1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genetics of Phage Lysis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    85.20 Kb
  • PDF
    634.98 Kb
  • HTML
    95.29 Kb
  • Author: Madalena Pimentel1
  • Editors: Graham F. Hatfull2, William R. Jacobs Jr.3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Centro de Patogénese Molecular, Unidade dos Retrovirus e Infecções Associadas, Faculty of Pharmacy, University of Lisbon, Portugal; 2: University of Pittsburgh, Pittsburgh, PA 15260; 3: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
  • Received 08 August 2013 Accepted 27 August 2013 Published 31 January 2014
  • M. Pimentel, mpimentel@ff.ul.pt
image of Genetics of Phage Lysis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Genetics of Phage Lysis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0017-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0017-2013-2.gif
  • Abstract:

    We have been witnessing an increased interest in bacteriophage studies focused on their use as antibacterial agents to fight pathogenic bacteria. This interest is a consequence of the phages' ability to lyse a bacterial host. Until recently, little was known about the mechanisms used by mycobacteriophages to induce lysis of their complex hosts. However, studies on Ms6-induced lysis have changed this scenario and provided new insights into the mechanisms of bacteriophage-induced lysis. Specific lysis protein genes have been identified in mycobacteriophage genomes, reflecting the particular mycobacterial cell envelope composition. These include enzymes that target mycolic acid–containing lipids and proteins that participate in the secretion of the phage endolysin, functioning as chaperone-like proteins. This chapter focuses on the current knowledge of mycobacteriophage-induced lysis, starting with an overview of phage lysis and basic features of the lysis players.

  • Citation: Pimentel M. 2014. Genetics of Phage Lysis. Microbiol Spectrum 2(1):MGM2-0017-2013. doi:10.1128/microbiolspec.MGM2-0017-2013.

