1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

BCG Vaccines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    92.95 Kb
  • XML
    81.49 Kb
  • PDF
    355.57 Kb
  • Authors: Vanessa Tran1, Jun Liu2, Marcel A. Behr3
  • Editors: Graham F. Hatfull4, William R. Jacobs Jr.5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8; 2: Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8; 3: McGill International TB Center, Montreal, Quebec, Canada, H3G 1A4; 4: University of Pittsburgh, Pittsburgh, PA; 5: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0028-2013
  • Received 27 August 2013 Accepted 04 September 2013 Published 17 January 2014
  • Marcel Behr, marcel.behr@mcgill.ca
image of BCG Vaccines
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    BCG Vaccines, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0028-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/1/MGM2-0028-2013-2.gif
  • Abstract:

    BCG is the collective name for a family of live attenuated strains of that are currently used as the only vaccine against tuberculosis (TB). There are two major reasons for studying the genome of these organisms: (i) Because they are attenuated, BCG vaccines provide a window into virulence, and (ii) because they have provided protection in several clinical trials and case-control studies, BCG vaccines may shed light on properties required of a TB vaccine. Since the determination of the genome in 1998, the study of BCG vaccines has accelerated dramatically, offering data on the genomic differences between virulent , and the vaccine strains. While these findings have been rewarding for the study of virulence, there is unfortunately less accrued knowledge about protection. In this chapter, we review briefly the history of BCG vaccines and then touch upon studies over the past two decades that help explain how BCG underwent attenuation, concluding with some more speculative comments as to how these vaccines might offer protection against TB.

  • Citation: Tran V, Liu J, Behr M. 2014. BCG Vaccines. Microbiol Spectrum 2(1):MGM2-0028-2013. doi:10.1128/microbiolspec.MGM2-0028-2013.

Key Concept Ranking

Immune Systems
0.457844
Sigma Factor SigK
0.44418094
Point Mutation
0.44101372
BCG Vaccine
0.4346188
0.457844

