1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Molecular Genetics of Mycobacteriophages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    1.02 MB
  • XML
    285.65 Kb
  • HTML
    265.74 Kb
  • Author: Graham F. Hatfull1
  • Editors: Graham F. Hatfull2, William R. Jacobs Jr.3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260; 2: University of Pittsburgh, Pittsburgh, PA; 3: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
  • Received 28 August 2013 Accepted 14 October 2013 Published 07 March 2014
  • G. F. Hatfull, gfh@pitt.edu
image of Molecular Genetics of Mycobacteriophages
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Molecular Genetics of Mycobacteriophages, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/2/MGM2-0032-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/2/MGM2-0032-2013-2.gif
  • Abstract:

    Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.

  • Citation: Hatfull G. 2014. Molecular Genetics of Mycobacteriophages. Microbiol Spectrum 2(2):MGM2-0032-2013. doi:10.1128/microbiolspec.MGM2-0032-2013.

Key Concept Ranking

DNA Polymerase I
0.5016779
Transcription Start Site
0.4894324
Gene Expression and Regulation
0.4753244
Infectious Center Assay
0.4198185
0.5016779

References

1. Gardner GM, Weiser RS. 1947. A bacteriophage for Mycobacterium smegmatis. Proc Soc Exp Biol Med 66:205–206. [PubMed]
2. Whittaker E. 1950. Two bacteriophages for Mycobacterium smegmatis. Can J Public Health 41:431–436. [PubMed]
3. Froman S, Will DW, Bogen E. 1954. Bacteriophage active against Mycobacterium tuberculosis. I. Isolation and activity. Am J Pub Health 44:1326–1333. [PubMed]
4. Grange JM. 1975. Proceedings: bacteriophage typing of strains of Mycobacterium tuberculosis isolated in south-east England. J Med Microbiol 8:ix(2). [PubMed]
5. Grange JM. 1975. The genetics of mycobacteria and mycobacteriophages: a review. Tubercle 56:227–238. [PubMed]
6. Jones WD, Jr. 1975. Phage typing report of 125 strains of “Mycobacterium tuberculosis”. Ann Sclavo 17:599–604. [PubMed]
7. Jones WD, Jr. 1988. Bacteriophage typing of Mycobacterium tuberculosis cultures from incidents of suspected laboratory cross-contamination. Tubercle 69:43–46. [PubMed]
8. Snider DE, Jr, Jones WD, Good RC. 1984. The usefulness of phage typing Mycobacterium tuberculosis isolates. Am Rev Respir Dis 130:1095–1099. [PubMed]
9. Goode D. 1983. Bacteriophage typing of strains of Mycobacterium tuberculosis from Nepal. Tubercle 64:15–21. [PubMed]
10. Murohashi T, Tokunaga T, Mizuguchi Y, Maruyama Y. 1963. Phage typing of slow-growing mycobacteria. Am Rev Respir Dis 88:664–669. [PubMed]
11. Baess I. 1969. Subdivision of M. tuberculosis by means of bacteriophages. With special reference to epidemiological studies. Acta Pathol Microbiol Scand 76:464–474. [PubMed]
12. Gangadharam PR, Simmons CS, Stager CE. 1978. Phage typing of mycobacteria using paper discs. Am Rev Respir Dis 118:148–150. [PubMed]
13. Raj CV, Ramakrishnan T. 1970. Transduction in Mycobacterium smegmatis. Nature 228:280–281. [PubMed]
14. Sellers MI, Tokuyasu K, Price Z, Froman S. 1957. Electron microscopic studies of mycobacteriophages. Am Rev Tuberc 76:964–969. [PubMed]
15. Buraczewska M, Kwiatkowski B, Manowska W, Rdultowska H. 1972. Ultrastructure of some mycobacteriophages. Am Rev Respir Dis 105:22–29. [PubMed]
16. Jones W, White A. 1968. Lysogeny in mycobacteria. I. Conversion of colony morphology, nitrate reductase activity, and tween 80 hydrolysis of Mycobacterium sp. ATCC 607 associated with lysogeny. Can J Microbiol 14:551–555. [PubMed]
17. Mankiewicz E, Liivak M, Dernuet S. 1969. Lysogenic mycobacteria: phage variations and changes in host cells. J Gen Microbiol 55:409–416.
18. Mizuguchi Y. 1984. Mycobacteriophages, p 641–662. In Kubica GP, Wayne LG (ed), The Mycobacteria: A Sourcebook, part A. Marcel Dekker, New York.
19. Grange JM, Bird RG. 1975. The nature and incidence of lysogeny in Mycobacterium fortuitum. J Med Microbiol 8:215–223. [PubMed]
20. Grange JM, Bird RG. 1978. Lysogeny associated with mucoid variation in Mycobacterium kansasii. J Med Microbiol 11:1–6. [PubMed]
21. Karnik SS, Gopinathan KP. 1983. Transfection of Mycobacterium smegmatis SN2 with mycobacteriophage I3 DNA. Arch Microbiol 136:275–280. [PubMed]
22. Tokunaga T, Nakamura RM. 1968. Infection of competent Mycobacterium smegmatis with deoxyribonucleic acid extracted from bacteriophage B1. J Virol 2:110–117. [PubMed]
23. Tokunaga T, Mizuguchi Y, Murohashi T. 1963. Deoxyribonucleic acid base composition of a mycobacteriophage. J Bacteriol 86:608–609. [PubMed]
24. Bowman BU. 1969. Properties of mycobacteriophage DS6A. I. Immunogenicity in rabbits. Proc Soc Exp Biol Med 131:196–200.