Key Concept Ranking

Type III Secretion System
0.4575656
0.4575656

References

1. Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasić L, Thingstad TF, Rohwer F, Mira A. 2009. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836. [PubMed][CrossRef]
2. Kutter E, Sulakvelidze A. 2005. Introduction, p 1–4. In Kutter E, Sulakvelidze A (ed), Bacteriophages Biology and Applications. CRC Press, Boca Raton, Florida.
3. Rakonjac J, Bennett NJ, Spagnuolo J, Gagic D, Russel M. 2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13:51–76. [PubMed]
4. Young R, Wang IN. 2006. Phage lysis, p 104–125. In R Calendar (ed), The Bacteriophages, 2nd ed. Oxford University Press, New York, NY.
5. São-José C, Nascimento J, Parreira R, Santos M. 2007. Release of progeny phages from infected cells, p 309–336. In McGrath S, van Sinderen D (ed), Bacteriophage: Genetics and Molecular Biology. Caister Academic Press, Wymondham, UK.
6. Bernhardt TG, Struck DK, Young R. 2001. The lysis protein E of phi X174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis. J Biol Chem 276:6093–6097. [PubMed][CrossRef]
7. Bernhardt TG, Wang IN, Struck DK, Young R. 2001. A protein antibiotic in the phage Qbeta virion: diversity in lysis targets. Science 292:2326–2329. [PubMed][CrossRef]
8. Ackermann HW, Prangishvili D. 2012. Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849. [PubMed][CrossRef]
9. Brennan PJ. 2003. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis 83:91–97. [PubMed]
10. Catalão MJ, Gil F, Moniz-Pereira J, Pimentel M. 2013. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–571. [PubMed][CrossRef]
11. Wang IN, Smith DL, Young R. 2000. Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol 54:799–825. [PubMed][CrossRef]
12. Young R. 2002. Bacteriophage holins: deadly diversity. J Mol Microbiol Biotechnol 4:21–36. [PubMed]
13. Gründling A, Smith DL, Bläsi U, Young R. 2000. Dimerization between the holin and holin inhibitor of phage lambda. J Bacteriol 182:6075–6081. [PubMed]
14. Pang T, Park T, Young R. 2010. Mutational analysis of the S21 pinholin. Mol Microbiol 76:68–77. [PubMed][CrossRef]
15. Pang T, Park T, Young R. 2010. Mapping the pinhole formation pathway of S21. Mol Microbiol 78:710–719. [PubMed][CrossRef]
16. White R, Chiba S, Pang T, Dewey JS, Savva CG, Holzenburg A, Pogliano K, Young R. 2011. Holin triggering in real time. Proc Natl Acad Sci USA 108:798–803. [PubMed][CrossRef]
17. Dewey JS, Savva CG, White RL, Vitha S, Holzenburg A, Young R. 2010. Micron-scale holes terminate the phage infection cycle. Proc Natl Acad Sci USA 107:2219–2223. [PubMed][CrossRef]
18. Pang T, Savva CG, Fleming KG, Struck DK, Young R. 2009. Structure of the lethal phage pinhole. Proc Natl Acad Sci USA 106:18966–18971. [PubMed][CrossRef]
19. Bläsi U, Young R. 1996. Two beginnings for a single purpose: the dual-start holins in the regulation of phage lysis. Mol Microbiol 21:675–682. [PubMed]
20. Walker JT, Walker DH, Jr. 1980. Mutations in coliphage P1 affecting host cell lysis. J Virol 35:519–530. [PubMed]
21. Ziermann R, Bartlett B, Calendar R, Christie GE. 1994. Functions involved in bacteriophage P2-induced host cell lysis and identification of a new tail gene. J Bacteriol 176:4974–4984. [PubMed]
22. Ramanculov E, Young R. 2001. An ancient player unmasked: T4 rI encodes a t-specific antiholin. Mol Microbiol 41:575–583. [PubMed]
23. Loessner MJ. 2005. Bacteriophage endolysins: current state of research and applications. Curr Opin Microbiol 8:480–487. [PubMed][CrossRef]
24. Schmelcher M, Donovan DM, Loessner MJ. 2012. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 7:1147–1171. [PubMed][CrossRef]
25. Fischetti V. 2010 Bacteriophage endolysins as a novel class of antibacterial agents. Int J Med Microbiol 300:357–362.
26. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. 2012. Endolysins as antimicrobials. Adv Virus Res 83:299–365. [PubMed][CrossRef]
27. São-José C, Parreira R, Vieira G, Santos MA. 2000. The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182:5823–5831. [PubMed]
28. Xu M, Struck DK, Deaton J, Wang IN, Young R. 2004. A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proc Natl Acad Sci USA 101:6415–6420. [PubMed][CrossRef]
29. Park T, Struck DK, Dankenbring CA, Young R. 2007. The pinholin of lambdoid phage 21: control of lysis by membrane depolarization. J Bacteriol 189:9135–9139. [PubMed][CrossRef]
30. Xu M, Arulandu A, Struck DK, Swanson S, Sacchettini JC, Young R. 2005. Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307:113–117. [PubMed][CrossRef]
31. Sun Q, Kuty GF, Arockiasamy A, Xu M, Young R, Sacchettini JC. 2009. Regulation of a muralytic enzyme by dynamic membrane topology. Nat Struct Mol Biol 16:1192–1194. [PubMed][CrossRef]
32. Kuty GF, Xu M, Struck DK, Summer EJ, Young R. 2010. Regulation of a phage endolysin by disulfide caging. J Bacteriol 192:5682–5687. [PubMed][CrossRef]
33. Berry J, Summer EJ, Struck DK, Young R. 2008. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351. [PubMed][CrossRef]
34. Krupovič M, Cvirkaite-Krupovič V, Bamford DH. 2008. Identification and functional analysis of the Rz/Rz1-like accessory lysis genes in the membrane-containing bacteriophage PRD1. Mol Microbiol 68:492–503. [PubMed][CrossRef]
35. Berry J, Savva C, Holzenburg A, Young R. 2010. The lambda spanin components Rz and Rz1 undergo tertiary and quaternary rearrangements upon complex formation. Protein Sci 19:1967–1977. [PubMed][CrossRef]
36. Berry J, Rajaure M, Pang T, Young R. 2012. The spanin complex is essential for lambda lysis. J Bacteriol 194:5667–5674.
37. Hatfull GF. 2010. Mycobacteriophages: genes and genomes. Annu Rev Microbiol 64:331–356. [PubMed][CrossRef]
38. Hatfull GF. 2012. The secret lives of mycobacteriophages. Adv. Virus Res 82:179–288. [PubMed][CrossRef]
