1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Metabolomics of Central Carbon Metabolism in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    134.95 Kb
  • PDF
    354.18 Kb
  • HTML
    156.75 Kb
  • Authors: Anthony D. Baughn1, Kyu Y. Rhee2
  • Editors: Graham F. Hatfull3, William R. Jacobs Jr.4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology, University of Minnesota, Minneapolis, MN 55455; 2: Department of Medicine, Weill Cornell Medical College, New York, NY 10065; 3: University of Pittsburgh, Pittsburgh, PA; 4: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec May 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.MGM2-0026-2013
  • Received 01 August 2013 Accepted 26 September 2013 Published 09 May 2014
  • Kyu Y. Rhee, kyr9001@med.cornell.edu
image of Metabolomics of Central Carbon Metabolism in <span class="jp-italic">Mycobacterium tuberculosis</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Metabolomics of Central Carbon Metabolism in , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/3/MGM2-0026-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/3/MGM2-0026-2013-2.gif
  • Abstract:

    Metabolism is a biochemical activity of all cells, thought to fuel the physiologic needs of a given cell in a quantitative, rather than qualitatively specific, manner. is a chronic facultative intracellular pathogen that resides in humans as its only known host and reservoir. Within humans, resides chiefly in the macrophage phagosome, the cell type and compartment most committed to its eradication. thus occupies the majority of its decades-long life cycle in a state of slowed or arrested replication. At the same time, remains poised to reenter the cell cycle to ensure its propagation as a species. has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. Knowledge of the specific ways in which its metabolic network serves these distinct though interdependent functions, however, remains highly incomplete. In this article we review existing knowledge of 's central carbon metabolism as reported by studies of its basic genetic and biochemical composition, regulation, and organization, with the hope that such knowledge will inform our understanding of 's ability to traverse the stringent and heterogeneous niches encountered in the host.

  • Citation: Baughn A, Rhee K. 2014. Metabolomics of Central Carbon Metabolism in . Microbiol Spectrum 2(3):MGM2-0026-2013. doi:10.1128/microbiolspec.MGM2-0026-2013.

Key Concept Ranking

Acetyl Coenzyme A
0.5034722
0.5034722

References

1. Rhee KY, Carvalho LP, Bryk R, Ehrt S, Marrero J, Park SW, Schnappinger D, Venugopal A, Nathan C. 2011. Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol 19:307–314. [PubMed][CrossRef]
2. Russell DG, Barry CE 3rd, Flynn JL. 2010. Tuberculosis: what we don’t know can, and does, hurt us. Science 328:852–856. [PubMed][CrossRef]
3. Long ER. 1954. Chemistry and Chemotherapy of Tuberculosis, 3rd ed. Williams & Wilkins, Baltimore, MD.
4. Bloch H, Segal W. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141. [PubMed]
5. Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994. [PubMed][CrossRef]
6. Marrero J, Trujillo C, Rhee KY, Ehrt S. 2013. Glucose phosphorylation is required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9:e1003116. [PubMed][CrossRef]
7. Wheeler PR, Blanchard JS. 2005. General metabolism and biochemical pathways of tubercle bacilli, p 309–339. In Cole ST, Eisenach KD, McMurray DN, Jacobs WR Jr (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC.
8. Ehrt S, Rhee K. 2013. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes. Curr Top Microbiol Immunol 374:163–188. [PubMed][CrossRef]
9. Youmans GP, Youmans AS. 1953. Studies on the metabolism of Mycobacterium tuberculosis. I. The effect of carbohydrates and alcohols on the growth of Mycobacterium tuberculosis var. hominis. J Bacteriol 65:92–95. [PubMed]
10. Gamble CJ, Herrick MC. 1922. The utilization of dextrose by the tubercle bacillus. Am Rev Tuberc 6:44–50.
11. Loebel RO, Shorr E, Richardson H. 1933. The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26:139–166. [PubMed]
12. Weinzirl J, Knapton F. 1927. The biology of the tubercle bacillus. I. Hydrogen-ion concentration produced by some members of the genus Mycobacterium. Am Rev Tuberc 15:380–388.
