1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    1.35 MB
  • XML
    401.72 Kb
  • HTML
    405.47 Kb
  • Authors: Mamadou Daffé1, Dean C. Crick2, Mary Jackson3
  • Editors: Graham F. Hatfull4, William R. Jacobs Jr.5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: CNRS, Institut de Pharmacologie et de Biologie Structurale, Département Mécanismes Moléculaires des Infections Mycobactériennes, and the Université de Toulouse Paul Sabatier, F-31077 Toulouse, France; 2: Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80523-1682; 3: Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO 80523-1682; 4: University of Pittsburgh, Pittsburgh, PA; 5: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
  • Received 06 August 2013 Accepted 27 August 2013 Published 15 August 2014
  • M. Jackson, Mary.Jackson@colostate.edu
image of Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/4/MGM2-0021-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/4/MGM2-0021-2013-2.gif
  • Abstract:

    This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of and other species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.

  • Citation: Daffé M, Crick D, Jackson M. 2014. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids. Microbiol Spectrum 2(4):MGM2-0021-2013. doi:10.1128/microbiolspec.MGM2-0021-2013.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.40875724
0.40875724

References

1. Daffé M, Draper P. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203. [PubMed][CrossRef]
2. Jackson M, McNeil MR, Brennan PJ. 2013. Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis. Future Microbiol 8:855–875. [PubMed][CrossRef]
3. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. 2008. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 105:3963–3967. [PubMed][CrossRef]
4. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffe M. 2008. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 190:5672–5680. [PubMed][CrossRef]
5. Sani M, Houben ENG, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jimenez CR, Daffe M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ. 2010. Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6:e1000794. [PubMed][CrossRef]
6. Lemassu A, Daffé M. 1994. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J 297:351–357. [PubMed]
7. Ortalo-Magné A, Dupont MA, Lemassu A, Andersen AB, Gounon P, Daffé M. 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:1609–1620. [PubMed][CrossRef]
8. Ortalo-Magné A, Lemassu A, Lanéelle MA, Bardou F, Silve G, Gounon P, Marchal G, Daffé M. 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 178:456–461. [PubMed]
9. Lemassu A, Ortalo-Magne A, Bardou F, Silve G, Laneelle M-A, Daffe M. 1996. Extracellular and surface-exposed polysaccharides of non-tuberculous mycobacteria. Microbiology 142:1513–1520. [PubMed][CrossRef]
10. Raynaud C, Etienne G, Peyron P, Laneelle MA, Daffe M. 1998. Extracellular enzyme activities potentially involved in the pathogenicity of Mycobacterium tuberculosis. Microbiology 144:577–587. [PubMed][CrossRef]
11. Ehlers MRW, Daffé M. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol 6:328–335. [PubMed][CrossRef]
12. Daffé M, Etienne G. 1999. The capsule of Mycobacterium tuberculosis and its implications for pathogenicity. Tuber Lung Dis 79:153–169. [PubMed][CrossRef]
13. Goren MB. 1984. Biosynthesis and structures of phospholipids and sulfatides, p 379–415. In Kubica GP, Wayne LG (ed), The Mycobacteria. A Sourcebook, vol. 1. Marcel Dekker, New York/Basel.
14. Brennan PJ. 1988. Mycobacterium and other actinomycetes, p 203–298. In Ratledge C, Wilkinson SG (ed), Microbial Lipids, vol. 1. Academic Press, London.
15. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE. 2004. Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030. [PubMed][CrossRef]
16. Walker RW, Barakat H, Hung JGC. 1970. The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 5:684–691. [PubMed][CrossRef]
17. Fernandes ND, Kolattukudy PE. 1996. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene 170:95–99. [PubMed][CrossRef]
18. Zimhony O, Vilcheze C, Jacobs WR, Jr. 2004. Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J Bacteriol 186:4051–4055. [PubMed][CrossRef]
19. Yao J, Rock CO. 2013. Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502. [PubMed][CrossRef]
20. Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H. 2013. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microbial Cell Factories 12:9. [PubMed][CrossRef]
21. Sirakova TD, Dubey VS, Deb C, Daniel J, Korotkova TA, Abomoelak B, Kolattukudy PE. 2006. Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress. Microbiology 152:2717–2725. [PubMed][CrossRef]
22. Elamin AA, Stehr M, Spallek R, Rohde M, Singh M. 2011. The Mycobacterium tuberculosis Ag85A is a novel diacylglycerol acyltransferase involved in lipid body formation. Mol Microbiol 81:1577–1592. [PubMed][CrossRef]
23. Nigou J, Besra GS. 2002. Cytidine diphosphate-diacylglycerol synthesis in Mycobacterium smegmatis. Biochem J 367:157–162. [PubMed][CrossRef]
24. Salman M, Lonsdale JT, Besra GS, Brennan PJ. 1999. Phosphatidylinositol synthesis in mycobacteria. Biochim Biophys Acta 1436:437–450. [PubMed][CrossRef]
25. Jackson M, Crick DC, Brennan PJ. 2000. Phosphatidylinositol is an essential phospholipid of mycobacteria. J Biol Chem 275:30092–30099. [PubMed][CrossRef]
26. Morii H, Ogawa M, Fukuda K, Taniguchi H, Koga Y. 2010. A revised biosynthetic pathway for phosphatidylinositol in mycobacteria. J Biochem 148:593–602. [PubMed][CrossRef]
27. Sandoval-Calderon M, Geiger O, Guan Z, Barona-Gomez F, Sohlenkamp C. 2009. A eukaryote-like cardiolipin synthase is present in Streptomyces coelicolor and in most actinobacteria. J Biol Chem 284:17383–17390. [PubMed][CrossRef]
28. Korduláková J, Gilleron M, Mikusova K, Puzo G, Brennan PJ, Gicquel B, Jackson M. 2002. Definition of the first mannosylation step in phosphatidylinositol synthesis: PimA is essential for growth of mycobacteria. J Biol Chem 277:31335–31344. [PubMed][CrossRef]
29. Guerin ME, Kordulakova J, Schaeffer F, Svetlikova Z, Buschiazzo A, Giganti D, Gicquel B, Mikusova K, Jackson M, Alzari PM. 2007. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem 282:20705–20714. [PubMed][CrossRef]
30. Guerin ME, Schaeffer F, Chaffotte A, Gest P, Giganti D, Kordulakova J, van der Woerd M, Jackson M, Alzari PM. 2009. Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. J Biol Chem 284:21613–21625. [PubMed][CrossRef]
31. Guerin ME, Kaur D, Somashekar BS, Gibbs S, Gest P, Chatterjee D, Brennan PJ, Jackson M. 2009. New insights into the early steps of phosphatidylinositol mannosides biosynthesis in mycobacteria. PimB′ is an essential enzyme of Mycobacterium smegmatis. J Biol Chem 284:25687–25696. [PubMed][CrossRef]
32. Korduláková J, Gilleron M, Puzo G, Brennan PJ, Gicquel B, Mikusova K, Jackson M. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J Biol Chem 278:36285–36295. [PubMed][CrossRef]
33. Kaur D, Guerin ME, Skovierova H, Brennan PJ, Jackson M. 2009. Chapter 2: biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 69:23–78. [PubMed][CrossRef]
34. Morita YS, Sena CCB, Waller RF, Kurokawa K, Sernee MF, Nakatani F, Haites RE, Billman-Jacobe H, McConville MJ, Maeda Y, Kinoshita T. 2006. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J Biol Chem 281:25143–25155. [PubMed][CrossRef]
35. Berg S, Kaur D, Jackson M, Brennan PJ. 2007. The glycosyltransferases of Mycobacterium tuberculosis: roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35R–56R. [PubMed][CrossRef]
36. Morita YS, Velasquez R, Taig E, Waller RF, Patterson JH, Tull D, Williams SJ, Billman-Jacobe H, McConville MJ. 2005. Compartmentalization of lipid biosynthesis in mycobacteria. J Biol Chem 280:21645–21652. [PubMed][CrossRef]
37. Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, Rauzier J, Maurin D, Laval F, Daffe M, Cambillau C, Gicquel B, Bourne Y, Jackson M. 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 25:1436–1444. [PubMed][CrossRef]
38. Drage MG, Tsai HC, Pecora ND, Cheng TY, Arida AR, Shukla S, Rojas RE, Seshadri C, Moody DB, Boom WH, Sacchettini JC, Harding CV. 2010. Mycobacterium tuberculosis lipoprotein LprG (Rv1411c) binds triacylated glycolipid agonists of Toll-like receptor 2. Nat Struct Mol Biol 17:1088–1095. [PubMed][CrossRef]
39. Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ. 1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269:23328–23335. [PubMed]
40. Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC. 2005. Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol 187:2747–2757. [PubMed][CrossRef]
41. Anderson RG, Hussey H, Baddiley J. 1972. The mechanism of wall synthesis in bacteria. The organization of enzymes and isoprenoid phosphates in the membrane. Biochem J 127:11–25. [PubMed]
42. Mikusova K, Mikus M, Besra GS, Hancock I, Brennan PJ. 1996. Biosynthesis of the linkage region of the mycobacterial cell wall. J Biol Chem 271:7820–7828. [PubMed][CrossRef]
43. Sacchettini JC, Poulter CD. 1997. Creating isoprenoid diversity. Science 277:1788–1789. [PubMed][CrossRef]
44. Schwender J, Seemann M, Lichtenthaler HK, Rohmer M. 1996. Biosynthesis of isoprenoids (carotenoids, sterols, prenyl side-chains of chlorophylls and plastoquinone) via a novel pyruvate/glyceraldehyde 3-phosphate non-mevalonate pathway in the green alga Scenedesmus obliquus. Biochem J 316:73–80. [PubMed]
45. Sprenger GA, Schorken U, Wiegert T, Grolle S, De Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H. 1997. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-d-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862. [PubMed][CrossRef]
46. Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A. 1998. Cloning and characterization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the synthesis of d-1- deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis. Proc Natl Acad Sci USA 95:2105–2110. [PubMed][CrossRef]
47. Hill RE, Himmeldirk K, Kennedy IA, Pauloski RM, Sayer BG, Wolf E, Spenser ID. 1996. The biogenetic anatomy of vitamin B-6. A C-13NMR investigation of the biosynthesis of pyridoxol in Escherichia coli. J Biol Chem 271:30426–30435. [PubMed][CrossRef]
48. Querol J, Rodriguez-Concepcion M, Boronat A, Imperial S. 2001. Essential role of residue H49 for activity of Escherichia coli 1-deoxy-d-xylulose 5-phosphate synthase, the enzyme catalyzing the first step of the 2-C-methyl-d-erythritol 4-phosphate pathway for isoprenoid synthesis. Biochem Biophys Res Commun 289:155–160. [PubMed][CrossRef]
49. Bailey AM, Mahapatra S, Brennan PJ, Crick DC. 2002. Identification, cloning, purification, and enzymatic characterization of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase. Glycobiology 12:813–820. [PubMed][CrossRef]
50. Brown AC, Eberl M, Crick DC, Jomaa H, Parish T. 2010. The nonmevalonate pathway of isoprenoid biosynthesis in Mycobacterium tuberculosis is essential and transcriptionally regulated by Dxs. J Bacteriol 192:2424–2433. [PubMed][CrossRef]
