1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Spectrum of Drug Susceptibility in Mycobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    114.71 Kb
  • HTML
    137.97 Kb
  • PDF
    438.68 Kb
  • Authors: Bree B. Aldridge1, Iris Keren2, Sarah M. Fortune3
  • Editors: Graham F. Hatfull4, William R. Jacobs Jr.5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, and Department of Biomedical Engineering, Tufts University, Medford, MA 02155; 2: Antimicrobial Discovery Center and Department of Biology, Northeastern University, Boston, MA 02115; 3: Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115; 4: University of Pittsburgh, Pittsburgh, PA; 5: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0031-2013
  • Received 30 August 2013 Accepted 04 September 2013 Published 19 September 2014
  • S. M. Fortune, sfortune@hsph.harvard.edu
image of The Spectrum of Drug Susceptibility in Mycobacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Spectrum of Drug Susceptibility in Mycobacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/MGM2-0031-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/MGM2-0031-2013-2.gif
  • Abstract:

    A major factor complicating efforts to control the tuberculosis epidemic is the long duration of treatment required to successfully clear the infection. One reason that long courses of treatment are required may be the fact that mycobacterial cells arise during the course of infection that are less susceptible to antibiotics. Here we describe the paradigms of phenotypic drug tolerance and resistance as they apply to mycobacteria. We then discuss the mechanisms by which phenotypically drug-tolerant and -resistant cells arise both at a population level and in specialized subpopulations of cells that may be especially important in allowing the bacterium to survive in the face of treatment. These include general mechanisms that have been shown to alter the susceptibility of mycobacteria to antibiotics including growth arrest, efflux pump induction, and biofilm formation. In addition, we discuss emerging data from single-cell studies of mycobacteria that have identified unique ways in which specialized subpopulations of cells arise that vary in their frequency, in their susceptibility to drug, and in their stability over time.

  • Citation: Aldridge B, Keren I, Fortune S. 2014. The Spectrum of Drug Susceptibility in Mycobacteria. Microbiol Spectrum 2(5):MGM2-0031-2013. doi:10.1128/microbiolspec.MGM2-0031-2013.

Key Concept Ranking

Efflux Pumps
0.5616733
Cell Wall Biosynthesis
0.44091493
Elongation Factor Tu
0.44091493
Cell Wall Biosynthesis
0.44091493
Elongation Factor Tu
0.44091493
0.5616733