13. Youmans AS, Youmans GP. 1953. Studies on the metabolism of Mycobacterium tuberculosis. III. The growth of Mycobacterium tuberculosis var. hominis in the presence of various intermediates of the dissimilation of glucose to pyruvic acid. J Bacteriol 65:100–102. [PubMed]
14. Bastarrachea F, Anderson DG, Goldman DS. 1961. Enzyme systems in the mycobacteria. XI. Evidence for a functional glycolytic system. J Bacteriol 82:94–100. [PubMed]
15. Ramakrishnan T, Murthy PS, Gopinathan KP. 1972. Intermediary metabolism of mycobacteria. Bacteriol Rev 36:65–108. [PubMed]
16. Jayanthi Bai N, Ramachandra Pai M, Suryanarayana Murthy P, Venkitasubramanian TA. 1975. Pathways of carbohydrate metabolism in Mycobacterium tuberculosis H37Rv1. Can J Microbiol 21:1688–1691. [PubMed][CrossRef]
17. Bai NJ, Pai MR, Murthy PS, Venkitasubramanian TA. 1976. Pathways of glucose catabolism in Mycobacterium smegmatis. Can J Microbiol 22:1374–1380. [PubMed][CrossRef]
18. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. [PubMed][CrossRef]
19. Hsieh PC, Shenoy BC, Samols D, Phillips NF. 1996. Cloning, expression, and characterization of polyphosphate glucokinase from Mycobacterium tuberculosis. J Biol Chem 271:4909–4915. [PubMed][CrossRef]
20. Hsieh PC, Kowalczyk TH, Phillips NF. 1996. Kinetic mechanisms of polyphosphate glucokinase from Mycobacterium tuberculosis. Biochemistry 35:9772–9781. [PubMed][CrossRef]
21. Pimentel-Schmitt EF, Thomae AW, Amon J, Klieber MA, Roth H-M, Muller YA, Jahreis K, Burkovski A, Titgemeyer F. 2007. A glucose kinase from Mycobacterium smegmatis. J Mol Microbiol Biotechnol 12:75–81. [PubMed][CrossRef]
22. Mathur D, Ahsan Z, Tiwari M, Garg LC. 2005. Biochemical characterization of recombinant phosphoglucose isomerase of Mycobacterium tuberculosis. Biochem Biophys Res Commun 337:626–632. [PubMed][CrossRef]
23. Griffin JE, Gawronski JD, DeJesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251. [PubMed][CrossRef]
24. Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84. [PubMed][CrossRef]
25. Chhabra G, Mathur D, Dixit A, Garg LC. 2012. Heterologous expression and biochemical characterization of recombinant alpha phosphoglucomutase from Mycobacterium tuberculosis H37Rv. Protein Expr Purif 85:117–124. [PubMed][CrossRef]
26. Phong WY, Lin W, Rao SP, Dick T, Alonso S, Pethe K. 2013. Characterization of phosphofructokinase activity in Mycobacterium tuberculosis reveals that a functional glycolytic carbon flow is necessary to limit the accumulation of toxic metabolic intermediates under hypoxia. PLoS One 8:e56037. [PubMed][CrossRef]
27. Orchard LMD, Kornberg HL. 1990. Sequence similarities between the gene specifying 1-phosphofructokinase (fruK), genes specifying other kinases in Escherichia coli K12, and lacC of Staphylococcus aureus. Proc R Soc Lond B 242:87–90. [PubMed][CrossRef]
28. Buschmeier B, Hengstenberg W, Deutscher J. 1985. Purification and properties of 1-phosphofructokinase from Escherichia coli. FEMS Microbiol Lett 29:231–235. [CrossRef]
29. Miallau L, Hunter WN, McSweeney SM, Leonard GA. 2007. Structures of Staphylococcus aureus D-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J Biol Chem 282:19948–19957. [PubMed][CrossRef]
30. Babul J. 1978. Phosphofructokinases from Escherichia coli. Purification and characterization of the nonallosteric isozyme. J Biol Chem 253:4350–4355. [PubMed]
31. Gutka HJ, Franzblau SG, Movahedzadeh F, Abad-Zapatero C. 2011. Crystallization and preliminary X-ray characterization of the glpX-encoded class II fructose-1,6-bisphosphatase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:710–713. [PubMed][CrossRef]
32. Gutka HJ, Rukseree K, Wheeler PR, Franzblau SG, Movahedzadeh F. 2011. glpX gene of Mycobacterium tuberculosis: heterologous expression, purification, and enzymatic characterization of the encoded fructose 1,6-bisphosphatase II. Appl Biochem Biotechnol 164:1376–1389. [PubMed][CrossRef]
33. Rutter WJ. 1964. Evolution of aldolase. Fed Proc 23:1248–1257. [PubMed]
34. Siebers B, Brinkmann H, Dörr C, Tjaden B, Lilie H, Van der Oost J, Verhees CH. 2001. Archaeal fructose-1,6-bisphosphate aldolases constitute a new family of archaeal type class I aldolase. J Biol Chem 276:28710–28718. [PubMed][CrossRef]
