TC. 2011. Components of the Rv0081-Rv0088 locus, which encodes a predicted formate hydrogenlyase complex, are coregulated by Rv0081, MprA, and DosR in Mycobacterium tuberculosis. J Bacteriol 193:51055118. [PubMed][CrossRef]
54. Bretl DJ, He H, Demetriadou C, White MJ, Penoske RM, Salzman NH, Zahrt TC. 2012. MprA and DosR coregulate a Mycobacterium tuberculosis virulence operon encoding Rv1813c and Rv1812c. Infect Immun 80:30183033. [PubMed][CrossRef]
55. Pang X, Howard ST. 2007. Regulation of the alpha-crystallin gene acr2 by the MprAB two-component system of Mycobacterium tuberculosis. J Bacteriol 189:62136221. [PubMed][CrossRef]
56. Pang X, Cao G, Neuenschwander PF, Haydel SE, Hou G, Howard ST. 2011. The beta-propeller gene Rv1057 of Mycobacterium tuberculosis has a complex promoter directly regulated by both the MprAB and TrcRS two-component systems. Tuberculosis 91(Suppl 1):S142S149. [PubMed][CrossRef]
57. Pang X, Samten B, Cao G, Wang X, Tvinnereim AR, Chen XL, Howard ST. 2013. MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. J Bacteriol 195:6675. [PubMed][CrossRef]
58. Wren BW, Colby SM, Cubberley RR, Pallen MJ. 1992. Degenerate PCR primers for the amplification of fragments from genes encoding response regulators from a range of pathogenic bacteria. FEMS Microbiol Lett 99:287292. [PubMed]
59. Supply P, Magdalena J, Himpens S, Locht C. 1997. Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26:9911003. [PubMed]
60. Allix-Bguec C, Harmsen D, Weniger T, Supply P, Niemann S. 2008. Evaluation and user-strategy of MIRU-VNTRplus, a multifunctional database for online analysis of genotyping data and phylogenetic identification of Mycobacterium tuberculosis complex isolates. J Clin Microbiol 46:26922699. [PubMed][CrossRef]
61. Himpens S, Locht C, Supply P. 2000. Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. Microbiology 146:30913098. [PubMed]
62. Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, Millar JBA, Buxton RS. 2004. A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun 314:259267. [PubMed]
63. Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR, Jr. 2007. The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 189:54955503. [PubMed][CrossRef]
64. Rifat D, Bishai WR, Karakousis PC. 2009. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J Inf Dis 200:11261135. [PubMed][CrossRef]
65. Brennan RG. 1993. The winged-helix DNA binding motif: another helix-turn-helix takeoff. Cell 74:773776. [PubMed]
66. Martinez-Hackert E, Stock AM. 1997. Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol 269:301312. [PubMed][CrossRef]
67. Kondo H, Nakagawa A, Nishihira J, Nishimura Y, Mizuno T, Tanaka I. 1997. Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nat Struct Biol 4:2831. [PubMed]
68. Toro-Roman A, Mack TR, Stock AM. 2005. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Biol Chem 349:1126. [PubMed][CrossRef]
69. Toro-Roman A, Wu T, Stock AM. 2005. A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 14:30773088. [PubMed][CrossRef]
70. King-Scott J, Nowak E, Mylonas E, Panjikar S, Roessle M, Svergun DI, Tucker PA. 2007. The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three-dimensional domain-swapped, activated state. J Biol Chem 282:3771737729. [PubMed][CrossRef]
71. Parish T, Smith DA, Roberts G, Betts J, Stoker NG. 2003. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology 149:14231435. [PubMed]
72. Roberts G, Vadrevu IS, Madiraju MV, Parish T. 2011. Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis. PLoS One 6:e21090. [PubMed][CrossRef]
73. Tischler AD, Leistikow RL, Kirksey MA, Voskuil MI, McKinney JD. 2013. Mycobacterium tuberculosis requires phosphate-responsive gene regulation to resist host immunity. Infect Immun 81:317328. [PubMed][CrossRef]
74. James JN, Hasan ZU, Ioerger TR, Brown AC, Personne Y, Carroll P, Ikeh M, Tilston-Lunel NL, Palavecino C, Sacchettini JC, Parish T. 2012. Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. Microbiology 158:27242731. [PubMed][CrossRef]
75. Kriakov J, Lee SH, Jacobs WR. 2003. Identification of a regulated alkaline phosphatase, a cell surface-associated lipoprotein, in Mycobacterium smegmatis. J Bacteriol 185:49834991. [PubMed]
76. Gebhard S, Cook GM. 2008. Differential regulation of high-affinity phosphate transport systems of Mycobacterium smegmatis: identification of PhnF, a repressor of the phnDCE operon. J Bacteriol 190:13351343. [PubMed][CrossRef]
77. Ewann F, Jackson M, Pethe K, Cooper A, Mielcarek N, Ensergueix D, Gicquel B, Locht C, Supply P. 2002. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun 70:22562263. [PubMed]
78. Zhang Y, Zhang H, Zhonghe S. 2003. Susceptibility of Mycobacterium tuberculosis to weak acids. J Antimicrob Chemother 52:5660. [PubMed][CrossRef]
79. Carroll P, Faray-Kele M-C, Parish T. 2011. Identifying vulnerable pathways in Mycobacterium tuberculosis by using a knockdown approach. Appl Environ Microbiol 77:50405043. [PubMed][CrossRef]
80. Nowak E, Panjikar S, Morth JP, Jordanova R, Svergun DI, Tucker PA. 2006. Structural and functional aspects of the sensor histidine kinase PrrB from Mycobacterium tuberculosis. Structure 14:275285. [PubMed][CrossRef]
81. Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA. 2006. The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 281:96599666. [PubMed][CrossRef]
82. Ewann F, Locht C, Supply P. 2004. Intracellular autoregulation of the Mycobacterium tuberculosis PrrA response regulator. Microbiology 150:241246. [PubMed]
83. Haydel SE, Malhotra V, Cornelison GL, Clark-Curtiss JE. 2012. The prrAB two-component system is essential for Mycobacterium tuberculosis viability and is induced under nitrogen-limiting conditions. J Bacteriol 194:354361. [PubMed][CrossRef]
84. Graham J, Clark-Curtiss J. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96:1155411559. [PubMed]
85. Via LE, Curcic R, Mudd MH, Dhandayuthapani S, Ulmer RJ, Deretic V. 1996. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation in vivo expression of the response regulator MtrA. J Bacteriol 178:33143321. [PubMed]
86. Zahrt TC, Deretic V. 2000. An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 182:38323838. [PubMed]
87. Li Y, Zeng J, He ZG. 2010. Characterization of a functional C-terminus of the Mycobacterium tuberculosis MtrA responsible for both DNA binding and interaction with its two-component partner protein, MtrB. J Biochem 148:549556. [PubMed][CrossRef]