51. Takahashi S, Kuzuyama T, Watanabe H, Seto H. 1998. A 1-deoxy-d-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-d-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis. Proc Natl Acad Sci USA 95:9879–9884. [PubMed][CrossRef]
52. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH. 1997. Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605. [PubMed][CrossRef]
53. Reuter K, Sanderbrand S, Jomaa H, Wiesner J, Steinbrecher I, Beck E, Hintz M, Klebe G, Stubbs MT. 2002. Crystal structure of 1-deoxy-d-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J Biol Chem 277:5378–5384. [PubMed][CrossRef]
54. Argyrou A, Blanchard JS. 2004. Kinetic and chemical mechanism of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate isomeroreductase. Biochemistry 43:4375–4384. [PubMed][CrossRef]
55. Dhiman RK, Schaeffer ML, Bailey AM, Testa CA, Scherman H, Crick DC. 2005. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) from Mycobacterium tuberculosis: towards understanding mycobacterial resistance to fosmidomycin. J Bacteriol 187:8395–8402. [PubMed][CrossRef]
56. Henriksson LM, Unge T, Carlsson J, Aqvist J, Mowbray SL, Jones TA. 2007. Structures of Mycobacterium tuberculosis 1-deoxy-d-xylulose-5-phosphate reductoisomerase provide new insights into catalysis. J Biol Chem 282:19905–19916. [PubMed][CrossRef]
57. Rohdich F, Wungsintaweekul J, Fellermeier M, Sagner S, Herz S, Kis K, Eisenreich W, Bacher A, Zenk MH. 1999. Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol. Proc Natl Acad Sci USA 96:11758–11763. [PubMed][CrossRef]
58. Eoh H, Brown AC, Buetow L, Hunter WN, Parish T, Kaur D, Brennan PJ, Crick DC. 2007. Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-d-erythritol synthase: potential for drug development. J Bacteriol 189:8922–8927. [PubMed][CrossRef]
59. Herz S, Wungsintaweekul J, Schuhr CA, Hecht S, Luttgen H, Sagner S, Fellermeier M, Eisenreich W, Zenk MH, Bacher A, Rohdich F. 2000. Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C- methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4- cyclodiphosphate. Proc Natl Acad Sci USA 97:2486–2490. [PubMed][CrossRef]
60. Rohdich F, Wungsintaweekul J, Luttgen H, Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH, Bacher A. 2000. Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato. Proc Natl Acad Sci USA 97:8251–8256. [PubMed][CrossRef]
61. Eoh H, Narayanasamy P, Brown AC, Parish T, Brennan PJ, Crick DC. 2009. Expression and characterization of soluble 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from bacterial pathogens. Chem Biol 16:1230–1239. [PubMed][CrossRef]
62. Narayanasamy P, Eoh H, Crick DC. 2008. Chemoenzymatic synthesis of 4-diphosphocytidyl-2-C-methyl-d-erythritol: a substrate for IspE. Tetrahedron Lett 49:4461–4463. [PubMed][CrossRef]
63. Narayanasamy P, Eoh H, Brennan PJ, Crick DC. 2010. Synthesis of 4-diphosphocytidyl-2-C-methyl-d-erythritol-2-phosphate and kinetic studies of Mycobacterium tuberculosis IspF. Chem Biol 17:117–122. [PubMed][CrossRef]
64. Buetow L, Brown AC, Parish T, Hunter WN. 2007. The structure of mycobacteria 2C-methyl-d-erythritol-2,4-cyclodiphosphatesynthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7:68. [PubMed][CrossRef]
65. Hecht S, Eisenreich W, Adam P, Amslinger S, Kis K, Bacher A, Arigoni D, Rohdich F. 2001. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc Natl Acad Sci USA 98:14837–14842. [PubMed][CrossRef]
66. Altincicek B, Duin EC, Reichenberg A, Hedderich R, Kollas AK, Hintz M, Wagner S, Wiesner J, Beck E, Jomaa H. 2002. LytB protein catalyzes the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis. FEBS Lett 532:437–440. [PubMed][CrossRef]
67. Altincicek B, Kollas A, Eberl M, Wiesner J, Sanderbrand S, Hintz M, Beck E, Jomaa H. 2001. LytB, a novel gene of the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett 499:37–40. [PubMed][CrossRef]
68. Seemann M, Bui BTS, Wolff M, Tritsch D, Campos N, Boronat A, Marquet A, Rohmer M. 2002. Isoprenoid biosynthesis through the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe-4S] protein. Angew Chem Int Edu Engl 41:4337–4339. [PubMed][CrossRef]
69. Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J, Laupitz R, Grawert T, Amslinger S, Eisenreich W, Bacher A, Arigoni D. 2003. The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591. [PubMed][CrossRef]
70. Rohdich F, Hecht S, Gartner K, Adam P, Krieger C, Amslinger S, Arigoni D, Bacher A, Eisenreich W. 2002. Studies on the nonmevalonate terpene biosynthetic pathway: metabolic role of IspH (LytB) protein. Proc Natl Acad Sci USA 99:1158–1163. [PubMed][CrossRef]
71. Agranoff BW, Eggerer H, Henning U, Lynen F. 2013. Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J Biol Chem 235:326–332. [PubMed]
72. Phillips MA, D’Auria JC, Gershenzon J, Pichersky E. 2008. The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20:677–696. [PubMed][CrossRef]
73. Kuzuyama T, Seto H. 2003. Diversity of the biosynthesis of the isoprene units. Nat Prod Rep 20:171–183. [PubMed][CrossRef]
74. Hahn FM, Hurlburt AP, Poulter CD. 1999. Escherichia coli open reading frame 696 is idi, a nonessential gene encoding isopentenyl diphosphate isomerase. J Bacteriol 181:4499–4504. [PubMed]
75. Kaneda K, Kuzuyama T, Takagi M, Hayakawa Y, Seto H. 2001. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp strain CL190. Proc Natl Acad Sci USA 98:932–937. [PubMed][CrossRef]
76. Vandermoten S, Haubruge E, Cusson M. 2009. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695. [PubMed][CrossRef]
77. Ambo T, Noike M, Kurokawa H, Koyama T. 2008. Cloning and functional analysis of novel short-chain cis-prenyltransferases. Biochem Biophys Res Commun 375:536–540. [PubMed][CrossRef]
78. Liang PH. 2009. Reaction kinetics, catalytic mechanisms, conformational changes, and inhibitor design for prenyltransferases. Biochemistry 48:6562–6570. [PubMed][CrossRef]
79. Schulbach MC, Brennan PJ, Crick DC. 2000. Identification of a short (C15) chain Z-isoprenyl diphosphate synthase and a homologous long (C50) chain isoprenyl diphosphate synthase in Mycobacterium tuberculosis. J Biol Chem 275:22876–22881. [PubMed][CrossRef]
80. Schulbach MC, Mahapatra S, Macchia M, Barontini S, Papi C, Minutolo F, Bertini S, Brennan PJ, Crick DC. 2001. Purification, enzymatic characterization, and inhibition of the Z-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Biol Chem 276:11624–11630. [PubMed][CrossRef]
81. Noike M, Ambo T, Kikuchi S, Suzuki T, Yamashita S, Takahashi S, Kurokawa H, Mahapatra S, Crick DC, Koyama T. 2008. Product chain-length determination mechanism of Z,E-farnesyl diphosphate synthase. Biochem Biophys Res Commun 377:17–22. [PubMed][CrossRef]
82. Wang W, Dong C, McNeil M, Kaur D, Mahapatra S, Crick DC, Naismith JH. 2008. The structural basis of chain length control in Rv1086. J Mol Biol 381:129–140. [PubMed][CrossRef]
83. Kaur D, Brennan PJ, Crick DC. 2004. Decaprenyl diphosphate synthesis in Mycobacterium tuberculosis. J Bacteriol 186:7564–7570. [PubMed][CrossRef]
84. Sato T, Takizawa K, Orito Y, Kudo H, Hoshino T. 2010. Insight into C35 terpene biosyntheses by nonpathogenic Mycobacterium species: functional analyses of three Z-prenyltransferases and identification of dehydroheptaprenylcyclines. Chembiochem 11:1874–1881. [PubMed][CrossRef]
85. Mann FM, Thomas JA, Peters RJ. 2011. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. FEBS Lett 585:549–554. [PubMed][CrossRef]
86. Dhiman RK, Schulbach MC, Mahapatra S, Baulard AR, Vissa V, Brennan PJ, Crick DC. 2004. Identification of a novel class of {omega},E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. J Lipid Res 45:1140–1147. [PubMed][CrossRef]
87. Mann FM, Xu M, Davenport EK, Peters RJ. 2012. Functional characterization and evolution of the isotuberculosinol operon in Mycobacterium tuberculosis and related mycobacteria. Front Microbiol 3:368. [PubMed][CrossRef]
88. IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). 1987. Prenol nomenclature. Recommendations 1986. Eur J Biochem 167:181–184. [PubMed][CrossRef]
89. Takayama K, Schnoes HK, Semmler EJ. 1973. Characterization of the alkali-stable mannophospholipids of Mycobacterium smegmatis. Biochim Biophys Acta 316:212–221. [PubMed][CrossRef]
90. Besra GS, Sievert T, Lee RE, Slayden RA, Brennan PJ, Takayama K. 1994. Identification of the apparent carrier in mycolic acid synthesis. Proc Natl Acad Sci USA 91:12735–12739. [PubMed][CrossRef]
91. Wolucka BA, de Hoffmann E. 1998. Isolation and characterization of the major form of polyprenyl-phospho-mannose from Mycobacterium smegmatis. Glycobiology 8:955–962. [PubMed][CrossRef]
92. Takayama K, Goldman DS. 1970. Enzymatic synthesis of mannosyl-1-phosphoryl-decaprenol by a cell-free system of Mycobacterium tuberculosis. J Biol Chem 245:6251–6257. [PubMed]
93. Wolucka BA, de Hoffmann E. 1995. The presence of beta-d-ribosyl-1-monophosphodecaprenol in mycobacteria. J Biol Chem 270:20151–20155. [PubMed][CrossRef]
94. El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D. 2004. The bacA gene of Escherichia coli encodes a undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279:30106–30113. [PubMed][CrossRef]
95. Sherman MM, Petersen LA, Poulter CD. 1989. Isolation and characterization of isoprene mutants of Escherichia coli. J Bacteriol 171:3619–3628. [PubMed]
96. Minnikin DE. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p 95–184. In Ratledge C, Stanford J (ed), The Biology of Mycobacteria. Academic Press, London.
97. Embley TM, Stackebrandt E. 1994. The molecular phylogeny and systematics of the Actinomycetes. Annu Rev Microbiol 48:257–289. [PubMed][CrossRef]
98. Pandya KP, King HK. 1966. Ubiquinone and menaquinone in bacteria: a comparative study of some bacterial respiratory systems. Arch Biochem Biophys 114:154–157. [PubMed][CrossRef]
99. Meganathan R. 2001. Biosynthesis of menaquinone (vitamin K-2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam Horm 61:173–218. [PubMed][CrossRef]
100. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45:316–354. [PubMed]
101. da Costa MS, Albuquerque L, Nobre MF, Wait R. 2011. The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol. 38:197–206. [CrossRef]
102. Brodie AF, Revsin B, Kalra V, Phillips P, Bogin E, Higashi T, Murti CR, Cavari BZ, Marquez E. 1970. Biological function of terpenoid quinones. Biochem Soc Symp 29:119–143. [PubMed]
103. Holsclaw CM, Sogi KM, Gilmore SA, Schelle MW, Leavell MD, Bertozzi CR, Leary JA. 2008. Structural characterization of a novel sulfated menaquinone produced by stf3 from Mycobacterium tuberculosis. ACS Chem Biol 3:619–624. [PubMed][CrossRef]
104. Bentley R. 1975. Biosynthesis of vitamin-K and other natural naphthoquinones. Pure Appl Chem 41:47–68. [CrossRef]
105. Bentley R, Meganathan R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev 46:241–280. [PubMed]