35. Hall DR, Leonard GA, Reed CD, Watt CI, Berry A, Hunter WN. 1999. The crystal structure of Escherichia coli class II fructose-1,6-bisphosphate aldolase in complex with phosphoglycolohydroxamate reveals details of mechanism and specificity. J Mol Biol 287:383–394. [PubMed][CrossRef]
36. Zgiby S, Plater AR, Bates MA, Thomson GJ, Berry A. 2002. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. J Mol Biol 315:131–140. [PubMed][CrossRef]
37. Zgiby SM, Thomson GJ, Qamar S, Berry A. 2000. Exploring substrate binding and discrimination in fructose 1,6-bisphosphate and tagatose 1,6-bisphosphate aldolases. Eur J Biochem 267:1858–1868. [PubMed][CrossRef]
38. Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CE 3rd, Andersen P. 2002. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 184:3485–3491. [PubMed][CrossRef]
39. Bai NJ, Pai MR, Murthy PS, Venkitasubramanian TA. 1975. Fructose-1,6-diphosphate aldolase of Mycobacterium tuberculosis H37Rv. Indian J Biochem Biophys 12:181–183. [PubMed]
40. Bai NJ, Pai MR, Murthy PS, Venkitasubramanian TA. 1974. Effect of oxygen tension on the aldolases of Mycobacterium tuberculosis H37Rv. FEBS Lett 45:68–70. [PubMed][CrossRef]
41. Pelzer-Reith B, Wiegand S, Schnarrenberger C. 1994. Plastid class I and cytosol class II aldolase of Euglena gracilis. Purification and characterization. Plant Physiol 106:1137–1144. [PubMed]
42. Alber T, Banner DW, Bloomer AC, Petsko GA, Phillips D, Rivers PS, Wilson IA. 1981. On the three-dimensional structure and catalytic mechanism of triose phosphate isomerase. Philos Trans R Soc Lond B Biol Sci 293:159–171. [PubMed][CrossRef]
43. Connor SE, Capodagli GC, Deaton MK, Pegan SD. 2011. Structural and functional characterization of Mycobacterium tuberculosis triosephosphate isomerase. Acta Crystallogr D Biol Crystallogr 67:1017–1022. [PubMed][CrossRef]
44. Mathur D, Malik G, Garg LC. 2006. Biochemical and functional characterization of triosephosphate isomerase from Mycobacterium tuberculosis H37Rv. FEMS Microbiol Lett 263:229–235. [PubMed][CrossRef]
45. Goldman DS. 1963. Enzyme systems in the mycobacteria. XV. Initial steps in the metabolism of glycerol. J Bacteriol 86:30–37. [PubMed]
46. de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY. 2010. Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chem Biol 17:1122–1131. [PubMed][CrossRef]
47. Purwantini E, Daniels L. 1996. Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 178:2861–2866. [PubMed]
48. Purwantini E, Gillis TP, Daniels L. 1997. Presence of F420-dependent glucose-6-phosphate dehydrogenase in Mycobacterium and Nocardia species, but absence from Streptomyces and Corynebacterium species and methanogenic Archaea. FEMS Microbiol Lett 146:129–134. [PubMed][CrossRef]
49. Bashiri G, Squire CJ, Moreland NJ, Baker EN. 2008. Crystal structures of F420-dependent glucose-6-phosphate dehydrogenase FGD1 involved in the activation of the anti-tuberculosis drug candidate PA-824 reveal the basis of coenzyme and substrate binding. J Biol Chem 283:17531–17541. [PubMed][CrossRef]
50. Roos AK, Andersson CE, Bergfors T, Jacobsson M, Karlen A, Unge T, Jones TA, Mowbray SL. 2004. Mycobacterium tuberculosis ribose-5-phosphate isomerase has a known fold, but a novel active site. J Mol Biol 335:799–809. [PubMed][CrossRef]
51. Fullam E, Pojer F, Bergfors T, Jones TA, Cole ST. 2012. Structure and function of the transketolase from Mycobacterium tuberculosis and comparison with the human enzyme. Open Biol 2:110026. [PubMed][CrossRef]
52. Mitschke L, Parthier C, Schröder-Tittmann K, Coy J, Lüdtke S, Tittmann K. 2010. The crystal structure of human transketolase and new insights into its mode of action. J Biol Chem 285:31559–31570. [PubMed][CrossRef]
53. Novy FG, Soule M. 1925. Microbic respiration. II. Respiration of the tubercle bacillus. J Infect Dis 36:168–232. [CrossRef]
54. Goldman DS. 1959. Enzyme systems in the mycobacteria. VI. Further studies on the pyruvic dehydrogenase system. Biochim Biophys Acta 32:80–95. [CrossRef]
55. Ochoa S, Stern JR, Schneider MC. 1951. Enzymatic synthesis of citric acid. II. Crystalline condensing enzyme. J Biol Chem 193:691–702. [PubMed]