25. Buraczewska M, Manowska W, Rdultowska H. 1969. Studies on mycobacteriophages. Adsorption of mycobacteriophages on bacillary cells. Pol Med J 8:1337–1341. [PubMed]
26. Castelnuovo G, Giuliani HI, Luchini de Giuliani E, Arancia G. 1969. Protein components of a mycobacteriophage. J Gen Virol 4:253–257. [PubMed]
27. Juhasz SE, Gelbart S, Harize M. 1969. Phage-induced alteration of enzymic activity in lysogenic Mycobacterium smegmatis strains. J Gen Microbiol 56:251–255. [PubMed]
28. Menezes J, Pavilanis V. 1969. Properties of mycobacteriophage C2. Experientia 25:1112–1113. [PubMed]
29. Bonicke R, Saito H. 1970. Phage conversion of biochemical properties in the genus Mycobacterium. Bull Int Union Tuberc 43:217–225. [PubMed]
30. David HL, Jones WD, Jr. 1970. Biosynthesis of a lipase by Mycobacterium smegmatis ATCC 607 infected by mycobacteriophage D29. Am Rev Respir Dis 102:818–820. [PubMed]
31. Jones WD, David HL, Beam RE. 1970. The occurrence of lipids in mycobacteriophage D29 propagated in Mycobacterium smegmatis ATCC 607. Am Rev Respir Dis 102:814–817. [PubMed]
32. Tokunaga T, Kataoka T, Suga K. 1970. Phage inactivation by an ethanol-ether extract of Mycobacterium smegmatis. Am Rev Respir Dis 101:309–313. [PubMed]
33. Jones WD, Jr, David HL. 1971. Inhibition by fifampin of mycobacteriophage D29 replication in its drug-resistant host, Mycobacterium smegmatis ATCC 607. Am Rev Respir Dis 103:618–624. [PubMed]
34. Bowman BU, Newman HA, Moritz JM, Koehler RM. 1973. Properties of mycobacteriophage DS6A. II. Lipid composition. Am Rev Respir Dis 107:42–49. [PubMed]
35. Bowman BU, Jr, Fisher LJ, Witiak DT, Newman HA. 1975. Inactivation of phages DS6A and D29 by acetone extracts of Mycobacterium tuberculosis and Mycobacterium bovis. Am Rev Respir Dis 112:17–22. [PubMed]
36. Wisingerova E, Sulova J, Sassmannova E. 1975. Inactivation of the mycophage activity by lipid solvents. Ann Sclavo 17:634–640. [PubMed]
37. Schafer R, Huber U, Franklin RM. 1977. Chemical and physical properties of mycobacteriophage D29. Eur J Biochem 73:239–246. [PubMed]
38. Soloff BL, Rado TA, Henry BE, 2nd, Bates JH. 1978. Biochemical and morphological characterization of mycobacteriophage R1. J Virol 25:253–262. [PubMed]
39. Somogyi PA, Maso Bel M, Foldes I. 1982. Methylated nucleic acid bases in mycobacterium and mycobacteriophage DNA. Acta Microbiol Acad Sci Hung 29:181–185. [PubMed]
40. Reddy AB, Gopinathan KP. 1986. Presence of random single-strand gaps in mycobacteriophage I3 DNA. Gene 44:227–234. [PubMed]
41. Jacobs WR, Jr. 2000. Mycobacterium tuberculosis: a once genetically intractable organism, p 1–16. In Hatfull GF, Jacobs WR, Jr (ed), Molecular Genetics of the Mycobacteria. ASM Press, Washington, DC.
42. Hopwood DA, Wright HM. 1978. Bacterial protoplast fusion: recombination in fused protoplasts of Streptomyces coelicolor. Mol Gen Genet 162:307–317. [PubMed]
43. Okanishi M, Suzuki K, Umezawa H. 1974. Formation and reversion of streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol 80:389–400. [PubMed]
44. Jacobs WR, Jr, Tuckman M, Bloom BR. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535. [PubMed]
45. Jacobs WR, Jr, Kalpana GV, Cirillo JD, Pascopella L, Snapper SB, Udani RA, Jones W, Barletta RG, Bloom BR. 1991. Genetic systems for mycobacteria. Methods Enzymol 204:537–555. [PubMed]
46. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR, Jacobs WR, Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991. [PubMed]
47. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR, Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919. [PubMed]
48. Bardarov S, Bardarov S, Jr, Pavelka MS, Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR, Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007–3017. [PubMed]
49. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR, Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94:10961–10966. [PubMed]
50. Hatfull GF, Sarkis GJ. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405. [PubMed]
51. Mediavilla J, Jain S, Kriakov J, Ford ME, Duda RL, Jacobs WR, Jr, Hendrix RW, Hatfull GF. 2000. Genome organization and characterization of mycobacteriophage Bxb1. Mol Microbiol 38:955–970. [PubMed]
52. Ford ME, Sarkis GJ, Belanger AE, Hendrix RW, Hatfull GF. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol 279:143–164. [PubMed][CrossRef]
53. Ford ME, Stenstrom C, Hendrix RW, Hatfull GF. 1998. Mycobacteriophage TM4: genome structure and gene expression. Tuber Lung Dis 79:63–73. [PubMed][CrossRef]
54. Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriakov J, Lawrence JG, Jacobs WR, Hendrix RW, Hatfull GF. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182. [PubMed]
55. Hatfull GF. 2010. Bacteriophage research: gateway to learning science. Microbe 5:243–250.
56. Hatfull GF, Pedulla ML, Jacobs-Sera D, Cichon PM, Foley A, Ford ME, Gonda RM, Houtz JM, Hryckowian AJ, Kelchner VA, Namburi S, Pajcini KV, Popovich MG, Schleicher DT, Simanek BZ, Smith AL, Zdanowicz GM, Kumar V, Peebles CL, Jacobs WR, Jr, Lawrence JG, Hendrix RW. 2006. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92. [PubMed][CrossRef]
57. Hanauer D, Hatfull GF, Jacobs-Sera D. 2009. Active Assessment: Assessing Scientific Inquiry. Springer, New York, NY.
58. Hanauer DI, Jacobs-Sera D, Pedulla ML, Cresawn SG, Hendrix RW, Hatfull GF. 2006. Inquiry learning. Teaching scientific inquiry. Science 314:1880–1881. [PubMed][CrossRef]
59. Hatfull GF. 2008. Bacteriophage genomics. Curr Opin Microbiol 11:447–453.
60. Hatfull GF. 2010. Mycobacteriophages: genes and genomes. Annu Rev Microbiol 64:331–356. [PubMed][CrossRef]
61. Hatfull GF. 2012. Complete genome sequences of 138 mycobacteriophages. J Virol 86:2382–2384. [PubMed][CrossRef]
62. Hatfull GF. 1994. Mycobacteriophage L5: a toolbox for tuberculosis. ASM News 60:255–260.
63. Hatfull GF. 1999. Mycobacteriophages, p 38–58. In Ratledge C, Dale J (ed), Mycobacteria: Molecular Biology and Virulence. Chapman and Hall, London.