106. Meganathan R. 1996. Biosynthesis of vitamin K (menaquinone) and ubiquinone (coenzyme Q), p 642–656. In Neihardt FC (ed), Escherichia coli and Salmonella. ASM Press, Washington, DC.
107. Azerad R, Bleiler-Hill R, Lederer E. 1965. Biosynthesis of a vitamin K2 by cell-free extracts of Mycobacterium phlei. Biochem Biophys Res Commun 19:194–197. [PubMed][CrossRef]
108. Li HJ, Li X, Liu N, Zhang H, Truglio JJ, Mishra S, Kisker C, Garcia-Diaz M, Tonge PJ. 2011. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 50:9532–9544. [PubMed][CrossRef]
109. Li X, Liu N, Zhang H, Knudson SE, Li HJ, Lai CT, Simmerling C, Slayden RA, Tonge PJ. 2011. CoA adducts of 4-oxo-4-phenylbut-2-enoates: inhibitors of MenB from the M. tuberculosis menaquinone biosynthesis pathway. ACS Med Chem Lett 2:818–823. [PubMed][CrossRef]
110. Li X, Liu N, Zhang H, Knudson SE, Slayden RA, Tonge PJ. 2010. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. Bioorg Med Chem Lett 20:6306–6309. [PubMed][CrossRef]
111. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. 2012. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 13:129–136. [PubMed][CrossRef]
112. Lu X, Zhang H, Tonge PJ, Tan DS. 2008. Mechanism-based inhibitors of MenE, an acyl-CoA synthetase involved in bacterial menaquinone biosynthesis. Bioorg Med Chem Lett 18:5963–5966. [PubMed][CrossRef]
113. Truglio JJ, Theis K, Feng Y, Gajda R, Machutta C, Tonge PJ, Kisker C. 2003. Crystal structure of Mycobacterium tuberculosis MenB, a key enzyme in vitamin K2 biosynthesis. J Biol Chem 278:42352–42360. [PubMed][CrossRef]
114. Dhiman RK, Mahapatra S, Slayden RA, Boyne ME, Lenaerts A, Hinshaw JC, Angala SK, Chatterjee D, Biswas K, Narayanasamy P, Kurosu M, Crick DC. 2009. Menaquinone synthesis is critical for maintaining mycobacterial viability during exponential growth and recovery from non-replicating persistence. Mol Microbiol 72:85–97. [PubMed][CrossRef]
115. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, Kurosu M. 2012. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. J Med Chem 55:3739–3755. [PubMed][CrossRef]
116. Collins MD, Goodfellow M, Minnikin DE, Alderson G. 1985. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 58:77–86. [PubMed][CrossRef]
117. Mougous JD, Senaratne RH, Petzold CJ, Jain M, Lee DH, Schelle MW, Leavell MD, Cox JS, Leary JA, Riley LW, Bertozzi CR. 2006. A sulfated metabolite produced by stf3 negatively regulates the virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:4258–4263. [PubMed][CrossRef]
118. Johnston JB, Kells PM, Podust LM, Ortiz de Montellano PR. 2009. Biochemical and structural characterization of CYP124: a methyl-branched lipid omega-hydroxylase from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 106:20687–20692. [PubMed][CrossRef]
119. Vershinin A. 1999. Biological functions of carotenoids: diversity and evolution. Biofactors 10:99–104. [PubMed][CrossRef]
120. Mathews MM, Krinsky NI. 1965. The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem Photobiol 4:813–817. [PubMed][CrossRef]
121. Goodwin TW. 1972. Carotenoids in fungi and non-photosynthetic bacteria. Prog Ind Microbiol 11:29–88. [PubMed]
122. Dembitsky VM. 2005. Astonishing diversity of natural surfactants. 3. Carotenoid glycosides and isoprenoid glycolipids. Lipids 40:535–557. [PubMed][CrossRef]
123. Subczynsk WK, Markowska E, Sieiewiesiuk J. 1991. Effect of polar carotenoids on the oxygen diffusion-concentration product in lipid bilayers. An EPR spin label study. Biochim Biophys Acta 1068:68–72. [PubMed][CrossRef]
124. Woodall AA, Britton G, Jackson MJ. 1997. Carotenoids and protection of phospholipids in solution or in liposomes against oxidation by peroxyl radicals: relationship between carotenoid structure and protective ability. Biochim Biophys Acta 1336:575–586. [PubMed][CrossRef]
125. Woodall AA, Britton G, Jackson MJ. 1995. Antioxidant activity of carotenoids in phosphatidylcholine vesicles: chemical and structural considerations. Biochem Soc Trans 23:133S. [PubMed]
126. Hertzberg S, Liaaen JS. 1967. Bacterial carotenoids. XX. The carotenoids of Mycobacterium phlei strain Vera. 2. The structures of the phlei-xanthophylls: two novel tertiary glucosides. Acta Chem Scand 21:15–41. [PubMed][CrossRef]
127. Sieiro C, Poza M, de MT, Villa TG. 2003. Genetic basis of microbial carotenogenesis. Int Microbiol 6:11–16. [PubMed]
128. Gao LY, Groger R, Cox JS, Beverley SM, Lawson EH, Brown EJ. 2003. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect Immun. 71:922–929. [PubMed][CrossRef]
129. Ramakrishnan L, Tran HT, Federspiel NA, Falkow S. 1997. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J Bacteriol 179:5862–5868. [PubMed]
130. Houssaini-Iraqui M, Lazraq MH, Clavel-Seres S, Rastogi N, David HL. 1992. Cloning and expression of Mycobacterium aurum carotenogenesis genes in Mycobacterium smegmatis. FEMS Microbiol Lett 69:239–244. [PubMed][CrossRef]
131. Viveiros M, Krubasik P, Sandmann G, Houssaini-Iraqui M. 2000. Structural and functional analysis of the gene cluster encoding carotenoid biosynthesis in Mycobacterium aurum A+. FEMS Microbiol Lett 187:95–101. [PubMed][CrossRef]
132. Scherzinger D, Scheffer E, Bar C, Ernst H, Al-Babili S. 2010. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 277:4662–4673. [PubMed][CrossRef]
133. Provvedi R, Kocincova D, Dona V, Euphrasie D, Daffe M, Etienne G, Manganelli R, Reyrat JM. 2008. SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 190:7859–7863. [PubMed][CrossRef]
134. Sato T, Kigawa A, Takagi R, Adachi T, Hoshino T. 2008. Biosynthesis of a novel cyclic C35-terpene via the cyclisation of a Z-type C35-polyprenyl diphosphate obtained from a nonpathogenic Mycobacterium species. Org Biomol Chem 6:3788–3794. [PubMed][CrossRef]
135. Mann FM, Xu M, Chen X, Fulton DB, Russell DG, Peters RJ. 2009. Edaxadiene: a new bioactive diterpene from Mycobacterium tuberculosis. J Am Chem Soc 131:17526–17527. [PubMed][CrossRef]
136. Hoshino T, Nakano C, Ootsuka T, Shinohara Y, Hara T. 2011. Substrate specificity of Rv3378c, an enzyme from Mycobacterium tuberculosis, and the inhibitory activity of the bicyclic diterpenoids against macrophage phagocytosis. Org Biomol Chem 9:2156–2165. [PubMed][CrossRef]
137. Pethe K, Swenson DL, Alonso S, Anderson J, Wang C, Russell DG. 2004. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc Natl Acad Sci USA 101:13642–13647. [PubMed][CrossRef]
138. Nakano C, Okamura T, Sato T, Dairi T, Hoshino T. 2005. Mycobacterium tuberculosis H37Rv3377c encodes the diterpene cyclase for producing the halimane skeleton. Chem Commun (Camb) 8:1016–1018. [PubMed][CrossRef]
139. Maugel N, Mann FM, Hillwig ML, Peters RJ, Snider BB. 2010. Synthesis of (+/-)-nosyberkol (isotuberculosinol, revised structure of edaxadiene) and (+/-)-tuberculosinol. Org Lett 12:2626–2629. [PubMed][CrossRef]
140. Spangler JE, Carson CA, Sorensen EJ. 2010. Synthesis enables a structural revision of the Mycobacterium tuberculosis-produced diterpene, edaxadiene. Chem Sci 1:202–205. [PubMed][CrossRef]
141. Jackson M, Stadthagen G, Gicquel B. 2007. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis 87:78–86. [PubMed][CrossRef]
142. Cardona P-J, Soto CY, Martin C, Gicquel B, Agusti G, Guirado E, Sirakova TD, Kolattukudy PE, Julian E, Luquin M. 2006. Neutral red reaction is related to virulence and cell wall methyl-branched lipids in Mycobacterium tuberculosis. Microbes Infect 8:183–190. [PubMed][CrossRef]
143. Gonzalo Asensio J, Maia C, Ferrer NL, Barilone N, Laval F, Soto CY, Winter N, Daffe M, Gicquel B, Martin C, Jackson M. 2006. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281:1313–1316. [PubMed][CrossRef]
144. Dubos RJ, Middlebrook G. 1948. Cytochemical reaction of virulent tubercle bacilli. Am Rev Tuberc 58:698–699. [PubMed]
145. Grzegorzewicz AE, Pham H, Gundi VA, Scherman MS, North EJ, Hess T, Jones V, Gruppo V, Born SE, Korduláková J, Chavadi SS, Morisseau C, Lenaerts AJ, Lee RE, McNeil MR, Jackson M. 2012. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 8:334–341. [PubMed][CrossRef]
146. Tahlan K, Wilson R, Kastrinsky DB, Arora K, Nair V, Fischer E, Barnes SW, Walker JR, Alland D, Barry CE, 3rd, Boshoff HI. 2012. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrobial Agents Chemother 56:1797–1809. [PubMed][CrossRef]
147. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. 1997. Role of the major antigen of Mycobacterium tuberculosis in the cell wall biogenesis. Science 276:1420–1422. [PubMed][CrossRef]
148. Jackson M, Raynaud C, Lanéelle MA, Guilhot C, Laurent-Winter C, Ensergueix D, Gicquel B, Daffé M. 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587. [PubMed][CrossRef]
149. Puech V, Guilhot C, Perez E, Tropis M, Armitige LY, Gicquel B, Daffe M. 2002. Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis. Mol Microbiol 44:1109–1122. [PubMed][CrossRef]
150. Harth G, Horwitz MA, Tabatadze D, Zamecnik PC. 2002. Targeting the Mycobacterium tuberculosis 30/32-kDa mycolyl transferase complex as a therapeutic strategy against tuberculosis: proof of principle by using antisense technology. Proc Natl Acad Sci USA 99:15614–15619. [PubMed][CrossRef]
151. Armitige LY, Jagannath C, Wanger AR, Norris SJ. 2000. Disruption of the genes encoding antigen 85A and antigen 85B of Mycobacterium tuberculosis H37Rv: effect on growth in culture and in macrophages. Infect Immun 68:767–678. [PubMed][CrossRef]
152. Nguyen L, Chinnapapagari S, Thompson CJ. 2005. FbpA-dependent biosynthesis of trehalose dimycolate is required for the intrinsic multidrug resistance, cell wall structure, and colonial morphology of Mycobacterium smegmatis. J Bacteriol 187:6603–6611. [PubMed][CrossRef]
153. Katti MK, Dai G, Armitige LY, Rivera Marrero C, Daniel S, Singh CR, Lindsey DR, Dhandayuthapani S, Hunter RL, Jagannath C. 2008. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells. Cell Microbiol 10:1286–1303. [PubMed][CrossRef]
154. Hunter RL, Armitige L, Jagannath C, Actor JK. 2009. TB research at UT-Houston: a review of cord factor: new approaches to drugs, vaccines and the pathogenesis of tuberculosis. Tuberculosis (Edinb) 89(Suppl 1):S18–S25. [PubMed][CrossRef]
155. Li C, Du Q, Deng W, Xie J. 2012. The biology of Mycobacterium cord factor and roles in pathogen-host interaction. Crit Rev Eukaryotic Gene Expr 22:289–297. [PubMed][CrossRef]
156. Linares C, Bernabeu A, Luquin M, Valero-Guillen PL. 2012. Cord factors from atypical mycobacteria (Mycobacterium alvei, Mycobacterium brumae) stimulate the secretion of some pro-inflammatory cytokines of relevance in tuberculosis. Microbiology 158:2878–2885. [PubMed][CrossRef]
157. Glickman MS. 2008. Cording, cord factors and trehalose dimycolate, p 63–73. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
158. Ishikawa E, Ishikawa T, Morita YS, Toyonaga K, Yamada H, Takeuchi O, Kinoshita T, Akira S, Yoshikai Y, Yamasaki S. 2009. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. [PubMed][CrossRef]