References

1. Wayne LG, Hayes LG. 1996. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64:2062–2069. [PubMed]
2. Rustad TR, Harrell MI, Liao R, Sherman DR. 2008. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3:e1502. [PubMed]
3. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K. 2002. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43:717–731. [PubMed][CrossRef]
4. Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK. 2004. Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis 84:256–262. [PubMed][CrossRef]
5. Bigger JW. 1944. Treatment of staphylococcal infections with penicillin. Lancet ii:497–500. [CrossRef]
6. Keren I, Minami S, Rubin E, Lewis K. 2011. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio 2:e00100–11. [PubMed][CrossRef]
7. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K. 2004. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180. [PubMed][CrossRef]
8. Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775. [PubMed]
9. Gill WP, Harik NS, Whiddon MR, Liao RP, Mittler JE, Sherman DR. 2009. A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214. [PubMed][CrossRef]
10. Muñoz-Elías EJ, Timm J, Botha T, Chan WT, Gomez JE, McKinney JD. 2004. Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. Infect Immun 73:546–551. [PubMed][CrossRef]
11. de Steenwinkel JEM, Kate ten MT, de Knegt GJ, Kremer K, Aarnoutse RE, Boeree MJ, Verbrugh HA, van Soolingen D, Bakker-Woudenberg IAJM. 2012. Drug susceptibility of Mycobacterium tuberculosis Beijing genotype and association with MDR TB. Emerg Infect Dis 18:660–663. [PubMed][CrossRef]
12. Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, Göhlmann HWH, Willebrords R, Poncelet A, Guillemont J, Bald D, Andries K. 2008. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem 283:25273–25280. [PubMed][CrossRef]
13. Wayne LG, Sramek HA. 1994. Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38:2054–2058. [PubMed][CrossRef]
14. Brooks JV, Furney SK, Orme IM. 1999. Metronidazole therapy in mice infected with tuberculosis. Antimicrob Agents Chemother 43:1285–1288. [PubMed]
15. Deb C, Lee C-M, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE. 2009. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4:e6077. [PubMed][CrossRef]
16. Aldridge BB, Fernandez-Suarez M, Heller D, Ambravaneswaran V, Irimia D, Toner M, Fortune SM. 2012. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335:100–104. [PubMed][CrossRef]
17. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD. 2013. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95. [PubMed][CrossRef]
18. Joyce G, Williams KJ, Robb M, Noens E, Tizzano B, Shahrezaei V, Robertson BD. 2012. Cell division site placement and asymmetric growth in mycobacteria. PLoS One 7:e44582. [PubMed][CrossRef]
19. Golchin SA, Stratford J, Curry RJ, McFadden J. 2012. A microfluidic system for long-term time-lapse microscopy studies of mycobacteria. Tuberculosis (Edinb) 92:489–496. [PubMed][CrossRef]
20. Li X-Z, Nikaido H. 2009. Efflux-mediated drug resistance in bacteria. Drugs 69:1555–1623. [PubMed][CrossRef]
21. Piddock LJV. 2006. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636. [PubMed][CrossRef]
22. Li XZ, Livermore DM, Nikaido H. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin. Antimicrob Agents Chemother 38:1732–1741. [PubMed][CrossRef]
23. Li XZ, Ma D, Livermore DM, Nikaido H. 1994. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: active efflux as a contributing factor to beta-lactam resistance. Antimicrob Agents Chemother 38:1742–1752. [PubMed][CrossRef]
24. Livermore DM, Davy KW. 1991. Invalidity for Pseudomonas aeruginosa of an accepted model of bacterial permeability to beta-lactam antibiotics. Antimicrob Agents Chemother 35:916–921. [PubMed][CrossRef]
25. Nikaido H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother 33:1831–1836. [PubMed][CrossRef]
26. Poole K, Krebes K, McNally C, Neshat S. 1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 175:7363–7372. [PubMed]
27. Piddock LJV. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. [PubMed][CrossRef]
28. Soto SM. 2013. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 4:223–229. [PubMed][CrossRef]
29. Noguchi N, Okada H, Narui K, Sasatsu M. 2004. Comparison of the nucleotide sequence and expression of norA genes and microbial susceptibility in 21 strains of Staphylococcus aureus. Microb Drug Resist 10:197–203. [PubMed][CrossRef]
30. Kaatz GW, Seo SM, Ruble CA. 1993. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob Agents Chemother 37:1086–1094. [PubMed][CrossRef]
31. Jones ME, Boenink NM, Verhoef J, Kohrer K, Schmitz FJ. 2000. Multiple mutations conferring ciprofloxacin resistance in Staphylococcus aureus demonstrate long-term stability in an antibiotic-free environment. J Antimicrob Chemother 45:353–356. [PubMed][CrossRef]