References

1. Calmette A, Guérin C. 1911. Recherches experimentales sur la defense de l’organisme contre l’infection tuberculeuse. Ann Inst Pasteur 25:625–641.
2. Calmette A, Guérin C. 1920. Nouvelles recherches experimentales sur la vaccination des bovides contre la tuberculose. Ann Inst Pasteur 34:553–560.
3. Guérin C, Rosenthal SR. 1957. The history of BCG: early history, p 48–57. In Rosenthal SR (ed), BCG Vaccination Against Tuberculosis. J&H Churchill, London, United Kingdom.
4. Behr MA, Small, PM. 1999. A historical and molecular phylogeny of BCG strains. Vaccine 17:915–922. [PubMed]
5. Oettinger T, Jorgensen M, Ladefoged A, Haslov K, Andersen P. 1999. Development of the Mycobacterium bovis BCG vaccine: review of the historical and biochemical evidence for a genealogical tree. Tuber Lung Dis 79:243–250. [PubMed][CrossRef]
6. Dreyer G, Vollum RL. 1931. Mutation and pathogenicity experiments with BCG. Lancet 1:9–14.
7. Streng KO. 1940. Etude des caracteres d’atennuation du bacille BCG suivant le nombre de passages de ce germe sur pomme de terre a la bile de boeuf. Ann Inst Pasteur 64:196–202.
8. Wiker HG, Nagai S, Hewinson RG, Russell WP, Harboe M. 1996. Heterogenous expression of the related MPB70 and MPB83 proteins distinguish various substrains of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv. Scand J Immunol 43:374–380. [PubMed]
9. Casanova J, Jouanguy E, Lamhamedi S, Blanche S, Fischer A. 1995. Immunological conditions of children with BCG disseminated infection. Lancet 346:581. [PubMed]
10. Colditz GA, Berkley CS, Mosteller F, Brewer TF, Wilson ME, Burdick E, Fineberg HV. 1995. The efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analysis of the published literature. Pediatrics 96:29–35. [PubMed]
11. Trunz BB, Fine P, Dye C. 2006. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet 367:1173–1180. [PubMed][CrossRef]
12. Ferguson RG, Simes AB. 1949. BCG vaccination of Indian infants in Saskatchewan. Tubercle 30:5–11. [PubMed]
13. Hart PD, Sutherland I. 1977. BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Final report to the Medical Research Council. Br Med J ii:293–295. [PubMed]
14. Comstock GW, Palmer CE. 1966. Long-term results of BCG vaccination in the southern United States. Am Rev Respir Dis 93:171–183. [PubMed]
15. Tuberculosis Prevention Trial. 1980. Trial of BCG vaccines in South India for tuberculosis prevention. Indian J Med Res 72S:1–74.
16. Ponnighaus JM, Fine PE, Sterne JA, Wilson RJ, Msosa E, Gruer PJ, Jenkins PA, Lucas SB, Liomba NG, Bliss L. 1992. Efficacy of BCG vaccine against leprosy and tuberculosis in northern Malawi. Lancet 339:636–639. [PubMed]
17. Zwerling A, Behr MA, Verma A, Brewer TF, Menzies D, Pai M. 2011. The BCG World Atlas: a database of global BCG vaccination policies and practices. PLoS Med 8:e1001012. [PubMed][CrossRef]
18. World Health Organization. 2004. BCG vaccine. WHO position paper. Wkly Epidemiol Rec 79:27–38. [PubMed]
19. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galić S. 2000. Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 97:13853–13858.
20. Pym AS, Brodin P, Majlessi L, Brosch R, Demangel C, Williams A, Griffiths KE, Marchal G, Leclerc C, Cole ST. 2003. Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med 9:533–539. [PubMed][CrossRef]
21. Grode L, Seiler P, Baumann S, Hess J, Brinkmann V, Eddine AN, Mann P, Goosmann C, Bandermann S, Smith D, Bancroft GJ, Reyrat JM, van Soolingen D, Raupach B, Kaufmann SH. 2005. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115:2472–2479. [PubMed][CrossRef]
22. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti.Mol Microbiol 46:709–717. [PubMed]
23. Mostowy S, Cousins D, Behr MA. 2004. Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J Bacteriol 186:104–109. [PubMed]
24. Alexander KA, Laver PN, Michel AL, Williams M, van Helden PD, Warren RM, Gey van Pittius NC. 2010. Novel Mycobacterium tuberculosis complex pathogen, M. mungi.Emerg Infect Dis 16:1296–1299. [PubMed][CrossRef]
25. Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K, Cousins D, Behr MA. 2005. Revisiting the evolution of Mycobacterium bovis. J Bacteriol 187:6386–6395. [PubMed][CrossRef]
26. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG. 2003. The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci USA 100:7877–7882. [PubMed][CrossRef]
27. Mostowy S, Tsolaki AG, Small PM, Behr MA. 2003. The in vitro evolution of BCG vaccines. Vaccine 21:4270–4274. [PubMed]
28. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282. [PubMed]
29. Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523. [PubMed]
30. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST. 1999. Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655. [PubMed]
31. Salamon H, Kato-Maeda M, Small PM, Drenkow J, Gingeras TR. 2000. Detection of deleted genomic DNA using a semiautomated computational analysis of GeneChip data. Genome Res 10:2044-2054. [PubMed]
32. Lewis KN, Liao RL, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR. 2003. Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 187:117–123. [PubMed][CrossRef]
33. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR, Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425. [PubMed][CrossRef]
34. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV. 2005. The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174. [PubMed][CrossRef]
35. Spreadbury CL, Pallen MJ, Overton T, Behr MA, Mostowy S, Spiro S, Busby SJ, Cole JA. 2005. Point mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation. Microbiology 151:547–556. [PubMed][CrossRef]
36. Bai G, Gazdik MA, Schaak DD, McDonough KA. 2007. The Mycobacterium bovis BCG cyclic AMP receptor-like protein is a functional DNA binding protein in vitro and in vivo, but its activity differs from that of its M. tuberculosis ortholog, Rv3676. Infect Immun 75:5509–5517. [PubMed][CrossRef]
37. Hunt DM, Saldanha JW, Brennan JF, Benjamin P, Strom M, Cole JA, Spreadbury CL, Buxton RS. 2008. Single nucleotide polymorphisms that cause structural changes in the cyclic AMP receptor protein transcriptional regulator of the tuberculosis vaccine strain Mycobacterium bovis BCG alter global gene expression without attenuating growth. Infect Immun 76:2227–2234. [PubMed][CrossRef]
38. Garcia Pelayo MC, Uplekar S, Keniry A, Mendoza LP, Garnier T, Nunez GJ, Boschiroli L, Zhou X, Parkhill J, Smith N, Hewinson RG, Cole ST, Gordon SV. 2009. A comprehensive survey of single nucleotide polymorphisms (SNPs) across Mycobacterium bovis strains and M. bovis BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent M. bovis strains and M. bovis BCG strains. Infect Immun 77:2230–2238. [PubMed][CrossRef]
39. Mendoza LP, Golby P, Wooff E, Nunez GJ, Garcia Pelayo MC, Conlon K, Gema CA, Hewinson RG, Polaina J, Suarez GA, Gordon SV. 2010. Characterization of the transcriptional regulator Rv3124 of Mycobacterium tuberculosis identifies it as a positive regulator of molybdopterin biosynthesis and defines the functional consequences of a non-synonymous SNP in the Mycobacterium bovis BCG orthologue. Microbiology 156:2112–2123. [PubMed][CrossRef]