159. Sakamoto K, Kim MJ, Rhoades ER, Allavena RE, Ehrt S, Wainwright HC, Russell DG, Rohde KH. 2013. Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases. Infect Immun 81:764–776. [PubMed][CrossRef]
160. Lang R. 2013. Recognition of the mycobacterial cord factor by Mincle: relevance for granuloma formation and resistance to tuberculosis. Front Immunol 4:5. [PubMed][CrossRef]
161. Rao V, Fujiwara N, Porcelli SA, Glickman MS. 2005. Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201:535–543. [PubMed][CrossRef]
162. Dubey VS, Sirakova TD, Cynamon MH, Kolattukudy PE. 2003. Biochemical function of msl5 (pks8 plus pks17) in Mycobacterium tuberculosis H37Rv: biosynthesis of monomethyl branched unsaturated fatty acids. J Bacteriol 185:4620–4625. [PubMed][CrossRef]
163. Goren MB. 1990. Mycobacterial fatty acid esters of sugars and sulfosugars, p 363–461. In Kates M (ed), Handbook of Lipid Research. Glycolipids, Phosphoglycolipids and Sulfoglycolipids, vol. 6. Plenum Press, New York/London. [CrossRef]
164. Mougous JD, Petzold CJ, Seraratne RH, Lee DH, Akey DL, Lin FL, Munchel SE, Pratt MR, Riley LW, Leary JA, Berger JM, Bertozzi CR. 2004. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol 11:721–729. [PubMed][CrossRef]
165. Kumar P, Schelle MW, Jain M, Lin FL, Petzold CJ, Leavell MD, Leary JA, Cox JS, Bertozzi CR. 2007. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc Natl Acad Sci USA 104:11221–11226. [PubMed][CrossRef]
166. Sirakova TD, Thirumala AK, Dubey VS, Sprecher H, Kolattukudy PE. 2001. The Mycobacterium tuberculosis pks2 gene encodes the synthase for the hepta- and octamethyl branched fatty acids required for sulfolipid synthesis. J Biol Chem 276:16833–16839. [PubMed][CrossRef]
167. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. 2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–445. [PubMed][CrossRef]
168. Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA, Tully SE, Niederweis M, Cravatt BF, Leary JA, Bertozzi CR. 2012. Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287:7990–8000. [PubMed][CrossRef]
169. Bhatt K, Gurcha SS, Bhatt A, Besra GS, Jacobs WR, Jr. 2007. Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Microbiology 153:513–520. [PubMed][CrossRef]
170. Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR, Cox JS. 2003. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100:6121–6126. [PubMed][CrossRef]
171. Domenech P, Reed MB, Dowd CS, Manca C, Kaplan G, Barry CE, III. 2004. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 279:21257–21265. [PubMed][CrossRef]
172. Zheng J, Wei C, Zhao L, Liu L, Leng W, Li W, Jin Q. 2011. Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guerin. BMC Genomics 12:40. [PubMed][CrossRef]
173. Graham JE, Clark-Curtiss JE. 1999. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc Natl Acad Sci USA 96:11554–11559. [PubMed][CrossRef]
174. Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ. 2009. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5:e1000545. [PubMed][CrossRef]
175. Lee W, Vanderven BC, Fahey RJ, Russell DG. 2013. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J Biol Chem 288:6788–6800. [PubMed][CrossRef]
176. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffé M, Smith I. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330. [PubMed][CrossRef]
177. Chesne-Seck M-L, Barilone N, Boudou F, Gonzalo Asensio J, Kolattukudy PE, Martin C, Cole ST, Gicquel B, Gopaul DN, Jackson M. 2008. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J Bact 190:1329–1334. [PubMed][CrossRef]
178. Goyal R, Das AK, Singh R, Singh PK, Korpole S, Sarkar D. 2011. Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. J Biol Chem 286:45197–45208. [PubMed][CrossRef]
179. Cimino M, Thomas C, Namouchi A, Dubrac S, Gicquel B, Gopaul DN. 2012. Identification of DNA binding motifs of the Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system. PloS One 7:e42876. [PubMed][CrossRef]
180. Goren MB, Brennan PJ. 1979. Mycobacterial lipids: chemistry and biologic activities, p 63–193. In Youmans GP (ed), Tuberculosis. W. B. Saunders, Philadelphia, PA.
181. Bertozzi CR, Schelle MW. 2008. Sulfated metabolites from Mycobacterium tuberculosis: sulfolipid-1 and beyond, p 291–304. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
182. Gilleron M, Stenger S, Mazorra Z, Wittke F, Mariotti S, Böhmer G, Prandi J, Mori L, Puzo G, De Libero G. 2004. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J Exp Med 199:649–659. [PubMed][CrossRef]
183. Guiard J, Collmann A, Garcia-Alles LF, Mourey L, Brando T, Mori L, Gilleron M, Prandi J, De Libero G, Puzo G. 2009. Fatty acyl structures of Mycobacterium tuberculosis sulfoglycolipid govern T cell response. J Immunol 182:7030–7037. [PubMed][CrossRef]
184. Rousseau C, Turner OC, Rush E, Bordat Y, Sirakova TD, Kolattukudy PE, Ritter S, Orme IM, Gicquel B, Jackson M. 2003. Sulfolipid deficiency does not affect the virulence of Mycobacterium tuberculosis H37Rv in mice and guinea pigs. Infect Immun 71:4684–4690. [PubMed][CrossRef]
185. Lamichhane G, Tyagi S, Bishai WR. 2005. Designer arrays for defined mutant analysis to detect genes essential for survival of Mycobacterium tuberculosis in mouse lungs. Infect Immun 73:2533–2540. [PubMed][CrossRef]
186. Domenech P, Reed MB, Barry CE, III. 2005. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73:3492–3501. [PubMed][CrossRef]
187. Gilmore SA, Schelle MW, Holsclaw CM, Leigh CD, Jain M, Cox JS, Leary JA, Bertozzi CR. 2012. Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages. ACS Chem Biol 7:863–870. [PubMed][CrossRef]
188. Minnikin DE, Dobson G, Sesardic D, Ridell M. 1985. Mycolipenates and mycolipanolates of trehalose from Mycobacterium tuberculosis. J Gen Microbiol 131:1369–1374. [PubMed]
189. Lemassu A, Lanéelle M-A, Daffé M. 1991. Revised structure of a trehalose-containing immunoreactive glycolipid of Mycobacterium tuberculosis. FEMS Microbiol Lett 78:171–176. [CrossRef]
190. Besra GS, Bolton R, McNeil MR, Ridell M, Simpson KE, Glushka J, van Halbeek H, Brennan PJ, Minnikin DE. 1992. Structure elucidation and antigenicity of a novel family of glycolipid antigens from Mycobacterium tuberculosis H37Rv. Biochemistry 31:9832–9837. [PubMed][CrossRef]
191. Munoz M, Lanéelle M-A, Luquin M, Torrelles J, Julian E, Ausina V, Daffé M. 1997. Occurence of an antigenic triacyl trehalose in clinical isolates and reference strains of Mycobacterium tuberculosis. FEMS Microbiol Lett 157:251–259. [PubMed][CrossRef]
192. Daffé M, Lacave C, Lanéelle M-A, Gillois M, Lanéelle G. 1988. Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem 172:579–584. [PubMed][CrossRef]
193. Gautier N, Lopez Marin LM, Lanéelle M-A, Daffé M. 1992. Structure of mycoside F, a family of trehalose-containing glycolipids of Mycobacterium fortuitum. FEMS Microbiol Lett 98:81–88. [CrossRef]
194. Ariza MA, Martin-Luengo F, Valero-Guillen PL. 1994. A family of diacyltrehaloses isolated from Mycobacterium fortuitum. Microbiology 140:1989–1994. [PubMed][CrossRef]
195. Lee KS, Dubey VS, Kolattukudy PE, Song CH, Shin AR, Jung SB, Yang CS, Kim SY, Jo EK, Park JK, Kim HJ. 2007. Diacyltrehalose of Mycobacterium tuberculosis inhibits lipopolysaccharide- and mycobacteria-induced proinflammatory cytokine production in human monocytic cells. FEMS Microbiol Lett 267:121–128. [PubMed][CrossRef]
196. Dubey VS, Sirakova TD, Kolattukudy PE. 2002. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation. Mol Microbiol 45:1451–1459. [PubMed][CrossRef]
197. Rousseau C, Neyrolles O, Bordat Y, Giroux S, Sirakova TD, Prevost M-C, Kolattukudy PE, Gicquel B, Jackson M. 2003. Deficiency in mycolipenate- and mycosanoate-derived acyltrehaloses enhances early interactions of Mycobacterium tuberculosis with host cells. Cell Microbiol 5:405–415. [PubMed][CrossRef]
198. Lynett J, Stokes RW. 2007. Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology 153:3133–3140. [PubMed][CrossRef]
199. Hatzios SK, Schelle MW, Holsclaw CM, Behrens CR, Botyanszki Z, Lin FL, Carlson BL, Kumar P, Leary JA, Bertozzi CR. 2009. PapA3 is an acyltransferase required for polyacyltrehalose biosynthesis in Mycobacterium tuberculosis. J Biol Chem 284:12745–12751. [PubMed][CrossRef]
200. Daffé M, Lemassu A. 2000. Glycobiology of the mycobacterial surface. Structures and biological activities of the cell envelope glycoconjugates. In Doyle RJ (ed), Glycomicrobiology. Kluwer Academic/Plenum, New York.
201. Hunter SW, Murphy RC, Clay K, Goren MB, Brennan PJ. 1983. Trehalose-containing lipooligosaccharides. A new class of species-specific antigens from Mycobacterium. J Biol Chem 258:10481–10487. [PubMed]
202. Saadat S, Ballou CE. 1983. Pyruvylated glycolipids from Mycobacterium smegmatis. Structures of two oligosaccharide components. J Biol Chem 258:1813–1818. [PubMed]
203. Daffé M, McNeil MR, Brennan PJ. 1991. Novel type-specific lipooligosaccharides from Mycobacterium tuberculosis. Biochemistry 30:378–388. [PubMed][CrossRef]
204. Burguiere A, Hitchen P, Dover LG, Kremer L, Ridell M, Alexander DC, Liu J, Morris HR, Minnikin DE, Dell A, Besra GS. 2005. LosA, a key glycosyltransferase involved in the biosynthesis of a novel family of glycosylated acyltrehalose lipooligosaccharides from Mycobacterium marinum. J Biol Chem 280:42124–42133. [PubMed][CrossRef]
205. Ren H, Dover LG, Islam ST, Alexander DC, Chen JM, Besra GS, Liu J. 2007. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63:1345–1359. [PubMed][CrossRef]
206. Rombouts Y, Alibaud L, Carrere-Kremer S, Maes E, Tokarski C, Elass E, Kremer L, Guerardel Y. 2011. Fatty acyl chains of Mycobacterium marinum lipooligosaccharides: structure, localization and acylation by PapA4 (MMAR_2343) protein. J Biol Chem 286:33678–33688. [PubMed][CrossRef]
207. Etienne G, Malaga W, Laval F, Lemassu A, Guilhot C, Daffe M. 2009. Identification of the polyketide synthase involved in the biosynthesis of the surface-exposed lipooligosaccharides in mycobacteria. J Bacteriol 191:2613–2621. [PubMed][CrossRef]
208. Besra GS, Khoo KH, Belisle JT, McNeil MR, Morris HR, Dell A, Brennan PJ. 1994. New pyruvylated, glycosylated acyltrehaloses from Mycobacterium smegmatis strains, and their implications for phage resistance in mycobacteria. Carbohydr Res 251:99–114. [PubMed][CrossRef]
209. Sarkar D, Sidhu M, Singh A, Chen J, Lammas DA, van der Sar AM, Besra GS, Bhatt A. 2011. Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J Bacteriol 193:2336–2340. [PubMed][CrossRef]
210. Sonden B, Kocincova D, Deshayes C, Euphrasie D, Rhayat L, Laval F, Frehel C, Daffe M, Etienne G, Reyrat J-M. 2005. Gap, a mycobacterial specific integral membrane protein, is required for glycolipid transport to the cell surface. Mol Microbiol 58:426–440. [PubMed][CrossRef]
211. Ripoll F, Deshayes C, Pasek S, Laval F, Beretti JL, Biet F, Risler JL, Daffe M, Etienne G, Gaillard JL, Reyrat JM. 2007. Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 8:114. [PubMed][CrossRef]
212. Deshayes C, Kocinkova D, Etienne G, Reyrat J-M. 2008. Glycopeptidolipids: a complex pathway for small pleitotropic molecules. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