32. Hett EC, Rubin EJ. 2008. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 72:126–156. [PubMed][CrossRef]
33. Nikaido H. 2001. Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. Semin Cell Dev Biol 12:215–223. [PubMed][CrossRef]
34. Jarlier V, Nikaido H. 1990. Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172:1418–1423. [PubMed]
35. Takiff HEH, Cimino MM, Musso MCM, Weisbrod TT, Martinez RR, Delgado MBM, Salazar LL, Bloom BRB, Jacobs WRW. 1996. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 93:362–366. [PubMed][CrossRef]
36. Srivastava S, Musuka S, Sherman C, Meek C, Leff R, Gumbo T. 2010. Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol. J Infect Dis 201:1225–1231. [PubMed][CrossRef]
37. Li X-ZX, Zhang LL, Nikaido HH. 2004. Efflux pump-mediated intrinsic drug resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 48:2415–2423. [PubMed][CrossRef]
38. De Rossi EE, Aínsa JAJ, Riccardi GG. 2006. Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30:36–52. [PubMed][CrossRef]
39. Danilchanka OO, Mailaender CC, Niederweis MM. 2008. Identification of a novel multidrug efflux pump of Mycobacterium tuberculosis. Antimicrob Agents Chemother 52:2503–2511. [PubMed][CrossRef]
40. Adams KN, Takaki K, Connolly LE, Wiedenhoft H, Winglee K, Humbert O, Edelstein PH, Cosma CL, Ramakrishnan L. 2011. Drug tolerance in replicating mycobacteria mediated by a macrophage-induced efflux mechanism. Cell 145:39–53. [PubMed][CrossRef]
41. Gupta AK, Katoch VM, Chauhan DS, Sharma R, Singh M, Venkatesan K, Sharma VD. 2010. Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microb Drug Resist 16:21–28. [PubMed][CrossRef]
42. Amaral L, Martins M, Viveiros M. 2007. Enhanced killing of intracellular multidrug-resistant Mycobacterium tuberculosis by compounds that affect the activity of efflux pumps. J Antimicrob Chemother 59:1237–1246. [PubMed][CrossRef]
43. Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M. 2011. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol 11:35. [PubMed][CrossRef]
44. Jiang X, Zhang W, Zhang Y, Gao F, Lu C, Zhang X, Wang H. 2008. Assessment of efflux pump gene expression in a clinical isolate Mycobacterium tuberculosis by real-time reverse transcription PCR. Microb Drug Resist 14:7–11. [PubMed][CrossRef]
45. Spies FS, Almeida da Silva PE, Ribeiro MO, Rossetti ML, Zaha A. 2008. Identification of mutations related to streptomycin resistance in clinical isolates of Mycobacterium tuberculosis and possible involvement of efflux mechanism. Antimicrob Agents Chemother 52:2947–2949. [PubMed][CrossRef]
46. Das B, Kashino SS, Pulu I, Kalita D, Swami V, Yeger H, Felsher DW, Campos-Neto A. 2013. CD271(+) bone marrow mesenchymal stem cells may provide a niche for dormant Mycobacterium tuberculosis. Sci Transl Med 5:170ra13. [PubMed]
47. Lewis K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry (Moscow) 70:267–274. [PubMed][CrossRef]
48. Liao J, Schurr MJ, Sauer K. 2013. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195:3352–3363. [PubMed][CrossRef]
49. Lopez D, Vlamakis H, Kolter R. 2010. Biofilms. Cold Spring Harbor Perspect Biol 2:a000398. [PubMed][CrossRef]
50. Levin BR, Rozen DE. 2006. Non-inherited antibiotic resistance. Nat Rev Microbiol 4:556–562. [PubMed][CrossRef]
51. Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP. 2001. Gene expression in Pseudomonas aeruginosa: biofilms. Nature 413:860–864. [PubMed][CrossRef]
52. Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R. 2006. Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J Bacteriol 188:3099–3109. [PubMed][CrossRef]
53. Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210. [PubMed][CrossRef]
54. Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306–310. [PubMed][CrossRef]
55. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Jr, Hatfull GF. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873. [PubMed][CrossRef]
56. Nguyen KT, Piastro K, Gray TA. 2010. Mycobacterial biofilms facilitate horizontal DNA transfer between strains of Mycobacterium smegmatis. J Bacteriol 192:5134–5142. [PubMed][CrossRef]
57. Hall-Stoodley L, Stoodley P. 2005. Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13:7–10. [PubMed][CrossRef]
58. Bardouniotis EE, Huddleston WW, Ceri HH, Olson MEM. 2001. Characterization of biofilm growth and biocide susceptibility testing of Mycobacterium phlei using the MBEC assay system. FEMS Microbiol Lett 203:263–267. [PubMed]
59. Ojha A, Hatfull GF. 2007. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol 66:468–483. [PubMed][CrossRef]
60. Schulze-Röbbecke R, Fischeder R. 1989. Mycobacteria in biofilms. Zentralbl Hyg Umweltmed 188:385–390. [PubMed]