40. Chen JM, Uplekar S, Gordon SV, Cole ST. 2012. A point mutation in cycA partially contributes to the D-Cycloserine resistance trait of Mycobacterium bovis BCG vaccine strains. PLoS One 7:e43467. [PubMed][CrossRef]
41. Keller PM, Bottger EC, Sander P. 2008. Tuberculosis vaccine strain Mycobacterium bovis BCG Russia is a natural recA mutant. BMC Microbiol 8:120. [PubMed][CrossRef]
42. Kozak RA, Alexander DC, Liao R, Sherman DR, Behr MA. 2011. Region of difference 2 contributes to virulence of Mycobacterium tuberculosis. Infect Immun 79:59–66. [PubMed][CrossRef]
43. Kozak R, Behr MA. 2011. Divergence of immunologic and protective responses of different BCG strains in a murine model. Vaccine 29:1519–1526. [PubMed][CrossRef]
44. Alexander DC, Behr MA. 2007. Rv1773 is a transcriptional repressor deleted from BCG-Pasteur. Tuberculosis (Edinb. ) 87:421–425. [PubMed][CrossRef]
45. Lotte A, Wasz-Hockert O, Poisson N, Dumitrescu N, Verron M, Couvet E. 1984. BCG complications. Estimates of the risks among vaccinated subjects and statistical analysis of their main characteristics. Adv Tuberc Res 21:107–193.
46. Chen JM, Islam ST, Ren H, Liu J. 2007. Differential productions of lipid virulence factors among BCG vaccine strains and implications on BCG safety. Vaccine 25:8114–8122. [PubMed][CrossRef]
47. Leung AS, Tran V, Wu Z, Yu X, Alexander DC, Gao GF, Zhu B, Liu J. 2008. Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. BMC Genomics 9:413. [PubMed][CrossRef]
48. Naka T, Maeda S, Niki M, Ohara N, Yamamoto S, Yano I, Maeyama J, Ogura H, Kobayashi K, Fujiwara N. 2011. Lipid phenotype of two distinct subpopulations of Mycobacterium bovis bacillus Calmette-Guerin Tokyo 172 substrain. J Biol Chem 286:44153–44161. [PubMed][CrossRef]
49. Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I. 2006. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60:312–330. [PubMed][CrossRef]
50. Vallishayee RS, Shashidhara AN, Bunch-Christensen K, Guld J. 1974. Tuberculin sensitivity and skin lesions in children after vaccination with 11 different BCG strains. Bull World Health Organ 51:489–494. [PubMed]
51. Ladefoged A, Bunch-Christensen K, Guld J. 1976. Tuberculin sensitivity in guinea-pigs after vaccination with varying doses of BCG of 12 different strains. Bull World Health Organ 53:435–443. [PubMed]
52. Gupta S, Sinha A, Sarkar D. 2006. Transcriptional autoregulation by Mycobacterium tuberculosis PhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. FEBS Lett 580:5328–5338. [PubMed][CrossRef]
53. Steyn AJ, Collins DM, Hondalus MK, Jacobs WR, Jr, Kawakami RP, Bloom BR. 2002. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99:3147–3152. [PubMed][CrossRef]
54. Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ. 2009. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5:e1000545. [PubMed][CrossRef]
55. Wernisch L, Kendall SL, Soneji S, Wietzorrek A, Parish T, Hinds J, Butcher PD, Stoker NG. 2003. Analysis of whole-genome microarray replicates using mixed models. Bioinformatics 19:53–61. [PubMed]
56. Parish T, Smith DA, Kendall S, Casali N, Bancroft GJ, Stoker NG. 2003. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun 71:1134–1140. [PubMed]
57. Brosch R, Gordon SV, Buchrieser C, Pym AS, Garnier T, Cole ST. 2000. Comparative genomics uncovers large tandem chromosomal duplications in Mycobacterium bovis BCG Pasteur. Yeast 17:111–123. [PubMed][CrossRef]
58. Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos SS, Duthoy S, Lacroix C, Garcia-Pelayo C, Inwald JK, Golby P, Garcia JN, Hewinson RG, Behr MA, Quail MA, Churcher C, Barrell BG, Parkhill J, Cole ST. 2007. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci USA 104:5596–5601. [PubMed][CrossRef]
59. Fernandes ND, Wu QL, Kong D, Puyang X, Garg S, Husson RN. 1999. A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol 181:4266–4274. [PubMed]
60. Abdallah AM, Verboom T, Hannes F, Safi M, Strong M, Eisenberg D, Musters RJ, Vandenbroucke-Grauls CM, Appelmelk BJ, Luirink J, Bitter W. 2006. A specific secretion system mediates PPE41 transport in pathogenic mycobacteria. Mol Microbiol 62:667–679. [PubMed][CrossRef]
61. Minnikin DE, Parlett JH, Magnusson M, Ridell M, Lind A. 1984. Mycolic acid patterns of representatives of Mycobacterium bovis BCG. J Gen Microbiol 130:2733–2736. [PubMed]
62. Yuan Y, Zhu Y, Crane DD, Barry CE, III. 1998. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 29:1449–1458. [PubMed]
63. Behr MA, Schroeder BG, Brinkman JN, Slayden RA, Barry CE, III. 2000. A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. J Bacteriol 182:3394–3399. [PubMed]
64. Belley A, Alexander D, Di Pietrantonio T, Girard M, Jones J, Schurr E, Liu J, Sherman DR, Behr MA. 2004. Impact of methoxymycolic acid production by Mycobacterium bovis BCG vaccines. Infect Immun 72:2803–2809. [PubMed]
65. Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA. 2005. Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 56:1302–1313. [PubMed][CrossRef]
66. Seki M, Honda I, Fujita I, Yano I, Yamamoto S, Koyama A. 2009. Whole genome sequence analysis of Mycobacterium bovis bacillus Calmette-Guerin (BCG) Tokyo 172: a comparative study of BCG vaccine substrains. Vaccine 27:1710–1716. [PubMed][CrossRef]
67. Pan Y, Yang X, Duan J, Lu N, Leung AS, Tran V, Hu Y, Wu N, Liu D, Wang Z, Yu X, Chen C, Zhang Y, Wan K, Liu J, Zhu B. 2011. Whole-genome sequences of four Mycobacterium bovis BCG vaccine strains. J Bacteriol 193:3152–3153. [PubMed][CrossRef]
68. Gomes LH, Otto TD, Vasconcellos V, Ferrao PM, Maia RM, Moreira AS, Ferreira MA, Castello-Branco LR, Degrave WM, Mendonca-Lima L. 2011. Genome sequence of Mycobacterium bovis BCG Moreau, the Brazilian vaccine strain against tuberculosis. J Bacteriol 193:5600–5601. [PubMed][CrossRef]
69. Orduna P, Cevallos MA, de Leon SP, Arvizu A, Hernandez-Gonzalez IL, Mendoza-Hernandez G, Lopez-Vidal Y. 2011. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection. BMC Genomics 12:493. [PubMed][CrossRef]
70. Lynett J, Stokes RW. 2007. Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology 153:3133–3140.
71. Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S. 2009. Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J. Bacteriol. 191:625–631. [PubMed][CrossRef]
72. Joung SM, Jeon SJ, Lim YJ, Lim JS, Choi BS, Choi IY, Yu JH, Na KI, Cho EH, Shin SS, Park YK, Kim CK, Kim HJ, Ryoo SW. 2013. Complete genome sequence of Mycobacterium bovis BCG Korea: the Korean vaccine strain for substantial production. Genome Announc 1:e0006913. [PubMed][CrossRef]
73. Bottai D, Stinear TP, Supply P, Brosch R. 2014. Mycobacterial pathogenomics and evolution. Microbiol Spectrum 2(1):MGM2-0025-2013.
74. Kleinnijenhuis J, Quintin J, Preijers F, Joosten LA, Ifrim DC, Saeed S, Jacobs C, van Loenhout J, de Jong D, Stunnenberg HG, Xavier RJ, van der Meer JW, van Crevel R, Netea MG. 2012. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA 109:17537–17542. [PubMed][CrossRef]
microbiolspec.MGM2-0028-2013.citations
cm/2/1
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0028-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0028-2013
2014-01-17
2017-11-24