39. Hatfull GF, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Program, KwaZulu-Natal Research Institute for Tuberculosis and HIV Mycobacterial Genetics Course Students, Phage Hunters Integrating Research and Education Program. 2012. Complete genome sequences of 138 mycobacteriophages. J Virol 86:2382–2384. [PubMed][CrossRef]
40. Gil F, Catalão MJ, Moniz-Pereira J, Leandro P, McNeil M, Pimentel M. 2008. The lytic cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology 154:1364–1371. [PubMed][CrossRef]
41. Gil F, Grzegorzewicz AE, Catalão MJ, Vital J, McNeil M, Pimentel M. 2010. The mycobacteriophage Ms6 LysB specifically targets the outer membrane of Mycobacteriumsmegmatis. Microbiology 156:1497–1504. [PubMed][CrossRef]
42. Catalão MJ, Gil F, Moniz-Pereira J, Pimentel M. 2010. A chaperone-like protein is involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77:672–686. [PubMed][CrossRef]
43. Catalão MJ, Gil F, Moniz-Pereira J, Pimentel M. 2011. Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol 193:2793–2803. [PubMed][CrossRef]
44. Catalão MJ, Milho C, Gil F, Moniz-Pereira J, Pimentel M. 2011. A second endolysin gene is fully embedded in-frame with the lysA gene of mycobacteriophage Ms6. PLoS One 6:e20515. [PubMed][CrossRef]
45. Catalão MJ, Gil F, Moniz-Pereira J, Pimentel M. 2011. The endolysin-binding domain encompasses the N-terminal region of the mycobacteriophage Ms6 gp1 chaperone. J Bacteriol 193:5002–5006. [PubMed][CrossRef]
46. Garcia M, Pimentel M, Moniz-Pereira J. 2002. Expression of mycobacteriophage Ms6 lysis genes is driven by two sigma (70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol 184:3034–3043. [PubMed]
47. Portugal I, Anes E, Moniz-Pereira J. 1989. Temperate mycobacteriophage from M. smegmatis. Acta Leprol 7:243–244. [PubMed]
48. Braunstein M, Brown AM, Kurtz S, Jacobs WR, Jr. 2001. Two nonredundant SecA homologues function in mycobacteria. J Bacteriol 183:6979–6990. [PubMed][CrossRef]
49. Rigel NW, Braunstein M. 2008. A new twist on an old pathway: acessory secretion systems. Mol Microbiol 69:291–302. [PubMed][CrossRef]
50. Mahapatra S, Piechota C, Gil F, Ma Y, Huang H, Scherman M, Jones V, Pavelka M, Jr, Moniz-Pereira J, Pimentel M, McNeil M, Crick D. 2013. Mycobacteriophage Ms6 LysA is a peptidoglycan amidase and a useful analytical tool. Appl Environ Microbiol 79:768–773. [PubMed][CrossRef]
51. Payne KM, Hatfull GF. 2012. Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLosOne 7:e34052. [PubMed][CrossRef]
52. Park T, Struck DK, Deaton JF, Young R. 2006. Topological dynamics of holins in programmed bacterial lysis. Proc Natl Acad Sci USA 103:19713–19718. [PubMed][CrossRef]
53. Young R. 2005. Phage lysis, p 92–127. In Waldor MK, Friedman DI, Adhya SL (ed), Phages: Their Role in Bacterial Pathogenesis and Biotechnology. ASM Press, Washington DC.
54. Krogh S, Jørgensen ST, Devine KM. 1998. Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 180:2110–2117. [PubMed]
55. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967. [PubMed][CrossRef]
56. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680. [PubMed][CrossRef]
57. Summer EJ, Berry J, Tran TA, Niu L, Struck DK, Young R. 2007. Rz/Rz1 lysis gene equivalents in phages of Gram-negative hosts. J Mol Biol 373:1098–1112. [PubMed][CrossRef]
58. Payne K, Sun Q, Sacchettini J, Hatfull GH. 2009. Mycobacteriophage lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73:367–381. [PubMed][CrossRef]
59. Zhang N, Young R. 1999. Complementation and characterization of the nested Rz and Rz1 reading frames in the genome of bacteriophage lambda. Mol Gen Genet 262:659–667. [PubMed]
60. Gil F. 2012. Functional analysis of lysBgene from the lysis module of mycobacteriophage. PhD thesis. University of Lisbon, Lisbon.
61. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O'Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. 2010. Comparative genomic analysis of sixty mycobacteriophage genomes: genome clustering, gene acquisition and gene size. J Mol Biol 397:119–143. [PubMed][CrossRef]
62. Henry M, O'Sullivan O, Sleator RD, Coffey A, Ross RP, McAuliffe O, O'Mahony JM. 2010. In silico analysis of Ardmore, a novel mycobacteriophage isolated from soil. Gene 453:9–23. [PubMed][CrossRef]
63. Mageeney C, Pope WH, Harrison M, Moran D, Cross T, Jacobs-Sera D, Hendrix RW, Dunbar D, Hatfull GF. 2012. Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J Virol 86:4762–4775. [PubMed][CrossRef]
64. Henry M, Neve H, Maher F, Sleator RD, Coffey A, Reynold PR, McAuliffe O, Coffey A, O'Mahony JM. 2010b. Cloning and expression of a mureinolytic enzyme from the mycobacteriophage TM4. FEMS Microbiol Lett 311:126–132. [PubMed][CrossRef]
65. Henry M, Coffey A, O'Mahony JM, Sleator RD. 2011. Comparative modelling of LysB from the mycobacterial bacteriophage Ardmore. Bioeng. Bugs. 2:88–95. [PubMed][CrossRef]
66. Summer EJ, Liu M, Gill JJ, Grant M, Chan-Cortes TN, Ferguson L, Janes C, Lange K, Bertoli M, Moore C, Orchard RC, Cohen ND, Young R. 2011. Genomic and functional analyses of Rhodococcus equiphages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl Environ Microbiol 77:669–683. [PubMed][CrossRef]
67. Hermoso JA, García JL, García P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461–472. [PubMed][CrossRef]
68. Broxmeyer L, Sosnowska D, Miltner E, Chacón O, Wagner D, McGarvey J, Barletta RG, Bermudez LE. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis 186:1155–1160. [PubMed][CrossRef]
69. Danelishvili L, Young LS, Bermudez LE. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist 12:1–6. [PubMed][CrossRef]
70. Trigo G, Martins TG, Fraga AG, Longatto-Filho A, Castro AG, Azeredo J, Pedrosa J. 2013. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis 7:e2183. [PubMed][CrossRef]
71. Hatfull G. 2014. Molecular genetics of mycobacteriophages. Microbiol Spec 2(2):MGM2-0032-2013.
microbiolspec.MGM2-0017-2013.citations
cm/2/1
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0017-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0017-2013
2014-01-31
2017-09-20