56. Millman I, Youmans GP. 1954. Studies on the metabolism of Mycobacterium tuberculosis. VII. Terminal respiratory activity of an avirulent strain of Mycobacterium tuberculosis. J Bacteriol 68:411–418. [PubMed]
57. Millman I, Youmans GP. 1955. The characterization of the terminal respiratory enzymes of the H37Ra strain of Mycobacterium tuberculosis var. hominis. J Bacteriol 69:320–325. [PubMed]
58. Goldman DS. 1956. Enzyme systems in the mycobacteria II. The malic dehydrogenase. J Bacteriol 72:401–405. [PubMed]
59. Goldman DS. 1956. Enzyme systems in the mycobacteria. I. The isocitric dehydrogenase. J Bacteriol 71:732–736. [PubMed]
60. Murthy PS, Sirsi M, Ramakrishnan T. 1962. Tricarboxylic acid cycle and related enzymes in cell-free extracts of Mycobacterium tuberculosis H37Rv. Biochem J 84:263–269. [PubMed]
61. Edson N, Hunter G, Kulka R, Wright D. 1959. The metabolism of glycerol in Mycobacterium butyricum. Biochem J 72:249. [PubMed]
62. Argyrou A, Blanchard JS. 2001. Mycobacterium tuberculosis lipoamide dehydrogenase is encoded by Rv0462 and not by the lpdA or lpdB genes. Biochemistry 40:11353–11363. [PubMed][CrossRef]
63. Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295:1073–1077. [PubMed][CrossRef]
64. Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C. 2005. Mycobacterium tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate dehydrogenase in widely separated genes. Mol Microbiol 57:859–868. [PubMed][CrossRef]
65. Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C. 2011. Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe 9:21–31. [PubMed][CrossRef]
66. Shi S, Ehrt S. 2006. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 74:56–63. [PubMed][CrossRef]
67. Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C. 2008. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3:137–145. [PubMed][CrossRef]
68. Chavadi S, Wooff E, Coldham NG, Sritharan M, Hewinson RG, Gordon SV, Wheeler PR. 2009. Global effects of inactivation of the pyruvate kinase gene in the Mycobacterium tuberculosis complex. J Bacteriol 191:7545–7553. [PubMed][CrossRef]
69. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV. 2005. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174. [PubMed][CrossRef]
70. Goulding CW, Bowers PM, Segelke B, Lekin T, Kim C-Y, Terwilliger TC, Eisenberg D. 2007. The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. J Mol Biol 365:275–283. [PubMed][CrossRef]
71. Merrill MH. 1931. Studies on carbon metabolism of organisms of the genus Mycobacterium. II. Utilization of organic compounds in a synthetic medium. J Bacteriol 21:361–374. [PubMed]
72. Edson N, Hunter G. 1943. Respiration and nutritional requirements of certain members of the genus Mycobacterium. Biochem J 37:563. [PubMed]
73. Wahlund TM, Tabita FR. 1997. The reductive tricarboxylic acid cycle of carbon dioxide assimilation: initial studies and purification of ATP-citrate lyase from the green sulfur bacterium Chlorobium tepidum. J Bacteriol 179:4859–4867. [PubMed]
74. Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE. 2004. The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem 279:40174–40184. [PubMed][CrossRef]
75. Honaker RW, Leistikow RL, Bartek IL, Voskuil MI. 2009. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect Immun 77:3258–3263. [PubMed][CrossRef]
76. Rustad TR, Harrell MI, Liao R, Sherman DR. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3:e1502. [PubMed][CrossRef]
77. Voskuil MI, Visconti KC, Schoolnik GK. 2004. Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84:218. [PubMed][CrossRef]
78. Banerjee S, Nandyala AK, Raviprasad P, Ahmed N, Hasnain SE. 2007. Iron-dependent RNA-binding activity of Mycobacterium tuberculosis aconitase. J Bacteriol 189:4046–4052. [PubMed][CrossRef]
79. Banerjee S, Nandyala A, Podili R, Katoch VM, Hasnain SE. 2005. Comparison of Mycobacterium tuberculosis isocitrate dehydrogenases (ICD-1 and ICD-2) reveals differences in coenzyme affinity, oligomeric state, pH tolerance and phylogenetic affiliation. BMC Biochem 6:20. [PubMed][CrossRef]