64. Hatfull GF. 2000. Molecular genetics of mycobacteriophages, p 37–54. In Hatfull GF, Jacobs WR, Jr (ed), Molecular Genetics of Mycobacteria. ASM Press, Washington, DC.
65. Hatfull GF. 2004. Mycobacteriophages and tuberculosis, p 203–218. In Eisenach K, Cole ST, Jacobs WR, Jr, McMurray D (ed), Tuberculosis. ASM Press, Washington, DC.
66. Hatfull GF. 2006. Mycobacteriophages, p 602–620. In Calendar R (ed), The Bacteriophages. Oxford University Press, New York, NY.
67. Hatfull GF. 2012. The secret lives of mycobacteriophages. Adv Virus Res 82:179–288. [PubMed]
68. Hatfull GF, Barsom L, Chang L, Donnelly-Wu M, Lee MH, Levin M, Nesbit C, Sarkis GJ. 1994. Bacteriophages as tools for vaccine development. Dev Biol Stand 82:43–47. [PubMed]
69. Hatfull GF, Cresawn SG, Hendrix RW. 2008. Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol 159:332–339. [PubMed][CrossRef]
70. Hatfull GF, Hendrix RW. 2011. Bacteriophages and their genomes. Curr Opin Virol 1:298–303. [PubMed][CrossRef]
71. Hatfull GF, Jacobs WR, Jr. 1994. Mycobacteriophages: cornerstones of mycobacterial research, p 165–183. In Bloom BR (ed), Tuberculosis: Pathogenesis, Protection and Control. ASM Press, Washington, DC.
72. Stella EJ, de la Iglesia AI, Morbidoni HR. 2009. Mycobacteriophages as versatile tools for genetic manipulation of mycobacteria and development of simple methods for diagnosis of mycobacterial diseases. Rev Argent Microbiol 41:45–55. [PubMed]
73. McNerney R. 1999. TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int J Tuberc Lung Dis 3:179–184. [PubMed]
74. McNerney R. 2002. Phage tests for diagnosis and drug susceptibility testing. Int J Tuberc Lung Dis 6:1129–1130; author reply 1130. [PubMed]
75. McNerney R, Traore H. 2005. Mycobacteriophage and their application to disease control. J Appl Microbiol 99:223–233. [PubMed][CrossRef]
76. Jacobs WR, Jr, Snapper SB, Tuckman M, Bloom BR. 1989. Mycobacteriophage vector systems. Rev Infect Dis 11(Suppl 2):S404–S410. [PubMed][CrossRef]
77. Redmond WB. 1963. Bacteriophages of mycobacteria: a review. Adv Tuberc Rev 12:191–229.
78. Sarkis GJ, Hatfull GF. 1998. Mycobacteriophages. Methods Mol Biol 101:145–173.
79. Cater JC, Redmond WB. 1961. Isolation of and studies on bacteriophage active against mycobacteria. Can J Microbiol 7:697–703. [PubMed]
80. Cater JC, Redmond WB. 1963. Mycobacterial phages isolated from stool specimens of patients with pulmonary disease. Am Rev Respir Dis 87:726–729. [PubMed]
81. Redmond WB, Carter JC. 1960. A bacteriophage specific to Mycobacterium tuberculosis varieties hominis and bovis. Am Rev Respir Dis 82:781–786. [PubMed]
82. Timme TL, Brennan PJ. 1984. Induction of bacteriophage from members of the Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum serocomplex. J Gen Microbiol 130:2059–2066. [PubMed]
83. Sassi M, Bebeacua C, Drancourt M, Cambillau C. 2013. The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria. J Virol 87:8099–8109. [PubMed][CrossRef]
84. Choo SW, Yusoff AM, Wong YL, Wee WY, Ong CS, Ng KP, Ngeow YF. 2012. Genome analysis of Mycobacterium massiliense strain M172, which contains a putative mycobacteriophage. J Bacteriol 194:5128. [PubMed][CrossRef]
85. Tobias NJ, Doig KD, Medema MH, Chen H, Haring V, Moore R, Seemann T, Stinear TP. 2013. Complete genome sequence of the frog pathogen Mycobacterium ulcerans ecovar Liflandii. J Bacteriol 195:556–564. [PubMed][CrossRef]
86. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. [PubMed][CrossRef]
87. Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PD, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, Clarke K, Cronin A, Davis P, Goodhead I, Holroyd N, Jagels K, Lord A, Moule S, Mungall K, Norbertczak H, Quail MA, Rabbinowitsch E, Walker D, White B, Whitehead S, Small PL, Brosch R, Ramakrishnan L, Fischbach MA, Parkhill J, Cole ST. 2008. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18:729–741. [PubMed][CrossRef]
88. Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V, Majlessi L, Criscuolo A, Tap J, Pawlik A, Fiette L, Orgeur M, Fabre M, Parmentier C, Frigui W, Simeone R, Boritsch EC, Debrie AS, Willery E, Walker D, Quail MA, Ma L, Bouchier C, Salvignol G, Sayes F, Cascioferro A, Seemann T, Barbe V, Locht C, Gutierrez MC, Leclerc C, Bentley SD, Stinear TP, Brisse S, Medigue C, Parkhill J, Cruveiller S, Brosch R. 2013. Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45:172–179. [PubMed][CrossRef]
89. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. 2010. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397:119–143. [PubMed][CrossRef]
90. Pope WH, Jacobs-Sera D, Best AA, Broussard GW, Connerly PL, Dedrick RM, Kremer TA, Offner S, Ogiefo AH, Pizzorno MC, Rockenbach K, Russell DA, Stowe EL, Stukey J, Thibault SA, Conway JF, Hendrix RW, Hatfull GF. 2013. Cluster J mycobacteriophages: intron splicing in capsid and tail genes. PLoS One 8:e69273. [PubMed][CrossRef]