213. van der Woude AD, Sarkar D, Bhatt A, Sparrius M, Raadsen SA, Boon L, Geurtsen J, van der Sar AM, Luirink J, Houben EN, Besra GS, Bitter W. 2012. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 287:20417–20429. [PubMed][CrossRef]
214. Belisle JT, Brennan PJ. 1989. Chemical basis of rough and smooth variation in mycobacteria. J Bacteriol 171:3465–3470. [PubMed]
215. Lemassu A, Levy-Frebault VV, Laneelle MA, Daffe M. 1992. Lack of correlation between colony morphology and lipooligosaccharide content in the Mycobacterium tuberculosis complex. J Gen Microbiol 138:1535–1541. [PubMed][CrossRef]
216. Rombouts Y, Burguiere A, Maes E, Coddeville B, Elass E, Guerardel Y, Kremer L. 2009. Mycobacterium marinum lipooligosaccharides are unique caryophyllose-containing cell wall glycolipids that inhibit tumor necrosis factor-alpha secretion in macrophages. J Biol Chem 284:20975–20988. [PubMed][CrossRef]
217. Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, Rosat JP, Brenner MB, Costello CE, Besra GS, Porcelli SA. 2000. CD1c-mediated T-cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 404:884–888. [PubMed][CrossRef]
218. Matsunaga I, Bhatt A, Young DC, Cheng T-Y, Eyles SJ, Besra GS, Briken V, Porcelli SA, Costello CE, Jacobs WR, Jr, Moody DB. 2004. Mycobacterium tuberculosis pks12 produces a novel polyketide presented by CD1c to T cells. J Exp Med 200:1559–1569. [PubMed][CrossRef]
219. Matsunaga I, Sugita M. 2012. Mycoketide: a CD1c-presented antigen with important implications in mycobacterial infection. Clin Dev Immunol 2012:981821. [PubMed][CrossRef]
220. Chopra T, Banerjee S, Gupta S, Yadav G, Anand S, Surolia A, Roy RP, Mohanty D, Gokhale RS. 2008. Novel intermolecular iterative mechanism for biosynthesis of mycoketide catalyzed by a bimodular polyketide synthase. PLoS Biol 6:1584–1598. [PubMed][CrossRef]
221. Daffé M, Lanéelle M-A. 1988. Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. J Gen Microbiol 134:2049–2055. [PubMed]
222. Daffé M, Lacave C, Laneelle MA, Laneelle G. 1987. Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti). Eur J Biochem 167:155–160. [PubMed][CrossRef]
223. Constant P, Pérez E, Malaga W, Lanéelle M-A, Saurel O, Daffé M, Guilhot C. 2002. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. J Biol Chem 277:38148–38158. [PubMed][CrossRef]
224. Reed MB, Domenech P, Manca C, Su H, Barczak AK, Kreiswirth BN, Kaplan G, Barry CE, III. 2004. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature 431:84–87. [PubMed][CrossRef]
225. Huet G, Constant P, Malaga W, Laneelle MA, Kremer K, van Soolingen D, Daffe M, Guilhot C. 2009. A lipid profile typifies the Beijing strains of Mycobacterium tuberculosis: identification of a mutation responsible for a modification of the structures of phthiocerol dimycocerosates and phenolic glycolipids. J Biol Chem 284:27101–27113. [PubMed][CrossRef]
226. Malaga W, Constant P, Euphrasie D, Cataldi A, Daffé M, Reyrat J-M, Guilhot C. 2008. Deciphering the genetic bases of the structural diversity of phenolic glycolipids in strains of the Mycobacterium tuberculosis complex. J Biol Chem 283:15177–15184. [PubMed][CrossRef]
227. Goren MB, Brokl O, Schaefer WB. 1974. Lipids of putative relevance to virulence in Mycobacterium tuberculosis: phthiocerol dimycocerosate and the attenuation indicator lipid. Infect Immun 9:150–158. [PubMed]
228. Krishnan N, Malaga W, Constant P, Caws M, Tran TH, Salmons J, Nguyen TN, Nguyen DB, Daffe M, Young DB, Robertson BD, Guilhot C, Thwaites GE. 2011. Mycobacterium tuberculosis lineage influences innate immune response and virulence and is associated with distinct cell envelope lipid profiles. PloS One 6:e23870. [PubMed][CrossRef]
229. Camacho LR, Constant P, Raynaud C, Lanéelle M-A, Triccas JA, Gicquel B, Daffé M, Guilhot C. 2001. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854. [PubMed][CrossRef]
230. Waddell SJ, Chung GA, Gibson KJ, Everett MJ, Minnikin DE, Besra GS, Butcher PD. 2005. Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Lett Appl Microbiol 40:201–206. [PubMed][CrossRef]
231. Sirakova TD, Dubey VS, Kim H-J, Cynamon MH, Kolattukudy PE. 2003. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun 71:3794–3801. [PubMed][CrossRef]
232. Sirakova TD, Dubey VS, Cynamon MH, Kolattukudy PE. 2003. Attenuation of Mycobacterium tuberculosis by disruption of a mas-like gene or a chalcone synthase-like gene, which causes deficiency in dimycocerosyl phthiocerol synthesis. J Bacteriol 185:2999–3008. [PubMed][CrossRef]
233. Hotter GS, Wards BJ, Mouat P, Besra GS, Gomes J, Singh M, Bassett S, Kawakami P, Wheeler PR, de Lisle GW, Collins DM. 2005. Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. J Bacteriol 187:2267–2277. [PubMed][CrossRef]
234. Rousseau C, Sirakova TD, Dubey VS, Bordat Y, Kolattukudy PE, Gicquel B, Jackson M. 2003. Virulence attenuation of two Mas-like polyketide synthase mutants of Mycobacterium tuberculosis. Microbiology 149:1837–1847. [PubMed][CrossRef]
235. Cox JS, Chen B, McNeil M, Jacobs WR, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83. [PubMed]
236. Simeone R, Leger M, Constant P, Malaga W, Marrakchi H, Daffe M, Guilhot C, Chalut C. 2010. Delineation of the roles of FadD22, FadD26 and FadD29 in the biosynthesis of phthiocerol dimycocerosates and related compounds in Mycobacterium tuberculosis. FEBS J 277:2715–2725. [PubMed][CrossRef]
237. Stadthagen G, Kordulakova J, Griffin R, Constant P, Bottova I, Barilone N, Gicquel B, Daffe M, Jackson M. 2005. p-Hydroxybenzoic acid synthesis in Mycobacterium tuberculosis. J Biol Chem 280:40699–40706. [PubMed][CrossRef]
238. Chavadi SS, Edupuganti UR, Vergnolle O, Fatima I, Singh SM, Soll CE, Quadri LE. 2011. Inactivation of tesA reduces cell wall lipid production and increases drug susceptibility in mycobacteria. J Biol Chem 286:24616–24625. [PubMed][CrossRef]
239. Rao A, Ranganathan A. 2004. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Mol Genet Genomics 272:571–579. [PubMed][CrossRef]
240. Rainwater DL, Kolattukudy PE. 1983. Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 258:2979–2985. [PubMed]
241. Rainwater DL, Kolattukudy PE. 1985. Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J Biol Chem 260:616–623. [PubMed]
242. Mathur M, Kolattukudy PE. 1992. Molecular cloning and sequencing of the gene for mycocerosic acid synthase, a novel fatty acid elongating multifunctional enzyme, from Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guerin. J Biol Chem 267:19388–19395. [PubMed]
243. Azad AK, Sirakova TD, Rogers LM, Kolattukudy PE. 1996. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides. Proc Natl Acad Sci USA 93:4787–4792. [PubMed][CrossRef]
244. Trivedi OA, Arora P, Vats A, Ansari MZ, Tickoo R, Sridharan V, Mohanty D, Gokhale RS. 2005. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol Cell 17:631–643. [PubMed][CrossRef]
245. Fitzmaurice AM, Kolattukudy PE. 1997. Open reading frame 3, which is adjacent to the mycocerosic acid synthase gene, is expressed as an acyl coenzyme A synthase in Mycobacterium bovis BCG. J Bacteriol 179:2608–2615. [PubMed]
246. Fitzmaurice AM, Kolattukudy PE. 1998. An acyl-CoA synthase (acoas) gene adjacent to the mycocerosic acid synthase (mas) locus is necessary for mycocerosyl lipid synthesis in Mycobacterium tuberculosis var. bovis BCG. J Biol Chem 273:8033–8039. [PubMed][CrossRef]
247. Perez E, Constant P, Laval F, Lemassu A, Laneelle MA, Daffe M, Guilhot C. 2004. Molecular dissection of the role of two methyltransferases in the biosynthesis of phenolglycolipids and phthiocerol dimycoserosate in the Mycobacterium tuberculosis complex. J Biol Chem 279:42584–42592. [PubMed][CrossRef]
248. Perez E, Constant P, Lemassu A, Laval F, Daffe M, Guilhot C. 2004. Characterization of three glycosyltransferases involved in the biosynthesis of the phenolic glycolipid antigens from the Mycobacterium tuberculosis complex. J Biol Chem 279:42574–42583. [PubMed][CrossRef]
249. Simeone R, Huet G, Constant P, Malaga W, Lemassu A, Laval F, Daffe M, Guilhot C, Chalut C. 2013. Functional characterisation of three O-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis. PloS One 8:e58954. [PubMed][CrossRef]
250. Tabouret G, Astarie-Dequeker C, Demangel C, Malaga W, Constant P, Ray A, Honore N, Bello NF, Perez E, Daffe M, Guilhot C. 2010. Mycobacterium leprae phenolglycolipid-1 expressed by engineered M. bovis BCG modulates early interaction with human phagocytes. PLoS Pathog 6:e1001159. [PubMed][CrossRef]
251. Jain M, Chow ED, Cox JS. 2008. The MmpL protein family, p 201–210. In Daffe M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
252. Jain M, Cox JS. 2005. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 1:12–19. [PubMed][CrossRef]
253. Sulzenbacher G, Canaan S, Bordat Y, Neyrolles O, Stadthagen G, Roig-Zamboni V, Rauzier J, Maurin D, Laval F, Daffé M, Cambillau C, Gicquel B, Bourne Y, Jackson M. 2006. LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis. EMBO J 25:1436–1444. [PubMed][CrossRef]
254. Daffé M, Cho SN, Chatterjee D, Brennan PJ. 1991. Chemical synthesis and seroreactivity of a neoantigen containing the oligosaccharide hapten of the Mycobacterium tuberculosis-specific phenolic glycolipid. J Infect Dis 163:161–168. [PubMed][CrossRef]
255. Cho SN, Shin JS, Daffe M, Chong Y, Kim SK, Kim JD. 1992. Production of monoclonal antibody to a phenolic glycolipid of Mycobacterium tuberculosis and its use in detection of the antigen in clinical isolates. J Clin Microbiol 30:3065–3069. [PubMed]
256. Simonney N, Molina JM, Molimard M, Oksenhendler E, Lagrange PH. 1996. Comparison of A60 and three glycolipid antigens in an ELISA test for tuberculosis. Clin Microbiol Infect 2:214–222. [PubMed]
257. Simonney N, Molina JM, Molimard M, Oksenhendler E, Perronne C, Lagrange PH. 1995. Analysis of the immunological humoral response to Mycobacterium tuberculosis glycolipid antigens (DAT, PGLTb1) for diagnosis of tuberculosis in HIV-seropositive and -seronegative patients. Eur J Clin Microbiol Infect Dis 14:883–891. [PubMed][CrossRef]
258. Puzo G. 1990. The carbohydrate- and lipid- containing cell wall of mycobacteria, phenolic glycolipids: structure and immunological properties. Crit. Rev. Microbiol. 17:305–327. [PubMed][CrossRef]
259. Minnikin DE. 1982. Lipids: complex lipids, their chemistry, biosynthesis and roles, p 95–184. In Ratledge C, Stanford J (ed), The Biology of Mycobacteria, vol. 1. Academic Press, London.
260. Guilhot C, Chalut C, Daffé M. 2008. Biosynthesis and roles of phenolic glycolipids and related molecules in Mycobacterium tuberculosis, p 273–289. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
261. Fournié JJ, Adams E, Mullins RJ, Basten A. 1989. Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infect Immun 57:3653–3659. [PubMed]