61. Tobin DM, Vary JC, Ray JP, Walsh GS, Dunstan SJ, Bang ND, Hagge DA, Khadge S, King M-C, Hawn TR, Moens CB, Ramakrishnan L. 2010. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140:717–730. [PubMed][CrossRef]
62. Lenaerts AJ, Hoff D, Aly S, Ehlers S, Andries K, Cantarero L, Orme IM, Basaraba RJ. 2007. Location of persisting mycobacteria in a guinea pig model of tuberculosis revealed by r207910. Antimicrob Agents Chemother 51:3338–3345. [PubMed][CrossRef]
63. Zambrano MM, Kolter R. 2005. Mycobacterial biofilms: a greasy way to hold it together. Cell 123:762–764. [PubMed][CrossRef]
64. Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR, Jr, Hatfull GF. 2008. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69:164–174. [PubMed][CrossRef]
65. Asally M, Kittisopikul M, Rué P, Du Y, Hu Z, Çağatay T, Robinson AB, Lu H, Garcia-Ojalvo J, Süel GM. 2012. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA 109:18891–18896. [PubMed][CrossRef]
66. Connolly LE, Edelstein PH, Ramakrishnan L. 2007. Why is long-term therapy required to cure tuberculosis? PLoS Med 4:e120. [PubMed][CrossRef]
67. Rocco A, Kierzek AM, McFadden J. 2013. Slow protein fluctuations explain the emergence of growth phenotypes and persistence in clonal bacterial populations. PLoS One 8:e54272. [PubMed][CrossRef]
68. Xie Z, Siddiqi N, Rubin EJ. 2005. Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49:4778–4780. [PubMed][CrossRef]
69. Ford CB, Lin PL, Chase MR, Shah RR, Iartchouk O, Galagan J, Mohaideen N, Ioerger TR, Sacchettini JC, Lipsitch M, Flynn JL, Fortune SM. 2011. Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482–486. [PubMed][CrossRef]
70. Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18. [PubMed][CrossRef]
71. Moker N, Dean CR, Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 192:1946–1955. [PubMed][CrossRef]
72. Spoering AL, Lewis K. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751. [PubMed][CrossRef]
73. Slattery A, Victorsen AH, Brown A, Hillman K, Phillips GJ. 2013. Isolation of highly persistent mutants of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 195:647–657. [PubMed][CrossRef]
74. Lechner S, Lewis K, Bertram R. 2012. Staphylococcus aureus persisters tolerant to bactericidal antibiotics. J Mol Microbiol Biotechnol 22:235–244. [PubMed][CrossRef]
75. Leung V, Levesque CM. 2012. A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. J Bacteriol 194:2265–2274. [PubMed][CrossRef]
76. LaFleur MD, Kumamoto CA, Lewis K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50:3839–3846. [PubMed][CrossRef]
77. Moyed HS, Bertrand KP. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768–775. [PubMed]
78. Moyed HS, Broderick SH. 1986. Molecular cloning and expression of hipA, a gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 166:399–403. [PubMed]
79. Correia FF, D’Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV, Lewis K. 2006. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188:8360–8367. [PubMed][CrossRef]
80. Falla TJ, Chopra I. 1998. Joint tolerance to beta-lactam and fluoroquinolone antibiotics in Escherichia coli results from overexpression of hipA. Antimicrob Agents Chemother 42:3282–3284. [PubMed]
81. Balaban NQ. 2004. Bacterial persistence as a phenotypic switch. Science 305:1622–1625. [PubMed][CrossRef]
82. Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K. 2006. Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53. [PubMed][CrossRef]
83. Wu Y, Vulic M, Keren I, Lewis K. 2012. Role of oxidative stress in persister tolerance. Antimicrob Agents Chemother 56:4922–4926. [PubMed][CrossRef]
84. Dörr T, Lewis K, Vulic M. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5:e1000760. [PubMed][CrossRef]
85. Keren I, Wu Y, Innocencio J, Mulcahy L, Lewis K. 2013. Killing by antibiotics does not depend on reactive oxygen species. Science 339:1213–1216. [PubMed][CrossRef]
86. Hooper DC. 2001. Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 32(Suppl 1):S9–S15. [PubMed][CrossRef]
87. Davis BD, Chen LL,Tai PC. 1986. Misread protein creates membrane channels: an essential step in the bactericidal action of aminoglycosides. Proc Natl Acad Sci USA 83:6164–6168. [PubMed][CrossRef]
88. Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. 2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679–690. [PubMed][CrossRef]
89. Bayles KW. 2007. The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726. [PubMed][CrossRef]
90. Uehara T, Dinh T, Bernhardt TG. 2009. LytM-domain factors are required for daughter cell separation and rapid ampicillin-induced lysis in Escherichia coli. J Bacteriol 191:5094–5107. [PubMed][CrossRef]
91. Lewis K. 2010. Persister cells. Annu Rev Microbiol 64:357–372. [PubMed][CrossRef]
92. Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc Natl Acad Sci USA 80:4784–4788. [PubMed][CrossRef]
93. Gerdes K, Bech FW, Jorgensen ST, Løbner-Olesen A, Rasmussen PB, Atlung T, Boe L, Karlstrom O, Molin S, von Meyenburg K. 1986. Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. colirelB operon. EMBO J 5:2023–2029. [PubMed]
94. Gerdes K, Rasmussen PB, Molin S. 1986. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci USA, 83:3116–3120. [PubMed][CrossRef]
95. Greenfield TJ, Ehli E, Kirshenmann T, Franch T, Gerdes K, Weaver KE. 2000. The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol Microbiol 37:652–660. [PubMed][CrossRef]
96. Gerdes K, Christensen SK, Løbner-Olesen A. 2005. Prokaryotic toxin-antitoxin stress response loci. Nat Rev Microbiol 3:371–382. [PubMed][CrossRef]
97. Pandey DP, Gerdes K. 2005. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966–976. [PubMed][CrossRef]
98. Lewis K. 2000. Programmed death in bacteria. Microbiol Mol Biol Rev 64:503–514. [PubMed][CrossRef]
99. Hansen S, Vulic M, Min J, Yen TJ, Schumacher MA, Brennan RG, Lewis K. 2012. Regulation of the Escherichia coli HipBA toxin-antitoxin system by proteolysis. PLoS One 7:e39185. [PubMed][CrossRef]
100. Black DS, Irwin B, Moyed HS. 1994. Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 176:4081–4091. [PubMed]
101. Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG. 2009. Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:396–401. [PubMed][CrossRef]
102. Black DS, Kelly AJ, Mardis MJ, Moyed HS. 1991. Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis. J Bacteriol 173:5732–5739. [PubMed]
103. Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K. 2011. Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci USA 108:13206–13211. [PubMed][CrossRef]
104. Spoering A, Vulic M, Lewis K. 2006. GlpD and PlsB participate in persister cell formation in Escherichia coli. J Bacteriol 188:5136–5144. [PubMed][CrossRef]
105. Girgis HS, Harris K, Tavazoie S. 2012. Large mutational target size for rapid emergence of bacterial persistence. Proc Natl Acad Sci USA 109:12740–12745. [PubMed][CrossRef]
106. Li Y, Zhang Y. 2007. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother 51:2092–2099. [PubMed][CrossRef]
107. Hansen S, Lewis K, Vulic M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52:2718–2726. [PubMed][CrossRef]
108. Murakami K, Ono T, Viducic D, Kayama S, Mori M, Hirota K, Nemoto K, Miyake Y. 2005. Role for rpoS gene of Pseudomonas aeruginosa in antibiotic tolerance. FEMS Microbiol Lett 242:161–167. [PubMed][CrossRef]
109. Viducic D, Ono T, Murakami K, Susilowati H, Kayama S, Hirota K, Miyake Y. 2006. Functional analysis of spoT, relA and dksA genes on quinolone tolerance in Pseudomonas aeruginosa under nongrowing condition. Microbiol Immunol 50:349–357. [PubMed][CrossRef]
110. Johnson PJ, Levin BR. 2013. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 9:e1003123. [PubMed][CrossRef]
111. McCune RM, McDermott W, Tompsett R. 1956. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by the administration of pyrazinamide and a companion drug. J Exp Med 104:763–802. [PubMed][CrossRef]
112. Ahmad Z, Klinkenberg LG, Pinn ML. 2009. Biphasic kill curve of isoniazid reveals the presence of drug-tolerant, not drug-resistant, Mycobacterium tuberculosis in the guinea pig. J Infect Dis 200:1136–1143. [PubMed][CrossRef]
113. Jindani A, Doré CJ, Mitchison DA. 2003. Bactericidal and sterilizing activities of antituberculosis drugs during the first 14 days. Am J Respir Crit Care Med 167:1348–1354. [PubMed][CrossRef]
114. Lewis K. 2010. Persister cells. Annu Rev Microbiol 64:357–372. [PubMed][CrossRef]
115. Ramage HR, Connolly LE, Cox JS. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767. [PubMed][CrossRef]
116. Sala A, Calderon V, Bordes P, Genevaux P. 2013. TAC from Mycobacterium tuberculosis: a paradigm for stress-responsive toxin-antitoxin systems controlled by SecB-like chaperones. Cell Stress Chaperones 18:129–135. [PubMed][CrossRef]
117. Singh R, Barry CE, 3rd, Boshoff HI. 2010. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J Bacteriol 192:1279–1291. [PubMed][CrossRef]
118. Barry CE, 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D. 2009. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7:845–855. [PubMed]
119. Lewis K. 2001. Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007. [PubMed][CrossRef]
120. Lewis K. 2005. Persister cells and the riddle of biofilm survival. Biochemistry(Mosc) 70:267–274. [PubMed]
microbiolspec.MGM2-0031-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0031-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0031-2013
2014-09-19
2017-09-22