91. Harrison M, Dunbar D, Ratmansky L, Boyd K, Lopatto D. 2011. Classroom-based science research at the introductory level: changes in career choices and attitude. CBE Life Sci Educ 10:279–286. [PubMed][CrossRef]
92. Shaffer CD, Alvarez C, Bailey C, Barnard D, Bhalla S, Chandrasekaran C, Chandrasekaran V, Chung HM, Dorer DR, Du C, Eckdahl TT, Poet JL, Frohlich D, Goodman AL, Gosser Y, Hauser C, Hoopes LL, Johnson D, Jones CJ, Kaehler M, Kokan N, Kopp OR, Kuleck GA, McNeil G, Moss R, Myka JL, Nagengast A, Morris R, Overvoorde PJ, Shoop E, Parrish S, Reed K, Regisford EG, Revie D, Rosenwald AG, Saville K, Schroeder S, Shaw M, Skuse G, Smith C, Smith M, Spana EP, Spratt M, Stamm J, Thompson JS, Wawersik M, Wilson BA, Youngblom J, Leung W, Buhler J, Mardis ER, Lopatto D, Elgin SC. 2010. The genomics education partnership: successful integration of research into laboratory classes at a diverse group of undergraduate institutions. CBE Life Sci Educ 9:55–69. [PubMed][CrossRef]
93. Lopatto D, Alvarez C, Barnard D, Chandrasekaran C, Chung HM, Du C, Eckdahl T, Goodman AL, Hauser C, Jones CJ, Kopp OR, Kuleck GA, McNeil G, Morris R, Myka JL, Nagengast A, Overvoorde PJ, Poet JL, Reed K, Regisford G, Revie D, Rosenwald A, Saville K, Shaw M, Skuse GR, Smith C, Smith M, Spratt M, Stamm J, Thompson JS, Wilson BA, Witkowski C, Youngblom J, Leung W, Shaffer CD, Buhler J, Mardis E, Elgin SC. 2008. Undergraduate research. Genom Educ Partnership Sci 322:684–685.
94. Smith SA, Tank DC, Boulanger LA, Bascom-Slack CA, Eisenman K, Kingery D, Babbs B, Fenn K, Greene JS, Hann BD, Keehner J, Kelley-Swift EG, Kembaiyan V, Lee SJ, Li P, Light DY, Lin EH, Ma C, Moore E, Schorn MA, Vekhter D, Nunez PV, Strobel GA, Donoghue MJ, Strobel SA. 2008. Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:e3052. [PubMed][CrossRef]
95. Hanauer DI, Frederick J, Fotinakes B, Strobel SA. 2012. Linguistic analysis of project ownership for undergraduate research experiences. CBE Life Sci Educ 11:378–385. [PubMed][CrossRef]
96. Hendrix RW, Smith MC, Burns RN, Ford ME, Hatfull GF. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc Natl Acad Sci USA 96:2192–2197. [PubMed]
97. Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ, DeJong RJ, Elgin SCR, Guilfoile FR, Forsyth MH, Harris AD, Harvey SE, Hughes LE, Hynes PM, Jackson AS, Jalal MD, MacMurray EA, Manley CM, McDonough MJ, Mosier JL, Osterbann LJ, Rabinowitz HS, Rhyan CN, Russell DA, Saha MS, Shaffer CD, Simon SE, Sims EF, Tovar IG, Weisser EG, Wertz JT, Weston-Hafer KA, Williamson KE, Zhang B, Cresawn SG, Jain P, Piuri M, Jacobs WR, Jr, Hendrix RW, Hatfull GF. 2011. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS One 6:e26750. [PubMed][CrossRef]
98. Pope WH, Jacobs-Sera D, Russell DA, Peebles CL, Al-Atrache Z, Alcoser TA, Alexander LM, Alfano MB, Alford ST, Amy NE, Anderson MD, Anderson AG, Ang AAS, Ares M, Jr, Barber AJ, Barker LP, Barrett JM, Barshop WD, Bauerle CM, Bayles IM, Belfield KL, Best AA, Borjon A, Jr, Bowman CA, Boyer CA, Bradley KW, Bradley VA, Broadway LN, Budwal K, Busby KN, Campbell IW, Campbell AM, Carey A, Caruso SM, Chew RD, Cockburn CL, Cohen LB, Corajod JM, Cresawn SG, Davis KR, Deng L, Denver DR, Dixon BR, Ekram S, Elgin SCR, Engelsen AE, English BEV, Erb ML, Estrada C, Filliger LZ, Findley AM, Forbes L, Forsyth MH, Fox TM, Fritz MJ, Garcia R, George ZD, Georges AE, Gissendanner CR, Goff S, Goldstein R, Gordon KC, Green RD, Guerra SL, Guiney-Olsen KR, Guiza BG, Haghighat L, Hagopian GV, Harmon CJ, Harmson JS, Hartzog GA, Harvey SE, He S, He KJ, Healy KE, Higinbotham ER, Hildebrandt EN, Ho JH, Hogan GM, Hohenstein VG, Holz NA, Huang VJ, Hufford EL, Hynes PM, Jackson AS, Jansen EC, Jarvik J, Jasinto PG, Jordan TC, Kasza T, Katelyn MA, Kelsey JS, Kerrigan LA, Khaw D, Kim J, Knutter JZ, Ko C-C, Larkin GV, Laroche JR, Latif A, Leuba KD, Leuba SI, Lewis LO, Loesser-Casey KE, Long CA, Lopez AJ, Lowery N, Lu TQ, Mac V, Masters IR, McCloud JJ, McDonough MJ, Medenbach AJ, Menon A, Miller R, Morgan BK, Ng PC, Nguyen E, Nguyen KT, Nguyen ET, Nicholson KM, Parnell LA, Peirce CE, Perz AM, Peterson LJ, Pferdehirt RE, Philip SV, Pogliano K, Pogliano J, Polley T, Puopolo EJ, Rabinowitz HS, Resiss MJ, Rhyan CN, Robinson YM, Rodriguez LL, Rose AC, Rubin JD, Ruby JA, Saha MS, Sandoz JW, Savitskaya J, Schipper DJ, Schnitzler CE, Schott AR, Segal JB, Shaffer CD, Sheldon KE, Shepard EM, Shepardson JW, Shroff MK, Simmons JM, Simms EF, Simpson BM, Sinclair KM, Sjoholm RL, Slette IJ, Spaulding BC, Straub CL, Stukey J, Sughrue T, Tang T-Y, Tatyana LM, Taylor SB, Taylor BJ, Temple LM, Thompson JV, Tokarz MP, Trapani SE, Troum AP, Tsay J, Tubbs AT, Walton JM, Wang DH, Wang H, Warner JR, Weisser EG, Wendler SC, Weston-Hafer KA, Whelan HM, Williamson KE, Willis AN, Wirtshafter HS, Wong TW, Wu P, Yang YJ, Yee BC, Zaidins DA, Zhang B, Zúniga MY, Hendrix RW, Hatfull GF. 2011. Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution. PLoS One 6:e16329. [PubMed]
99. Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C, Boyle MM, Petrova ZO, Dedrick RM, Pope WH, Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science Sea-Phages Program, Modlin RL, Hendrix RW, Hatfull GF. 2012. On the nature of mycobacteriophage diversity and host preference. Virology 434:187–201. [PubMed][CrossRef]
100. Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12:395. [PubMed][CrossRef]
101. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. [PubMed][CrossRef]
102. Mageeney C, Pope WH, Harrison M, Moran D, Cross T, Jacobs-Sera D, Hendrix RW, Dunbar D, Hatfull GF. 2012. Mycobacteriophage Marvin: a new singleton phage with an unusual genome organization. J Virol 86:4762–4775. [PubMed][CrossRef]
103. Morris P, Marinelli LJ, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2008. Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination. J Bacteriol 190:2172–2182. [PubMed][CrossRef]
104. Duda RL, Hempel J, Michel H, Shabanowitz J, Hunt D, Hendrix RW. 1995. Structural transitions during bacteriophage HK97 head assembly. J Mol Biol 247:618–635. [PubMed][CrossRef]
105. Xu J, Hendrix RW, Duda RL. 2004. Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21. [PubMed][CrossRef]
106. Piuri M, Hatfull GF. 2006. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 62:1569–1585. [PubMed][CrossRef]
107. Dedrick RM, Marinelli LJ, Newton GL, Pogliano K, Pogliano J, Hatfull GF. 2013. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 88:577–589. [PubMed][CrossRef]
108. Giri N, Bhowmik P, Bhattacharya B, Mitra M, Das Gupta SK. 2009. The mycobacteriophage D29 gene 65 encodes an early-expressed protein that functions as a structure-specific nuclease. J Bacteriol 191:959–967. [PubMed][CrossRef]
109. Liu J, Dehbi M, Moeck G, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, McCarty J, Srikumar R, Williams D, Wu JJ, Gros P, Pelletier J, DuBow M. 2004. Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22:185–191. [PubMed][CrossRef]
110. Donnelly-Wu MK, Jacobs WR, Jr, Hatfull GF. 1993. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417. [PubMed]
111. Rybniker J, Plum G, Robinson N, Small PL, Hartmann P. 2008. Identification of three cytotoxic early proteins of mycobacteriophage L5 leading to growth inhibition in Mycobacterium smegmatis. Microbiology 154:2304–2314. [PubMed][CrossRef]
112. Rybniker J, Krumbach K, van Gumpel E, Plum G, Eggeling L, Hartmann P. 2011. The cytotoxic early protein 77 of mycobacteriophage L5 interacts with MSMEG_3532, an L-serine dehydratase of Mycobacterium smegmatis. J Basic Microbiol 51:515–522. [PubMed][CrossRef]
113. Hassan S, Mahalingam V, Kumar V. 2009. Synonymous codon usage analysis of thirty two mycobacteriophage genomes. Adv Bioinformatics 2009:1–11. [PubMed][CrossRef]
114. Kunisawa T. 2000. Functional role of mycobacteriophage transfer RNAs. J Theor Biol 205:167–170. [PubMed][CrossRef]
115. Kunisawa T, Kanaya S, Kutter E. 1998. Comparison of synonymous codon distribution patterns of bacteriophage and host genomes. DNA Res 5:319–326. [PubMed]
116. Sahu K, Gupta SK, Ghosh TC, Sau S. 2004. Synonymous codon usage analysis of the mycobacteriophage Bxz1 and its plating bacteria M. smegmatis: identification of highly and lowly expressed genes of Bxz1 and the possible function of its tRNA species. J Biochem Mol Biol 37:487–492. [PubMed]
117. Sampson T, Broussard GW, Marinelli LJ, Jacobs-Sera D, Ray M, Ko CC, Russell D, Hendrix RW, Hatfull GF. 2009. Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. Microbiology 155:2962–2977. [PubMed][CrossRef]
118. Tori K, Dassa B, Johnson MA, Southworth MW, Brace LE, Ishino Y, Pietrokovski S, Perler FB. 2009. Splicing of the mycobacteriophage Bethlehem DnaB intein: identification of a new mechanistic class of inteins that contain an obligate block F nucleophile. J Biol Chem 285:2515–2526. [PubMed][CrossRef]
119. Tori K, Perler FB. 2011. Expanding the definition of class 3 inteins and their proposed phage origin. J Bacteriol 193:2035–2041. [PubMed][CrossRef]
120. Rybniker J, Kramme S, Small PL. 2006. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis: application for identification and susceptibility testing. J Med Microbiol 55:37–42. [PubMed][CrossRef]
121. Chen J, Kriakov J, Singh A, Jacobs WR, Jr, Besra GS, Bhatt A. 2009. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. Microbiology 155:4050–4057. [PubMed][CrossRef]
122. Furuchi A, Tokunaga T. 1972. Nature of the receptor substance of Mycobacterium smegmatis for D4 bacteriophage adsorption. J Bacteriol 111:404–411. [PubMed]
123. Bisso G, Castelnuovo G, Nardelli MG, Orefici G, Arancia G, Laneelle G, Asselineau C, Asselineau J. 1976. A study on the receptor for a mycobacteriophage: phage phlei. Biochimie 58:87–97. [PubMed]
124. Khoo KH, Suzuki R, Dell A, Morris HR, McNeil MR, Brennan PJ, Besra GS. 1996. Chemistry of the lyxose-containing mycobacteriophage receptors of Mycobacterium phlei/Mycobacterium smegmatis. Biochemistry 35:11812–11819. [PubMed][CrossRef]
125. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. [PubMed][CrossRef]
126. Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc Natl Acad Sci USA 106:894–899. [PubMed][CrossRef]
127. Brudey K, Driscoll JR, Rigouts L, Prodinger WM, Gori A, Al-Hajoj SA, Allix C, Aristimuno L, Arora J, Baumanis V, Binder L, Cafrune P, Cataldi A, Cheong S, Diel R, Ellermeier C, Evans JT, Fauville-Dufaux M, Ferdinand S, Garcia de Viedma D, Garzelli C, Gazzola L, Gomes HM, Guttierez MC, Hawkey PM, van Helden PD, Kadival GV, Kreiswirth BN, Kremer K, Kubin M, Kulkarni SP, Liens B, Lillebaek T, Ho ML, Martin C, Martin C, Mokrousov I, Narvskaia O, Ngeow YF, Naumann L, Niemann S, Parwati I, Rahim Z, Rasolofo-Razanamparany V, Rasolonavalona T, Rossetti ML, Rusch-Gerdes S, Sajduda A, Samper S, Shemyakin IG, Singh UB, Somoskovi A, Skuce RA, van Soolingen D, Streicher EM, Suffys PN, Tortoli E, Tracevska T, Vincent V, Victor TC, Warren RM, Yap SF, Zaman K, Portaels F, Rastogi N, Sola C. 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23. [PubMed][CrossRef]
128. Ramage HR, Connolly LE, Cox JS. 2009. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5:e1000767. [PubMed][CrossRef]
129. He L, Fan X, Xie J. 2012. Comparative genomic structures of Mycobacterium CRISPR-Cas. J Cell Biochem 113:2464–2473. [PubMed][CrossRef]
130. Horan KL, Freeman R, Weigel K, Semret M, Pfaller S, Covert TC, van Soolingen D, Leao SC, Behr MA, Cangelosi GA. 2006. Isolation of the genome sequence strain Mycobacterium avium 104 from multiple patients over a 17-year period. J Clin Microbiol 44:783–789. [PubMed][CrossRef]
131. Barsom EK, Hatfull GF. 1996. Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol Microbiol 21:159–170. [PubMed]
132. Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci USA 96:1645–1650. [PubMed]
133. Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430–481.
134. Berry J, Summer EJ, Struck DK, Young R. 2008. The final step in the phage infection cycle: the Rz and Rz1 lysis proteins link the inner and outer membranes. Mol Microbiol 70:341–351. [PubMed][CrossRef]
135. Gil F, Catalao MJ, Moniz-Pereira J, Leandro P, McNeil M, Pimentel M. 2008. The lytic cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology 154:1364–1371. [PubMed][CrossRef]
136. Gil F, Grzegorzewicz AE, Catalao MJ, Vital J, McNeil MR, Pimentel M. 2010. Mycobacteriophage Ms6 LysB specifically targets the outer membrane of Mycobacterium smegmatis. Microbiology 156:1497–1504. [PubMed][CrossRef]
137. Payne K, Sun Q, Sacchettini J, Hatfull GF. 2009. Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73:367–381. [PubMed][CrossRef]
138. Payne KM, Hatfull GF. 2012. Mycobacteriophage endolysins: diverse and modular enzymes with multiple catalytic activities. PLoS One 7:e34052. [PubMed][CrossRef]
139. Catalao MJ, Gil F, Moniz-Pereira J, Pimentel M. 2010. The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77:672–686. [PubMed][CrossRef]
140. Catalao MJ, Gil F, Moniz-Pereira J, Pimentel M. 2011. The endolysin-binding domain encompasses the N-terminal region of the mycobacteriophage Ms6 Gp1 chaperone. J Bacteriol 193:5002–5006. [PubMed][CrossRef]
141. Berry J, Rajaure M, Pang T, Young R. 2012. The spanin complex is essential for lambda lysis. J Bacteriol 194:5667–5674. [PubMed][CrossRef]
142. Catalao MJ, Gil F, Moniz-Pereira J, Pimentel M. 2011. Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol 193:2793–2803. [PubMed][CrossRef]
143. Stella EJ, Franceschelli JJ, Tasselli SE, Morbidoni HR. 2013. Analysis of novel mycobacteriophages indicates the existence of different strategies for phage inheritance in mycobacteria. PLoS One 8:e56384. [PubMed][CrossRef]
144. Lee MH, Pascopella L, Jacobs WR, Jr, Hatfull GF. 1991. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci USA 88:3111–3115. [PubMed]
145. Pham TT, Jacobs-Sera D, Pedulla ML, Hendrix RW, Hatfull GF. 2007. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology 153:2711–2723. [PubMed][CrossRef]
146. Freitas-Vieira A, Anes E, Moniz-Pereira J. 1998. The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:3397–3406. [PubMed]
147. Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF. 2003. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol 50:463–473. [PubMed]
148. Smith MC, Brown WR, McEwan AR, Rowley PA. 2010. Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38:388–394. [PubMed][CrossRef]
149. Ojha A, Anand M, Bhatt A, Kremer L, Jacobs WR, Jr, Hatfull GF. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873. [PubMed][CrossRef]
150. Ojha AK, Trivelli X, Guerardel Y, Kremer L, Hatfull GF. 2010. Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. J Biol Chem 285:17380–17389. [PubMed][CrossRef]
151. Peña CE, Lee MH, Pedulla ML, Hatfull GF. 1997. Characterization of the mycobacteriophage L5 attachment site, attP. J Mol Biol 266:76–92. [PubMed][CrossRef]
152. Peña CE, Stoner JE, Hatfull GF. 1996. Positions of strand exchange in mycobacteriophage L5 integration and characterization of the attB site. J Bacteriol 178:5533–5536. [PubMed]
153. Lewis JA, Hatfull GF. 2001. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 29:2205–2216. [PubMed]