88. Al Zayer M, Stankowska D, Dziedzic R, Sarva K, Madiraju MV, Rajagopalan M. 2011. Mycobacterium tuberculosis mtrA merodiploid strains with point mutations in the signal-receiving domain of MtrA exhibit growth defects in nutrient broth. Plasmid 65:210218. [PubMed][CrossRef]
89. Friedland N, Mack TR, Yu M, Hung L-W, Terwilliger TC, Waldo GS, Stock AM. 2007. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 46:67336743. [PubMed][CrossRef]
90. Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG. 2003. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71:11341140. [PubMed]
91. Robertson D, Carroll P, Parish T. 2007. Rapid recombination screening to test gene essentiality demonstrates that pyrH is essential in Mycobacterium tuberculosis. Tuberculosis 87:450458. [PubMed][CrossRef]
92. Cangelosi GA, Do JS, Freeman R, Bennett JG, Semret M, Behr MA. 2006. The two-component regulatory system mtrAB is required for morphotypic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 50:461468. [PubMed][CrossRef]
93. Plocinska R, Purushotham G, Sarva K, Vadrevu IS, Pandeeti EV, Arora N, Plocinski P, Madiraju MV, Rajagopalan M. 2012. Septal localization of the Mycobacterium tuberculosis MtrB sensor kinase promotes MtrA regulon expression. J Biol Chem 287:2388723899. [PubMed][CrossRef]
94. Sun R, Converse PJ, Ko C, Tyagi S, Morrison NE, Bishai WR. 2004. Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol 52:2538. [PubMed][CrossRef]
95. Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L. 2010. A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol Microbiol 76:348364. [PubMed][CrossRef]
96. Fol M, Chauhan A, Nair NK, Maloney E, Moomey M, Jagannath C, Madiraju M, Rajagopalan M. 2006. Modulation of Mycobacterium tuberculosis proliferation by MtrA, an essential two-component response regulator. Mol Microbiol 60:643657. [PubMed][CrossRef]
97. Rajagopalan M, Dziedzic R, Al Zayer M, Stankowska D, Ouimet M-C, Bastedo DP, Marczynski GT, Madiraju MV. 2010. Mycobacterium tuberculosis origin of replication and the promoter for immunodominant secreted antigen 85B are the targets of MtrA, the essential response regulator. J Biol Chem 285:1581615827. [PubMed][CrossRef]
98. Li Y, Zeng J, Zhang H, He ZG. 2010. The characterization of conserved binding motifs and potential target genes for M. tuberculosis MtrAB reveals a link between the two-component system and the drug resistance of M. smegmatis. BMC Microbiol 10:242. [PubMed][CrossRef]
99. Haydel SE, Dunlap NE, Benjamin WH. 1999. In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TrcR/TrcS proteins. Microb Pathog 26:195206. [PubMed]
100. Haydel SE, Benjamin WH, Dunlap NE, Clark-Curtiss JE. 2002. Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis TrcR response regulator. J Bacteriol 184:21922203. [PubMed]
101. Wayne LG, Grosse WM. Base composition of deoxyribonucleic acid isolated from mycobacteria. J Bacteriol 96:19151919. [PubMed]
102. Haydel SE, Clark-Curtiss JE. 2006. The Mycobacterium tuberculosis TrcR response regulator represses transcription of the intracellularly expressed Rv1057 gene, encoding a seven-bladed beta-propeller. J Bacteriol 188:150159. [PubMed][CrossRef]
103. Manganelli R, Voskuil MI, Schoolnik GK, Dubnau E, Gomez M, Smith I. 2002. Role of the extracytoplasmic-function sigma factor sigma H in Mycobacterium tuberculosis global gene expression. Mol Microbiol 45:365374. [PubMed]
104. Singh A, Mai D, Kumar A, Steyn AJ. 2006. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc Natl Acad Sci USA 103:1134611351. [PubMed][CrossRef]
105. Steyn AJ, Joseph J, Bloom BR. 2003. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol Microbiol 47:10751089. [PubMed]
106. Gassel M, Siebers A, Epstein W, Altendorf K. 1998. Assembly of the Kdp complex, the multi-subunit K+-transport ATPase of Escherichia coli. Biochim Biophys Acta 1415:7784. [PubMed]
107. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717731. [PubMed]
108. Schnell R, Agren D, Schneider G. 2008. 1.9 A structure of the signal receiver domain of the putative response regulator NarL from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:10961100. [PubMed][CrossRef]
109. Hu YM, Movahedzadeh F, Stoker NG, Coates ARM. 2006. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect Immun 74:861868. [PubMed][CrossRef]
110. Bhattacharya M, Biswas A, Das AK. 2010. Interaction analysis of TcrX/Y two component system from Mycobacterium tuberculosis. Biochimie 92:263272. [PubMed][CrossRef]
111. Bhattacharya M, Das AK. 2011. Inverted repeats in the promoter as an autoregulatory sequence for TcrX in Mycobacterium tuberculosis. Biochem Biophys Res Commun 415:1723. [PubMed][CrossRef]
112. Haydel SE, Clark-Curtiss JE. 2004. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett 236:341347. [PubMed][CrossRef]
113. Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, Butcher PD, Besra GS, Marsh PD. 2007. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron limitation in continuous culture: identification of a novel wax ester. Microbiology 153:14351444. [PubMed][CrossRef]
114. Shrivastava R, Das AK. 2007. Temperature and urea induced conformational changes of the histidine kinases from Mycobacterium tuberculosis. Int J Biol Macromol 41:154161. [PubMed][CrossRef]
115. Shrivastava R, Das DR, Wiker HG, Das AK. 2006. Functional insights from the molecular modelling of a novel two-component system. Biochem Biophys Res Commun 344:13271333. [PubMed][CrossRef]
116. Shrivastava R, Ghosh AK, Das AK. 2007. Probing the nucleotide binding and phosphorylation by the histidine kinase of a novel three-protein two-component system from Mycobacterium tuberculosis. FEBS Lett 581:19031909. [PubMed][CrossRef]
117. Shrivastava R, Ghosh AK, Das AK. 2009. Intra- and intermolecular domain interactions among novel two-component system proteins coded by Rv0600c, Rv0601c and Rv0602c of Mycobacterium tuberculosis. Microbiology 155:772779. [PubMed][CrossRef]
118. Tyagi JS, Sharma D. 2004. Signal transduction systems of mycobacteria with special reference to M. tuberculosis. Curr Sci 86:93102.
119. Morth JP, Gosmann S, Nowak E, Tucker PA. 2005. A novel two-component system found in Mycobacterium tuberculosis. FEBS Lett 579:41454148. [PubMed][CrossRef]
120. Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:4017440184. [PubMed][CrossRef]
microbiolspec.MGM2-0010-2013.citations
cm/2/1
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0010-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0010-2013
2014-01-31
2017-04-27