Abstract:

BCG is the collective name for a family of live attenuated strains of that are currently used as the only vaccine against tuberculosis (TB). There are two major reasons for studying the genome of these organisms: (i) Because they are attenuated, BCG vaccines provide a window into virulence, and (ii) because they have provided protection in several clinical trials and case-control studies, BCG vaccines may shed light on properties required of a TB vaccine. Since the determination of the genome in 1998, the study of BCG vaccines has accelerated dramatically, offering data on the genomic differences between virulent , and the vaccine strains. While these findings have been rewarding for the study of virulence, there is unfortunately less accrued knowledge about protection. In this chapter, we review briefly the history of BCG vaccines and then touch upon studies over the past two decades that help explain how BCG underwent attenuation, concluding with some more speculative comments as to how these vaccines might offer protection against TB.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/1/MGM2-0028-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0028-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

BCG genealogy. The vertical axis scales to time. The horizontal represents movement of vaccines between labs. Strains obtained before 1927 are labeled as “early strains”; strains obtained in 1931 or later are indicated as “late strains.” doi:10.1128/microbiolspec.MGM2-0028-2013.f1

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0028-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Evolutionary scheme of BCG after its genome sequencing (from reference 58 ), indicating that BCG has undergone deletions, duplications, and SNPs since its divergence from . doi:10.1128/microbiolspec.MGM2-0028-2013.f2

Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.MGM2-0028-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error