80. Hatzopoulos GN, Kefala G, Mueller-Dieckmann J. 2008. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of isocitrate dehydrogenase 2 (Rv0066c) from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 64:1139–1142. [PubMed][CrossRef]
81. Quartararo CE, Hazra S, Hadi T, Blanchard JS. 2013. Structural, kinetic and chemical mechanism of isocitrate dehydrogenase-1 from Mycobacterium tuberculosis. Biochemistry. [Epub ahead of print.] [PubMed][CrossRef]
82. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR. 2003. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100:7213–7218. [PubMed][CrossRef]
83. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C. 2005. Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci USA 102:10670–10675. [PubMed][CrossRef]
84. de Carvalho LP, Zhao H, Dickinson CE, Arango NM, Lima CD, Fischer SM, Ouerfelli O, Nathan C, Rhee KY. 2010. Activity-based metabolomic profiling of enzymatic function: identification of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol 17:323–332. [PubMed][CrossRef]
85. Balakrishnan A, Jordan F, Nathan CF. 2013. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase. J Biol Chem 288:21688–21702. [PubMed][CrossRef]
86. Wagner T, Bellinzoni M, Wehenkel A, O’Hare HM, Alzari PM. 2011. Functional plasticity and allosteric regulation of alpha-ketoglutarate decarboxylase in central mycobacterial metabolism. Chem Biol 18:1011–1020. [PubMed][CrossRef]
87. O’Hare HM, Durán R, Cerveñansky C, Bellinzoni M, Wehenkel AM, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K, Alzari PM. 2008. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol 70:1408–1423. [PubMed][CrossRef]
88. Baughn AD, Garforth SJ, Vilcheze C, Jacobs WR Jr. 2009. An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis. PLoS Pathog 5:e1000662. [PubMed][CrossRef]
89. Noll H. 1958. The chemistry of the native constituents of the acetone-soluble fat of Mycobacterium tuberculosis (Brevannes). II. Isolation and properties of a new crystalline naphthoquinone derivative related to vitamin K2. J Biol Chem 232:919–930. [PubMed]
90. Lester RL, Crane FL. 1959. The natural occurrence of coenzyme Q and related compounds. J Biol Chem 234:2169–2175. [PubMed]
91. Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE 3rd, Boshoff HI. 2011. Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:e1002287. [PubMed][CrossRef]
92. Bai G, Gazdik MA, Schaak DD, McDonough KA. 2007. The Mycobacterium bovis BCG cyclic AMP receptor-like protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its M. tuberculosis ortholog, Rv3676. Infect Immun 75:5509–5517. [PubMed][CrossRef]
93. Mechaly AE, Haouz A, Miras I, Barilone N, Weber P, Shepard W, Alzari PM, Bellinzoni M. 2012. Conformational changes upon ligand binding in the essential class II fumarase Rv1098c from Mycobacterium tuberculosis. FEBS Lett 586:1606–1611. [PubMed][CrossRef]
94. Miesel L, Weisbrod TR, Marcinkeviciene JA, Bittman R, Jacobs WR Jr. 1998. NADH dehydrogenase defects confer isoniazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 180:2459–2467. [PubMed]
95. Mukhopadhyay B, Concar EM, Wolfe RS. 2001. A GTP-dependent vertebrate-type phosphoenolpyruvate carboxykinase from Mycobacterium smegmatis. J Biol Chem 276:16137–16145. [PubMed][CrossRef]
96. Mukhopadhyay B, Purwantini E. 2000. Pyruvate carboxylase from Mycobacterium smegmatis: stabilization, rapid purification, molecular and biochemical characterization and regulation of the cellular level. Biochim Biophys Acta 1475:191–206. [PubMed][CrossRef]
97. Gould TA, van de Langemheen H, Munoz-Elias EJ, McKinney JD, Sacchettini JC. 2006. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol 61:940–947. [PubMed][CrossRef]
98. McKinney JD, zu Bentrup KH, Munoz-Elias EJ, Miczak A, Chen B, Chan W-T, Swenson D, Sacchettini JC, Jacobs WR, Russell DG. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735. [PubMed][CrossRef]
99. Munoz-Elias EJ, McKinney JD. 2005. Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638. [PubMed][CrossRef]
100. Reinscheid DJ, Eikmanns BJ, Sahm H. 1994. Malate synthase from Corynebacterium glutamicum: sequence analysis of the gene and biochemical characterization of the enzyme. Microbiology 140:3099–3108. [PubMed][CrossRef]