262. Vachula M, Holzer TJ, Andersen BR. 1989. Suppression of monocyte oxidative response by phenolic glycolipid I of Mycobacterium leprae. J Immunol 60:203–206.
263. Vachula M, Holzer TJ, Kizlaitis L, Andersen BR. 1990. Effect of Mycobacterium leprae's phenolic glycolipid-I on interferon-gamma augmentation of monocyte oxidative responses. Int J Lepr Other Mycobact Dis 58:342–346. [PubMed]
264. Mehra V, Brennan PJ, Rada E, Convit J, Bloom BR. 1984. Lymphocyte suppression in leprosy induced by unique M. leprae glycolipid. Nature 308:194–196. [PubMed][CrossRef]
265. Chan J, Fujiwara T, Brennan PJ, McNeil M, Turco SJ, Sibille J-C, Snapper M, Aisen P, Bloom BR. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci USA 86:2453–2457. [PubMed][CrossRef]
266. Smith DW, Randall HM, Maclennan AP, Lederer E. 1960. Mycosides: a new class of type-specific glycolipids of mycobacteria. Nature 186:887–888. [PubMed][CrossRef]
267. Aspinall GO, Chatterjee D, Brennan PJ. 1995. The variable surface glycolipids of mycobacteria: structures, synthesis of epitopes, and biological properties. Adv Carbohydr Chem Biochem 51:169–242. [PubMed][CrossRef]
268. Chatterjee D, Khoo KH. 2001. The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 58:2018–2042. [PubMed][CrossRef]
269. Riviere M, Puzo G. 1991. A new type of serine-containing glycopeptidolipid from Mycobacterium xenopi. J Biol Chem 266:9057–9063. [PubMed]
270. Besra GS, McNeil MR, Rivoire B, Khoo KH, Morris HR, Dell A, Brennan PJ. 1993. Further structural definition of a new family of glycopeptidolipids from Mycobacterium xenopi. Biochemistry 32:347–355. [PubMed][CrossRef]
271. Daffé M, Laneelle MA, Puzo G. 1983. Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis. Biochim Biophys Acta 751:439–443. [PubMed][CrossRef]
272. Vats A, Singh AK, Mukherjee R, Chopra T, Ravindran MS, Mohanty D, Chatterji D, Reyrat JM, Gokhale RS. 2012. Retrobiosynthetic approach delineates the biosynthetic pathway and the structure of the acyl chain of mycobacterial glycopeptidolipids. J Biol Chem 287:30677–30687. [PubMed][CrossRef]
273. Barrow WW, Brennan PJ. 1982. Isolation in high frequency of rough variants of Mycobacterium intracellulare lacking C-mycoside glycopeptidolipid antigens. J Bacteriol 150:381–384. [PubMed]
274. Billman-Jacobe H, McConville MJ, Haites RE, Kovacevic S, Coppel RL. 1999. Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis. Mol Microbiol 33:1244–1253. [PubMed][CrossRef]
275. Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont M-A, Daffé M. 2002. The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis. Microbiology 148:3089–3100. [PubMed]
276. Schaefer WB. 1965. Serologic identification and classification of the atypical mycobacteria by their agglutination. Am Rev Respir Dis 92:85–93. [PubMed]
277. Draper P, Rees RJ. 1973. The nature of the electron-transparent zone that surrounds Mycobacterium lepraemurium inside host cells. J Gen Microbiol 77:79–87. [PubMed][CrossRef]
278. Draper P. 1974. The mycoside capsule of Mycobacterium avium 357. J Gen Microbiol 83:431–433. [PubMed][CrossRef]
279. Vergne I, Daffe M. 1998. Interaction of mycobacterial glycolipids with host cells. Front Biosci 3:d865–d876. [PubMed]
280. Martinez A, Torello S, Kolter R. 1999. Sliding motility in mycobacteria. J Bacteriol 181:7331–7338. [PubMed]
281. Recht J, Martinez A, Torello S, Kolter R. 2000. Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182:4348–4351. [PubMed][CrossRef]
282. Draper P, Rees RJ. 1970. Electron-transparent zone of mycobacteria may be a defence mechanism. Nature 228:860–861. [PubMed][CrossRef]
283. Tereletsky MJ, Barrow WW. 1983. Postphagocytic detection of glycopeptidolipids associated with the superficial L1 layer of Mycobacterium intracellulare. Infect Immun 41:1312–1321. [PubMed]
284. Rulong S, Aguas AP, da Silva PP, Silva MT. 1991. Intramacrophagic Mycobacterium avium bacilli are coated by a multiple lamellar structure: freeze fracture analysis of infected mouse liver. Infect Immun 59:3895–3902. [PubMed]
285. Brownback PE, Barrow WW. 1988. Modified lymphocyte response to mitogens after intraperitoneal injection of glycopeptidolipid antigens from Mycobacterium avium complex. Infect Immun 56:1044–1050. [PubMed]
286. Hooper LC, Barrow WW. 1988. Decreased mitogenic response of murine spleen cells following intraperitoneal injection of serovar-specific glycopeptidolipid antigens from the Mycobacterium avium complex. Adv Exp Med Biol 239:309–325. [PubMed][CrossRef]
287. Pourshafie M, Ayub Q, Barrow WW. 1993. Comparative effects of Mycobacterium avium glycopeptidolipid and lipopeptide fragment on the function and ultrastructure of mononuclear cells. Clin Exp Immunol 93:72–79. [PubMed][CrossRef]
288. Barrow WW, de Sousa JP, Davis TL, Wright EL, Bachelet M, Rastogi N. 1993. Immunomodulation of human peripheral blood mononuclear cell functions by defined lipid fractions of Mycobacterium avium. Infect Immun 61:5286–-5293. [PubMed]
289. Kano H, Doi T, Fujita Y, Takimoto H, Yano I, Kumazawa Y. 2005. Serotype-specific modulation of human monocyte functions by glycopeptidolipid (GPL) isolated from Mycobacterium avium complex. Biol Pharm Bull 28:335–339. [PubMed][CrossRef]
290. Horgen L, Barrow EL, Barrow WW, Rastogi N. 2000. Exposure of human peripheral blood mononuclear cells to total lipids and serovar-specific glycopeptidolipids from Mycobacterium avium serovars 4 and 8 results in inhibition of TH1-type responses. Microbial Pathog 29:9–16. [PubMed][CrossRef]
291. Barrow WW, Davis TL, Wright EL, Labrousse V, Bachelet M, Rastogi N. 1995. Immunomodulatory spectrum of lipids associated with Mycobacterium avium serovar 8. Infect Immun 63:126–133. [PubMed]
292. Lagrange PH, Fourgeaud M, Neway T, Pilet C. 1994. Enhanced resistance against lethal disseminated Candida albicans infection in mice treated with polar glycopeptidolipids from Mycobacterium chelonae (pGPL-Mc). CR Acad Sci III 317:1107–1113. [PubMed]
293. Gjata B, Hannoun C, Boulouis HJ, Neway T, Pilet C. 1994. Adjuvant activity of polar glycopeptidolipids of Mycobacterium chelonae (pGPL-Mc) on the immunogenic and protective effects of an inactivated influenza vaccine. CR Acad Sci III 317:257–263. [PubMed]
294. Vincent-Naulleau S, Neway T, Thibault D, Barrat F, Boulouis HJ, Pilet C. 1995. Effects of polar glycopeptidolipids of Mycobacterium chelonae (pGPL-Mc) on granulomacrophage progenitors. Res Immunol 146:363–371. [PubMed][CrossRef]
295. Vincent-Naulleau S, Thibault D, Neway T, Pilet C. 1997. Stimulatory effects of polar glycopeptidolipids of Mycobacterium chelonae on murine haematopoietic stem cells and megakaryocyte progenitors. Res Immunol 148:127–136. [PubMed][CrossRef]
296. de Souza Matos DC, Marcovistz R, Neway T, Vieira da Silva AM, Alves EN, Pilet C. 2000. Immunostimulatory effects of polar glycopeptidolipids of Mycobacterium chelonae for inactivated rabies vaccine. Vaccine 18:2125–2131. [PubMed][CrossRef]
297. Patterson JH, McConville MJ, Haites RE, Coppel RL, Billman-Jacobe H. 2000. Identification of a methyltransferase from Mycobacterium smegmatis involved in glycopeptidolipid synthesis. J Biol Chem 275:24900–24906. [PubMed][CrossRef]
298. Recht J, Kolter R. 2001. Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis. J Bacteriol 183:5718–5724. [PubMed][CrossRef]
299. Jeevarajah D, Patterson JH, McConville MJ, Billman-Jacobe H. 2002. Modification of glycopeptidolipids by an O-methyltransferase of Mycobacterium smegmatis. Microbiology 148:3079–3087. [PubMed]
300. Jeevarajah D, Patterson JH, Taig E, Sargeant T, McConville MJ, Billman-Jacobe H. 2004. Methylation of GPLs in Mycobacterium smegmatis and Mycobacterium avium. J Bacteriol 186:6792–6799. [PubMed][CrossRef]
301. Deshayes C, Laval F, Montrozier H, Daffe M, Etienne G, Reyrat JM. 2005. A glycosyltransferase involved in biosynthesis of triglycosylated glycopeptidolipids in Mycobacterium smegmatis: impact on surface properties. J Bacteriol 187:7283–7291. [PubMed][CrossRef]
302. Laurent JP, Hauge K, Burnside K, Cangelosi G. 2003. Mutational analysis of cell wall biosynthesis in Mycobacterium avium. J Bacteriol 185:5003–5006. [PubMed][CrossRef]
303. Tatham E, Sundaram Chavadi S, Mohandas P, Edupuganti UR, Angala SK, Chatterjee D, Quadri LE. 2012. Production of mycobacterial cell wall glycopeptidolipids requires a member of the MbtH-like protein family. BMC Microbiol 12:118. [PubMed][CrossRef]
304. Villeneuve C, Etienne G, Abadie V, Montrozier H, Bordier C, Laval F, Daffe M, Maridonneau-Parini I, Astarie-Dequeker C. 2003. Surface-exposed glycopeptidolipids of Mycobacterium smegmatis specifically inhibit the phagocytosis of mycobacteria by human macrophages. Identification of a novel family of glycopeptidolipids. J Biol Chem 278:51291–51300. [PubMed][CrossRef]
305. Billman-Jacobe H. 2004. Glycopeptidolipid synthesis in mycobacteria. Curr Sci 86:111–114.
306. Bull TJ, Sheridan JM, Martin H, Sumar N, Tizard M, Hermon-Taylor J. 2000. Further studies on the GS element. A novel mycobacterial insertion sequence (IS1612), inserted into an acetylase gene (mpa) in Mycobacterium avium subsp. silvaticum but not in Mycobacterium avium subsp. paratuberculosis. Vet Microbiol 77:453–463. [CrossRef]
307. Maslow JN, Irani VR, Lee SH, Eckstein TM, Inamine JM, Belisle JT. 2003. Biosynthetic specificity of the rhamnosyltransferase gene of Mycobacterium avium serovar 2 as determined by allelic exchange mutagenesis. Microbiology 149:3193–3202. [PubMed][CrossRef]
308. Eckstein TM, Silbaq FS, Chatterjee D, Kelly NJ, Brennan PJ, Belisle JT. 1998. Identification and recombinant expression of a Mycobacterium avium rhamnosyltransferase gene (rtfA) involved in glycopeptidolipid biosynthesis. J Bacteriol 180:5567–5573. [PubMed]
309. Krzywinska E, Bhatnagar S, Sweet L, Chatterjee D, Schorey JS. 2005. Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Mol Microbiol 56:1262–1273. [PubMed][CrossRef]
310. Irani VR, Lee SH, Eckstein TM, Inamine JM, Belisle JT, Maslow JN. 2004. Utilization of a ts-sacB selection system for the generation of a Mycobacterium avium serovar-8 specific glycopeptidolipid allelic exchange mutant. Ann Clin Microbiol Antimicrob 3:18. [PubMed][CrossRef]
311. Eckstein TM, Belisle JT, Inamine JM. 2003. Proposed pathway for the biosynthesis of serovar-specific glycopeptidolipids in Mycobacterium avium serovar 2. Microbiology 149:2797–2807. [PubMed][CrossRef]
312. Deshayes C, Bach H, Euphrasie D, Attarian R, Coureuil M, Sougakoff W, Laval F, Av-Gay Y, Daffe M, Etienne G, Reyrat JM. 2010. MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol Microbiol 78:989–1003. [PubMed][CrossRef]
313. Ojha AK, Varma S, Chatterji D. 2002. Synthesis of an unusual polar glycopeptidolipid in glucose-limited culture of Mycobacterium smegmatis. Microbiology 148:3039–3048. [PubMed]
314. Mukherjee R, Chatterji D. 2005. Evaluation of the role of sigma B in Mycobacterium smegmatis. Biochem Biophys Res Commun 338:964–972. [PubMed][CrossRef]