154. Lewis JA, Hatfull GF. 2000. Identification and characterization of mycobacteriophage L5 excisionase. Mol Microbiol 35:350–360. [PubMed]
155. Lewis JA, Hatfull GF. 2003. Control of directionality in L5 integrase-mediated site-specific recombination. J Mol Biol 326:805–821. [PubMed]
156. Pedulla ML, Lee MH, Lever DC, Hatfull GF. 1996. A novel host factor for integration of mycobacteriophage L5. Proc Natl Acad Sci USA 93:15411–15416. [PubMed]
157. Pena CEA, Kahlenberg JM, Hatfull GF. 1999. Protein-DNA complexes in mycobacteriophage L5 integrative recombination. J Bacteriol 181:454–461. [PubMed]
158. Ghosh P, Kim AI, Hatfull GF. 2003. The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol Cell 12:1101–1111. [PubMed]
159. Ghosh P, Pannunzio NR, Hatfull GF. 2005. Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. J Mol Biol 349:331–348. [PubMed]
160. Ghosh P, Bibb LA, Hatfull GF. 2008. Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading. Proc Natl Acad Sci USA 105:3238–3243. [PubMed][CrossRef]
161. Ghosh P, Wasil LR, Hatfull GF. 2006. Control of phage Bxb1 excision by a novel recombination directionality factor. PLoS Biol 4:e186. [PubMed][CrossRef]
162. Savinov A, Pan J, Ghosh P, Hatfull GF. 2012. The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication. Gene 495:42–48. [PubMed][CrossRef]
163. Nesbit CE, Levin ME, Donnelly-Wu MK, Hatfull GF. 1995. Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol 17:1045–1056. [PubMed]
164. Broussard GW, Oldfield LM, Villanueva VM, Lunt BL, Shine EE, Hatfull GF. 2013. Integration-dependent bacteriophage immunity provides insights into the evolution of genetic switches. Mol Cell 49:237–248. [PubMed][CrossRef]
165. Sarkis GJ, Jacobs WR, Jr, Hatfull GF. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067. [PubMed]
166. Garcia M, Pimentel M, Moniz-Pereira J. 2002. Expression of mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol 184:3034–3043. [PubMed]
167. Rybniker J, Nowag A, van Gumpel E, Nissen N, Robinson N, Plum G, Hartmann P. 2010. Insights into the function of the WhiB-like protein of mycobacteriophage TM4: a transcriptional inhibitor of WhiB2. Mol Microbiol 77:642–657. [PubMed][CrossRef]
168. Ptashne M, Jeffrey A, Johnson AD, Maurer R, Meyer BJ, Pabo CO, Roberts TM, Sauer RT. 1980. How the lambda repressor and cro work. Cell 19:1–11. [PubMed]
169. Brown KL, Sarkis GJ, Wadsworth C, Hatfull GF. 1997. Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J 16:5914–5921. [PubMed][CrossRef]
170. Bandhu A, Ganguly T, Chanda PK, Das M, Jana B, Chakrabarti G, Sau S. 2009. Antagonistic effects Na+ and Mg2+ on the structure, function, and stability of mycobacteriophage L1 repressor. BMB Rep 42:293–298. [PubMed]
171. Bandhu A, Ganguly T, Jana B, Mondal R, Sau S. 2010. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1. Biochemistry 49:4235–4243. [PubMed][CrossRef]
172. Ganguly T, Bandhu A, Chattoraj P, Chanda PK, Das M, Mandal NC, Sau S. 2007. Repressor of temperate mycobacteriophage L1 harbors a stable C-terminal domain and binds to different asymmetric operator DNAs with variable affinity. Virol J 4:64. [PubMed][CrossRef]
173. Ganguly T, Chanda PK, Bandhu A, Chattoraj P, Das M, Sau S. 2006. Effects of physical, ionic, and structural factors on the binding of repressor of mycobacteriophage L1 to its cognate operator DNA. Protein Pept Lett 13:793–798. [PubMed]
174. Ganguly T, Chattoraj P, Das M, Chanda PK, Mandal NC, Lee CY, Sau S. 2004. A point mutation at the C-terminal half of the repressor of temperate mycobacteriophage L1 affects its binding to the operator DNA. J Biochem Mol Biol 37:709–714. [PubMed]
175. Jain S, Hatfull GF. 2000. Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol Microbiol 38:971–985. [PubMed]
176. Sau S, Chattoraj P, Ganguly T, Lee CY, Mandal NC. 2004. Cloning and sequencing analysis of the repressor gene of temperate mycobacteriophage L1. J Biochem Mol Biol 37:254–259. [PubMed]
177. Chaudhuri B, Sau S, Datta HJ, Mandal NC. 1993. Isolation, characterization, and mapping of temperature-sensitive mutations in the genes essential for lysogenic and lytic growth of the mycobacteriophage L1. Virology 194:166–172. [PubMed][CrossRef]
178. Bandhu A, Ganguly T, Jana B, Chakravarty A, Biswas A, Sau S. 2012. Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity. Bacteriophage 2:79–88. [PubMed]
179. Petrovski S, Seviour RJ, Tillett D. 2013. Genome sequence and characterization of a Rhodococcus equi phage REQ1. Virus Genes. [Epub ahead of print.] doi:10.1007/s11262-013-0887-1. [CrossRef]
180. Broussard GW, Hatfull GF. 2013. Evolution of genetic switch complexity. Bacteriophage 3:e24186. [PubMed][CrossRef]
181. Marinelli LJ, Hatfull GF, Piuri M. 2012. Recombineering: a powerful tool for modification of bacteriophage genomes. Bacteriophage 2:5–14. [PubMed][CrossRef]
182. Marinelli LJ, Piuri M, Swigonova Z, Balachandran A, Oldfield LM, van Kessel JC, Hatfull GF. 2008. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3:e3957. [PubMed][CrossRef]