101. Molina I, Pellicer M-T, Badia J, Aguilar J, Baldoma L. 1994. Molecular characterization of Escherichia coli malate synthase G. Eur J Biochem 224:541–548. [PubMed][CrossRef]
102. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462. [PubMed][CrossRef]
103. Parkhill J, Wren B, Thomson N, Titball R, Holden M, Prentice M, Sebaihia M, James K, Churcher C, Mungall K. 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527. [PubMed][CrossRef]
104. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483. [PubMed][CrossRef]
105. Liu K, Yu J, Russell DG. 2003. pckA-deficient Mycobacterium bovis BCG shows attenuated virulence in mice and in macrophages. Microbiology 149:1829–1835. [PubMed][CrossRef]
106. Beste DJ, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Noh K, Kruger NJ, Ratcliffe RG, McFadden J. 2011. (1)(3)C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7:e1002091. [PubMed][CrossRef]
107. Wayne LG, Lin K-Y. 1982. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37:1042–1049. [PubMed]
108. Eoh H, Rhee KY. 2013. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 110:6554–6559. [PubMed][CrossRef]
109. Segal W, Bloch H. 1956. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J Bacteriol 72:132–141. [PubMed]
110. Goldman DS, Wagner MJ. 1962. Enzyme systems in the mycobacteria. XIII. Glycine dehydrogenase and the glyoxylic acid cycle. Biochim Biophys Acta 65:297–306. [PubMed][CrossRef]
111. Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S. 2010. Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci USA 107:9819–9824. [PubMed][CrossRef]
112. Cook GM, Hards K, Vilchèze C, Hartman T, Berney M. 2014. Energetics of respiration and oxidative phosphorylation in mycobacteria. Microbiol Spectrum 2(3):MGM2-0015-2013.
microbiolspec.MGM2-0026-2013.citations
cm/2/3
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0026-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0026-2013
2014-05-09
2017-11-17

Abstract:

Metabolism is a biochemical activity of all cells, thought to fuel the physiologic needs of a given cell in a quantitative, rather than qualitatively specific, manner. is a chronic facultative intracellular pathogen that resides in humans as its only known host and reservoir. Within humans, resides chiefly in the macrophage phagosome, the cell type and compartment most committed to its eradication. thus occupies the majority of its decades-long life cycle in a state of slowed or arrested replication. At the same time, remains poised to reenter the cell cycle to ensure its propagation as a species. has thus evolved its metabolic network to both maintain and propagate its survival as a species within a single host. Knowledge of the specific ways in which its metabolic network serves these distinct though interdependent functions, however, remains highly incomplete. In this article we review existing knowledge of 's central carbon metabolism as reported by studies of its basic genetic and biochemical composition, regulation, and organization, with the hope that such knowledge will inform our understanding of 's ability to traverse the stringent and heterogeneous niches encountered in the host.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/3/MGM2-0026-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0026-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Schematic representation of the CCM network of based on bioinformatic reconstruction and published literature. Reversible steps of glycolysis/gluconeogenesis are shown in purple, dedicated steps of glycolysis are shown in light blue, dedicated steps of gluconeogenesis are shown in pink, the PPP is shown in red, the TCA cycle is shown in green, the glyoxylate shunt is shown in orange, and the methylcitrate cycle is shown in dark blue. The dotted green line indicates a standing question of connectivity in the TCA cycle via ketoglutarate ferredoxin oxidoreductase. Common enzyme names are shown next to the reactions they catalyze. Gene symbols are shown in parentheses. doi:10.1128/microbiolspec.MGM2-0026-2013.f1

Source: microbiolspec May 2014 vol. 2 no. 3 doi:10.1128/microbiolspec.MGM2-0026-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error