315. Kocincova D, Singh AK, Beretti JL, Ren H, Euphrasie D, Liu J, Daffe M, Etienne G, Reyrat JM. 2008. Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb) 88:390–398. [PubMed][CrossRef]
316. Dinadayala P, Lemassu A, Granovski P, Cérantola S, Winter N, Daffé M. 2004. Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis bacille Calmette-Guérin. J Biol Chem 279:12369–12378. [PubMed][CrossRef]
317. Dinadayala P, Sambou T, Daffé M, Lemassu A. 2008. Comparative structural analyses of the alpha-glucan and glycogen from Mycobacterium bovis. Glycobiology 18:502–508. [PubMed][CrossRef]
318. Cywes C, Hoppe HC, Daffé M, Ehlers MRW. 1997. Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect Immun 65:4258–4266. [PubMed]
319. Gagliardi MC, Lemassu A, Teloni R, Mariotti S, Sargentini V, Pardini M, Daffe M, Nisini R. 2007. Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cells derived from infected monocyte. Cell Microbiol 9:2081–2092. [PubMed][CrossRef]
320. Geurtsen J, Chedammi S, Mesters J, Cot M, Driessen NN, Sambou T, Kakutani R, Ummels R, Maaskant J, Takata H, Baba O, Terashima T, Bovin N, Vandenbroucke-Grauls CMJE, Nigou J, Puzo G, Lemassu A, Daffe M, Appelmelk BJ. 2009. Identification of mycobacterial α-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol 183:5221–5231. [PubMed][CrossRef]
321. Stokes RW, Norris-Jones R, Brooks DE, Beveridge TJ, Doxsee D, Thorson LM. 2004. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages. Infect Immun 72:5676–5686. [PubMed][CrossRef]
322. Sambou T, Dinadayala P, Stadthagen G, Barilone N, Bordat Y, Constant P, Levillain F, Neyrolles O, Gicquel B, Lemassu A, Daffé M, Jackson M. 2008. Capsular glucan and intracellular glycogen of Mycobacterium tuberculosis: biosynthesis and impact on the persistence in mice. Mol Microbiol 70:762–774. [PubMed][CrossRef]
323. Stadthagen G, Sambou T, Guerin M, Barilone N, Boudou F, Kordulakova J, Charles P, Alzari PM, Lemassu A, Daffé M, Puzo G, Gicquel B, Riviere M, Jackson M. 2007. Genetic basis for the biosynthesis of methylglucose lipopolysaccharides in Mycobacterium tuberculosis. J Biol Chem 282:27270–27276. [PubMed][CrossRef]
324. Kalscheuer R, Syson K, Veeraraghavan U, Weinrick B, Biermann KE, Liu Z, Sacchettini JC, Besra GS, Bornemann S, Jacobs WR, Jr. 2010. Self-poisoning of Mycobacterium tuberculosis by targeting GlgE in an alpha-glucan pathway. Nat Chem Biol 6:376–384. [PubMed][CrossRef]
325. Elbein AD, Pastuszak I, Tackett AJ, Wilson T, Pan YT. 2010. The last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose-1-phosphate to glycogen. J Biol Chem 285:9803–9812. [PubMed][CrossRef]
326. Jackson M, Brennan PJ. 2009. Polymethylated polysaccharides from Mycobacterium species revisited. J Biol Chem 284:1949–1953. [PubMed][CrossRef]
327. Quadri LEN. 2008. Iron uptake in mycobacteria, p 167–184. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
328. Stinear TP, Small P. 2008. The mycolactones: biologically active polyketides produced by Mycobacterium ulcerans and related aquatic mycobacteria, p 367–377. In Daffé M, Reyrat J-M (ed), The Mycobacterial Cell Envelope. ASM Press, Washington, DC.
329. Wells RM, Jones CM, Xi Z, Speer A, Danilchanka O, Doornbos KS, Sun P, Wu F, Tian C, Niederweis M. 2013. Discovery of a siderophore export system essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 9:e1003120. [PubMed][CrossRef]
330. Marsollier L, Brodin P, Jackson M, Korduláková J, Tafelmeyer P, Carbonnelle E, Aubry J, Milon G, Legras P, Andre JP, Leroy C, Cottin J, Guillou ML, Reysset G, Cole ST. 2007. Impact of Mycobacterium ulcerans biofilm on transmissibility to ecological niches and Buruli ulcer pathogenesis. PLoS Pathog 3:e62. [PubMed][CrossRef]
331. Stinear TP, Mve-Obiang A, Small PLC, Frigui W, Pryor MJ, Brosch R, Jenkin GA, Johnson PDR, Davies JK, Lee RE, Adusumilli S, Granier T, Haydock SF, Leadlay PF, Cole ST. 2004. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA 101:1345–1349. [PubMed][CrossRef]
332. He H, Oka S, Han YK, Yamamura Y, Kusunose E, Kusunose M, Yano I. 1991. Rapid serodiagnosis of human mycobacteriosis by ELISA using cord factor (trehalose-6,6′-dimycolate) purified from Mycobacterium tuberculosis as antigen. FEMS Microbiol Immunol 3:201–204. [PubMed]
333. Vera-Cabrera L, Handzel V, Laszlo A. 1994. Development of an enzyme-linked immunosorbent assay (ELISA) combined with a streptavidin-biotin and enzyme amplification method to detect anti-2,3-di-O-acyltrehalose (DAT) antibodies in patients with tuberculosis. J Immunol Methods 177:69–77. [CrossRef]
334. Julian E, Matas L, Perez A, Alcaide J, Laneelle MA, Luquin M. 2002. Serodiagnosis of tuberculosis: comparison of immunoglobulin A (IgA) response to sulfolipid I with IgG and IgM responses to 2,3-diacyltrehalose, 2,3,6-triacyltrehalose, and cord factor antigens. J Clin Microbiol 40:3782–3788. [PubMed][CrossRef]
335. Cunningham AF, Spreadbury CL. 1998. Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 16-kilodalton α-crystallin homolog. J Bacteriol 180:801–808. [PubMed]
336. de Chastellier C, Thilo L. 1997. Phagosome maturation and fusion with lysosomes in relation to surface property and size of the phagocytic particle. Eur J Cell Biol 74:49–62. [PubMed]
337. Guerin ME, Kordulakova J, Alzari PM, Brennan PJ, Jackson M. 2010. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 285:33577–33583. [PubMed][CrossRef]
338. Gupta R, Lavollay M, Mainardi JL, Arthur M, Bishai WR, Lamichhane G. 2010. The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nat Med 16:466–469. [PubMed][CrossRef]
339. Ryan GJ, Hoff DR, Driver ER, Voskuil ML, Gonzalez-Juarrero M, Basaraba RJ, Crick DC, Spencer JS, Lenaerts AJ. 2010. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PloS One 5:e11108. [PubMed][CrossRef]
340. Dhiman RK, Dinadayala P, Ryan GJ, Lenaerts AJ, Schenkel AR, Crick DC. 2011. Lipoarabinomannan localization and abundance during growth of Mycobacterium smegmatis. J Bacteriol 193:5802–5809. [PubMed][CrossRef]
341. Bhamidi S, Shi L, Chatterjee D, Belisle JT, Crick DC, McNeil MR. 2012. A bioanalytical method to determine the cell wall composition of Mycobacterium tuberculosis grown in vivo. Anal Biochem 421:240–249. [PubMed][CrossRef]
342. Molle V, Kremer L. 2010. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol Microbiol 75:1064–1077. [PubMed][CrossRef]
343. Hunter SW, Neil MRM, Brennan PJ. 1986. Diglycosyl diacylglycerol of Mycobacterium tuberculosis. J Bacteriol 168:917–922. [PubMed]
344. Slayden RA, Jackson M, Zucker J, Ramirez MV, Dawson CC, Crew R, Sampson NS, Thomas ST, Jamshidi N, Sisk P, Caspi R, Crick DC, McNeil MR, Pavelka MS, Niederweis M, Siroy A, Dona V, McFadden J, Boshoff H, Lew JM. 2013. Updating and curating metabolic pathways of TB. Tuberculosis (Edinb) 93:47–59. [PubMed][CrossRef]
345. Siegrist MS, Unnikrishnan M, McConnell MJ, Borowsky M, Cheng TY, Siddiqi N, Fortune SM, Moody DB, Rubin EJ. 2009. Mycobacterial Esx-3 is required for mycobactin-mediated iron acquisition. Proc Natl Acad Sci USA 106:18792–18797. [PubMed][CrossRef]
346. Pandey AK, Sassetti CM. 2008. Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105:4376–4380. [PubMed][CrossRef]
347. Camacho LR, Ensergueix D, Pérez E, Gicquel B, Guilhot C. 1999. Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267. [PubMed][CrossRef]
348. Larrouy-Maumus G, Škovierová H, Dhouib R, Angala SK, Zuberogoitia S, Pham H, Drumond Villela A, Mikušová K, Noguera A, Gilleron M, Valentinova L, Korduláková J, Brennan PJ, Puzo G, Nigou J, Jackson M. 2012. A small multidrug resistance-like transporter involved in the arabinosylation of arabinogalactan and lipoarabinomannan in mycobacteria. J Biol Chem 287:39933–39941. [PubMed][CrossRef]
349. Azad AK, Sirakova TD, Fernandes ND, Kolattukudy PE. 1997. Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 272:16741–16745. [PubMed][CrossRef]
350. Choudhuri BS, Bhakta S, Barik R, Basu J, Kundu M, Chakrabarti P. 2002. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J 367:279–285. [PubMed][CrossRef]
351. Onwueme KC, Ferreras JA, Buglino J, Lima CD, Quadri LE. 2004. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Proc Natl Acad Sci USA 101:4608–4613. [PubMed][CrossRef]
352. Buglino J, Onwueme KC, Ferreras JA, Quadri LE, Lima CD. 2004. Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. J Biol Chem 279:30634–30642. [PubMed][CrossRef]
353. Ferreras JA, Stirrett KL, Lu X, Ryu JS, Soll CE, Tan DS, Quadri LE. 2008. Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation. Chem Biol 15:51–61. [PubMed][CrossRef]
354. He W, Soll CE, Chavadi SS, Zhang G, Warren JD, Quadri LE. 2009. Cooperation between a coenzyme A-independent stand-alone initiation module and an iterative type I polyketide synthase during synthesis of mycobacterial phenolic glycolipids. J Am Chem Soc 131:16744–16750. [PubMed][CrossRef]
355. Onwueme KC, Vos CJ, Zurita J, Soll CE, Quadri LE. 2005. Identification of phthiodiolone ketoreductase, an enzyme required for production of mycobacterial diacyl phthiocerol virulence factors. J Bacteriol 187:4760–4766. [PubMed][CrossRef]
356. Simeone R, Constant P, Malaga W, Guilhot C, Daffe M, Chalut C. 2007. Molecular dissection of the biosynthetic relationship between phthiocerol and phthiodiolone dimycocerosates and their critical role in the virulence and permeability of Mycobacterium tuberculosis. FEBS J 274:1957–1969. [PubMed][CrossRef]
357. Simeone R, Constant P, Guilhot C, Daffe M, Chalut C. 2007b. Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis. J Bacteriol 189:4597–4602. [PubMed][CrossRef]
358. De Smet KAL, Weston A, Brown IN, Young DB, Robertson BD. 2000. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146:199–208. [PubMed]
359. Pan Y-T, Carroll JD, Asano N, Pastuszak I, Edavana VK, Elbein AD. 2008. Trehalose synthase converts glycogen to trehalose. FEBS J 275:3408–3420. [PubMed][CrossRef]
360. Pan YT, Koroth Edavana V, Jourdian WJ, Edmondson R, Carroll JD, Pastuszak I, Elbein AD. 2004. Trehalose synthase of Mycobacterium smegmatis: purification, cloning, expression, and properties of the enzyme. Eur J Biochem 271:4259–4269. [PubMed][CrossRef]
361. Mendes V, Maranha A, Lamosa P, da Costa MS, Empadinhas N. 2010. Biochemical characterization of the maltokinase from Mycobacterium bovis BCG. BMC Biochem 11:21. [PubMed][CrossRef]
362. Garg SK, Alam MS, Kishan KVR, Agrawal P. 2007. Expression and characterization of α-(1,4)-glucan branching enzyme Rv1326c of Mycobacterium tuberculosis H37Rv. Protein Expr Purif 51:198–208. [PubMed][CrossRef]
363. Jankute M, Grover S, Birch HL, Besra GS. 2014. Genetics of mycobacterial arabinogalactan and lipoarabinomannan assembly. Microbiol Spectrum 2(4):MGM2-0013-2013.
364. Pawełczyk J, Kremer L. 2014. The molecular genetics of mycolic acid biosynthesis. Microbiol Spectrum 2(4):MGM2-0003-2013.
microbiolspec.MGM2-0021-2013.citations
cm/2/4
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0021-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0021-2013
2014-08-15
2017-09-23