Abstract:

We have been witnessing an increased interest in bacteriophage studies focused on their use as antibacterial agents to fight pathogenic bacteria. This interest is a consequence of the phages' ability to lyse a bacterial host. Until recently, little was known about the mechanisms used by mycobacteriophages to induce lysis of their complex hosts. However, studies on Ms6-induced lysis have changed this scenario and provided new insights into the mechanisms of bacteriophage-induced lysis. Specific lysis protein genes have been identified in mycobacteriophage genomes, reflecting the particular mycobacterial cell envelope composition. These include enzymes that target mycolic acid–containing lipids and proteins that participate in the secretion of the phage endolysin, functioning as chaperone-like proteins. This chapter focuses on the current knowledge of mycobacteriophage-induced lysis, starting with an overview of phage lysis and basic features of the lysis players.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/1/MGM2-0017-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0017-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Schematic representation of the endolysins' targets in the bacterial PG. Proposed 4→3 interpeptide bridges between -DAP and -Ala but also 3→3 -DAP to -DAP bonds in the mycobacterial PG are indicated by dashed lines. NAG, N-acetylglucosamine; NAM, N-acetylmuramic acid. doi:10.1128/microbiolspec.MGM2-0017-2013.f1

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Genetic organization of the Ms6 lysis cassette. Genes are drawn to scale with gene names indicated. Segments of generating the full-length Lysin and the N-terminal truncated version Lysin are indicated separately. The promoter region P is separated from by a leader sequence (L). The arrow indicates direction of the transcription from the promoter region P. indicates the localization of a transcription termination signal. Adapted from reference 46 with permission. doi:10.1128/microbiolspec.MGM2-0017-2013.f2

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Model for Ms6 endolysin export. Export of the full-length endolysin (Lysin) is assisted by the chaperone Gp1 through the Sec translocase. Once in the cell wall compartment, it is kept in an inactive state until the holin complex Gp4/Gp5 dissipates the membrane potential. The endolysin activation is schematically represented by the change of the enzyme spherical configuration to a “pacman” shape. Lysin is an N-terminally truncated version of Lysin. (?) indicates that export of this shorter version to the extracytoplasmatic environment is not known. PG, peptidoglycan; CM, cytoplasmic membrane; Cyt, cytoplasm. Adapted from reference 10 with permission. doi:10.1128/microbiolspec.MGM2-0017-2013.f3

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Diversity of mycobacteriophage lysis cassettes. The illustration shows representatives of mycobacteriophages with diverse genome organization. Not previously assigned holin-like genes display white bars that represent the number and location of putative TMD coding sequences. Adapted from reference 10 with permission. doi:10.1128/microbiolspec.MGM2-0017-2013.f4

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Targets of Ms6 lysis proteins. Schematic representation of the mycobacteria cell envelope, where the target layer of each protein is indicated by an arrow. Arab, arabinan; CM, cytoplasmic membrane; Gal, galactan; LAM, lipoarabinomannan; OM, outer membrane; P, protein; PG, peptidoglycan; PIMs, phosphatidylinositol mannosides; PLs, phospholipids; Po, porin; Pp, periplasm; TDM, trehalose dimycolate; TMM, trehalose monomycolate. doi:10.1128/microbiolspec.MGM2-0017-2013.f5

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0017-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error