Abstract:

Two-component regulatory systems (2CRSs) are widely used by bacteria to sense and respond to environmental stimuli with coordinated changes in gene expression. Systems are normally comprised of a sensory kinase protein that activates a transcriptional regulator by phosphorylation. Mycobacteria have few 2CRSs, but they are of key importance for bacterial survival and play important roles in pathogenicity. has 12 paired two-component regulatory systems (which include a system with two regulators and one sensor, and a split sensor system), as well as four orphan regulators. Several systems are involved in virulence, and disruption of different systems leads to attenuation or hypervirulence. PhoPR plays a major role in regulating cell wall composition, and its inactivation results in sufficient attenuation of that deletion strains are live vaccine candidates. MprAB controls the stress response and is required for persistent infections. SenX3-RegX3 is required for control of aerobic respiration and phosphate uptake, and PrrAB is required for adaptation to intracellular infection. MtrAB is an essential system that controls DNA replication and cell division. The remaining systems (KdpDE, NarL, TrcRS, TcrXY, TcrA, PdtaRS, and four orphan regulators) are less well understood. The structure and binding motifs for several regulators have been characterized, revealing variations in function and operation. The sensors are less well characterized, and stimuli for many remain to be confirmed. This chapter reviews our current understanding of the role of two-component systems in mycobacteria, in particular

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/1/MGM2-0010-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0010-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Two-component regulatory systems. From reference 7. doi:10.1128/microbiolspec.MGM2-0010-2013.f1.

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0010-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

The paired two-component regulatory systems of M. tuberculosis a

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0010-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error