Abstract:

This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of and other species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/4/MGM2-0021-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0021-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Schematic representation of the cell envelope. Many of the classes of lipids and glycolipids discussed in the text are represented schematically and are shown in probable locations in the cell envelope. The structures with light and dark green hexagons represent trehalose mono- and dimycolates, respectively; the red lollipops represent phthiocerol dimycocerosates, and the gold ones represent sulfolipids, diacyltrehaloses, and polyacyltrehaloses. Gray circles represent phospholipid headgroups; black circles, isoprenoids; light blue squares, GlcNAc; white squares, MurNAc; white pentagons, arabinofuranose; yellow diamonds, galactofuranose; and blue hexagons, mannose. The overall schematic and individual structures are not drawn to scale, and the numbers of carbohydrate residues shown are not representative of the actual molecules. Proteins and peptides are not shown for the sake of clarity. doi:10.1128/microbiolspec.MGM2-0021-2013.f1

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Structures of mycobacterial phospholipids. doi:10.1128/microbiolspec.MGM2-0021-2013.f2

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Structures of IPP and DMAPP. These molecules are precursors of all isoprenoid compounds. doi:10.1128/microbiolspec.MGM2-0021-2013.f3

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Structures of representative short-chain IPPs synthesized by mycobacteria. The sterochemical conformation is shown. doi:10.1128/microbiolspec.MGM2-0021-2013.f4

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Structures of isoprenylphosphates reported from . doi:10.1128/microbiolspec.MGM2-0021-2013.f5

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

Structures of the predominant menaquinone and menaquinone sulfate reported from . Carbon positions 2 and 3 and the β-isoprene unit are indicated by the arrows and call-out. doi:10.1128/microbiolspec.MGM2-0021-2013.f6

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

Click to view

FIGURE 7

Structures of representative carotenoids found in mycobacteria. doi:10.1128/microbiolspec.MGM2-0021-2013.f7

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Click to view

FIGURE 8

Structures of representative noncarotenoid cyclic isoprenoids found in mycobacteria. doi:10.1128/microbiolspec.MGM2-0021-2013.f8

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9

Click to view

FIGURE 9

Structures of TMM and TDM. doi:10.1128/microbiolspec.MGM2-0021-2013.f9

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10

Click to view

FIGURE 10

Structures of SLs, DATs, and PATs and biosynthetic gene clusters. The major sulfolipid, SL-I (2,3,6,6′-tetraacyl α-α′-trehalose-2′-sulfate), is represented. In SL-I, trehalose is sulfated at the 2′ position and esterified with palmitic acid and the multimethyl-branched phthioceranic and hydroxyphthioceranic acids. In DAT (2,3-di--acyltrehalose), trehalose is esterified with palmitic acid and the multimethyl-branched mycosanoic acid. In PAT, trehalose is esterified with palmitic acid and the multimethyl-branched mycolipenic acids. doi:10.1128/microbiolspec.MGM2-0021-2013.f10

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11

Click to view

FIGURE 11

Structures of (A) major LOS (LOS-A) of ATCC 356 (R and/or R : octanoic acid and tetra- or hexa-decanoic acid) and (B) “canettii”; R = Ac. (C) LOS biosynthetic gene cluster of mc155. Shown is the 25.15-kb region spanning () to (). ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows show hypothetical genes of unknown function. Abbreviations: Pks5, Mas-like polyketide synthase; Pap, putative acyltransferase; MSMEG_4729 and MSMEG_4730, putative acyltransferases; FadD, putative acyl-CoA synthase; Gtf (MSMEG_4732), putative glycosyltransferase; Gap2, putative transmembrane protein involved in glycolipid translocation; MSMEG_4734, hypothetical PE/PPE-like protein; Gtf (MSMEG_4735), putative glycosyltransferase; MSMEG_4736 and MSMEG_4737, putative pyrruvylyl transferases; MSMEG_4738, hypothetical protein; Mtf, possible -methyltransferase; Gtf (MSMEG_4740), putative glycosyltransferase; MmpL, putative inner membrane transporter. doi:10.1128/microbiolspec.MGM2-0021-2013.f11

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12

Click to view

FIGURE 12

Structure of the predominant mannosyl-β-1-phosphomycoketide from H37Rv. See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f12

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13

Click to view

FIGURE 13

Structures of the PDIMs, PGLs, and -hydroxybenzoic acid derivatives (-HBADs) of . In , p, p′ = 3-5; n, n′ = 16-18; m2 = 15-17 ; m1 = 20-22; R = CH-CH or CH. doi:10.1128/microbiolspec.MGM2-0021-2013.f13

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14

Click to view

FIGURE 14

Genetic organization of the PDIM and PGL locus of H37Rv. ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate hypothetical genes of unknown function. More details about the function of each gene are provided in Table 3 and Fig. 15 . Adapted from reference 260 . doi:10.1128/microbiolspec.MGM2-0021-2013.f14

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 15

Click to view

FIGURE 15

The PDIM biosynthetic pathway. See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f15

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 16

Click to view

FIGURE 16

(A) Structure of the nonspecific glycopeptidolipids of . R = –H or –CH; R = –H or –Ac; R, –CH, -succinyl, -rhamnosyl or -2--succinylrhamnosyl; m = 12-14; n, 6-10. (B) GPL biosynthetic gene cluster of mc155. Shown is the 64.97-kb region spanning () to . ORFs are depicted as arrows. Black arrows indicate genes encoding biosynthetic enzymes; gray arrows indicate putative transporter genes; white arrows indicate putative regulatory genes. Chp, putative acyltransferase; FadE, putative acyl-CoA dehydrogenase; PapA, putative acyltransferase. Other genes are described in the text. doi:10.1128/microbiolspec.MGM2-0021-2013.f16

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 17

Click to view

FIGURE 17

Structure and biosynthesis of α--glucans in . See text for details. doi:10.1128/microbiolspec.MGM2-0021-2013.f17

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 18

Click to view

FIGURE 18

Representative structures of mycobactins and carboxymycobactins from . See text for details. Mycobactins: R = H; R = (CH)CH, n = 16-19; (CH)CH = CH(CH)CH, x+y = 14-17. Carboxymycobactins: R = H, CH; R = (CH)COOCH/COOH, n = 1-7; (CH)CH = CH(CH)COOCH/COOH, x+y = 1-5. doi:10.1128/microbiolspec.MGM2-0021-2013.f18

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 19

Click to view

FIGURE 19

Representative structure of a mycolactone from . The genes involved in the biosynthesis of the various constituents of mycolactone are indicated on the structure. doi:10.1128/microbiolspec.MGM2-0021-2013.f19

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

H37Rv genes involved or thought to be involved in the biogenesis of phospholipids, triglycerides, isoprenoids, and related lipids

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Generic image for table

Click to view

TABLE 2

H37Rv genes involved in the biogenesis of trehalose mono- and dimycolates, sulfolipids, di- and poly-acyltrehaloses, and mannosyl-β-1-phosphomycoketides

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Generic image for table

Click to view

TABLE 3

H37Rv genes involved in the biogenesis of phthiocerol dimycocerosates, phenolic glycolipids, and -hydroxybenzoic acids

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013
Generic image for table

Click to view

Table 4

H37Rv genes involved in the biogenesis of capsular α-D-glucan

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.MGM2-0021-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error