Abstract:

A major factor complicating efforts to control the tuberculosis epidemic is the long duration of treatment required to successfully clear the infection. One reason that long courses of treatment are required may be the fact that mycobacterial cells arise during the course of infection that are less susceptible to antibiotics. Here we describe the paradigms of phenotypic drug tolerance and resistance as they apply to mycobacteria. We then discuss the mechanisms by which phenotypically drug-tolerant and -resistant cells arise both at a population level and in specialized subpopulations of cells that may be especially important in allowing the bacterium to survive in the face of treatment. These include general mechanisms that have been shown to alter the susceptibility of mycobacteria to antibiotics including growth arrest, efflux pump induction, and biofilm formation. In addition, we discuss emerging data from single-cell studies of mycobacteria that have identified unique ways in which specialized subpopulations of cells arise that vary in their frequency, in their susceptibility to drug, and in their stability over time.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/MGM2-0031-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0031-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Landscape of drug susceptibility. doi:10.1128/microbiolspec.MGM2-0031-2013.f1

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0031-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Mycobacterial growth is asymmetric and generates diversity in growth characteristics and drug susceptibility. Time-lapse imaging of pulse-labeled . An amine-active dye (green) stains old cell wall, revealing new growth at old cell poles. Distribution of the difference in absolute elongation rate (averaged over the course of a full division cycle) in paired sister cells. In most pairs, the sister inheriting the old pole elongates faster. Schematic model of mycobacterial growth. Most of the new growth (light green) occurs from the old growing pole (red arrow). Following division, the two sister cells exhibit different growth properties. The cell inheriting the growth pole (called an “accelerator”) elongates faster and is born larger than its sister (called an “alternator”). Distribution of differential drug susceptibility in accelerator and alternator cells in individual microcolonies. Using microfluidics, microcolonies were challenged with MIC levels of antibiotics (meropenem and rifampicin shown here) and scored for survivors by their ability to elongate in recovery media. All figures were adapted from Aldridge et al. ( 16 ). doi:10.1128/microbiolspec.MGM2-0031-2013.f2

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0031-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Persister cells in . Schematic representation of persister cells. Persister cell levels in a growing population of . Stationary-phase culture of was diluted 1:100, and growth and persister levels were followed over time. Persister levels were determined after 1 week of challenge with streptomycin (SM) (40 μg/ml) or ciprofloxacin (Cip) (5 µg/ml). Model explaining the need for lengthy antibiotic treatment of infection. Panels B and C were adapted from Keren et al. ( 6 ). doi:10.1128/microbiolspec.MGM2-0031-2013.f3

Source: microbiolspec September 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.MGM2-0031-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error