183. van Kessel JC, Marinelli LJ, Hatfull GF. 2008. Recombineering mycobacteria and their phages. Nat Rev Microbiol 6:851–857. [PubMed][CrossRef]
184. van Kessel JC, Hatfull GF. 2007. Recombineering in Mycobacterium tuberculosis. Nat. Methods 4:147–152. [PubMed][CrossRef]
185. van Kessel JC, Hatfull GF. 2008. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67:1094–1107. [PubMed][CrossRef]
186. van Kessel JC, Hatfull GF. 2008. Mycobacterial recombineering. Methods Mol Biol 435:203–215. [PubMed][CrossRef]
187. Pitcher RS, Tonkin LM, Daley JM, Palmbos PL, Green AJ, Velting TL, Brzostek A, Korycka-Machala M, Cresawn S, Dziadek J, Hatfull GF, Wilson TE, Doherty AJ. 2006. Mycobacteriophage exploit NHEJ to facilitate genome circularization. Mol Cell 23:743–748. [PubMed][CrossRef]
188. Jacobs WR, Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822. [PubMed]
189. Jain P, Hartman TE, Eisenberg N, O’Donnell MR, Kriakov J, Govender K, Makume M, Thaler DS, Hatfull GF, Sturm AW, Larsen MH, Moodley P, Jacobs WR, Jr. 2012. phi(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol 50:1362–1369. [PubMed][CrossRef]
190. Piuri M, Jacobs WR, Jr, Hatfull GF. 2009. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS One 4:e4870. [PubMed][CrossRef]
191. Sassetti CM, Boyd DH, Rubin EJ. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717. [PubMed][CrossRef]
192. Sassetti CM, Boyd DH, Rubin EJ. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84. [PubMed][CrossRef]
193. Lamichhane G, Zignol M, Blades NJ, Geiman DE, Dougherty A, Grosset J, Broman KW, Bishai WR. 2003. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 100:7213–7218. [PubMed][CrossRef]
194. Murry JP, Sassetti CM, Lane JM, Xie Z, Rubin EJ. 2008. Transposon site hybridization in Mycobacterium tuberculosis. Methods Mol Biol 416:45–59. [PubMed][CrossRef]
195. Fullner KJ, Hatfull GF. 1997. Mycobacteriophage L5 infection of Mycobacterium bovis BCG: implications for phage genetics in the slow-growing mycobacteria. Mol Microbiol 26:755–766. [PubMed]
196. da Silva JL, Piuri M, Broussard G, Marinelli LJ, Bastos GM, Hirata RD, Hatfull GF, Hirata MH. 2013. Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP. FEMS Microbiol Lett 344:166–172. [PubMed][CrossRef]
197. Lee MH, Hatfull GF. 1993. Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J Bacteriol 175:6836–6841. [PubMed]
198. Huff J, Czyz A, Landick R, Niederweis M. 2010. Taking phage integration to the next level as a genetic tool for mycobacteria. Gene 468:8–19. [PubMed][CrossRef]
199. Pascopella L, Collins FM, Martin JM, Lee MH, Hatfull GF, Stover CK, Bloom BR, Jacobs WR, Jr. 1994. Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319. [PubMed]
200. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230. [PubMed]
201. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR, Jr,  Bloom BR. 1991. New use of BCG for recombinant vaccines. Nature 351:456–460. [PubMed][CrossRef]
202. Springer B, Sander P, Sedlacek L, Ellrott K, Bottger EC. 2001. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int J Med Microbiol 290:669–675. [PubMed][CrossRef]
203. Martin C, Mazodier P, Mediola MV, Gicquel B, Smokvina T, Thompson CJ, Davies J. 1991. Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Mol Microbiol 5:2499–2502. [PubMed]
204. Murry J, Sassetti CM, Moreira J, Lane J, Rubin EJ. 2005. A new site-specific integration system for mycobacteria. Tuberculosis (Edinb) 85:317–323. [PubMed][CrossRef]
205. Saviola B, Bishai WR. 2004. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res 32:e11. [PubMed][CrossRef]
206. Parish T, Lewis J, Stoker NG. 2001. Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinb) 81:359–364. [PubMed][CrossRef]
207. Pashley CA, Parish T. 2003. Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229:211–215. [PubMed]
208. Thorpe HM, Smith MC. 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510. [PubMed]
209. Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, Jacobs WR, Jr, Fidock DA. 2006. Efficient site-specific integration in Plasmodium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods 3:615–621. [PubMed][CrossRef]
210. Huang J, Ghosh P, Hatfull GF, Hong Y. 2011. Successive and targeted DNA integrations in the Drosophila genome by Bxb1 and phiC31 integrases. Genetics 189:391–395. [PubMed][CrossRef]
211. Thomson JG, Chan R, Smith J, Thilmony R, Yau YY, Wang Y, Ow DW. 2012. The Bxb1 recombination system demonstrates heritable transmission of site-specific excision in Arabidopsis. BMC Biotechnology 12:9. [PubMed][CrossRef]
212. Russell JP, Chang DW, Tretiakova A, Padidam M. 2006. Phage Bxb1 integrase mediates highly efficient site-specific recombination in mammalian cells. Biotechniques 40:460, 462, 464. [PubMed]
213. Bonnet J, Subsoontorn P, Endy D. 2012. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc Natl Acad Sci USA 109:8884–8889. [PubMed][CrossRef]
214. Bonnet J, Yin P, Ortiz ME, Subsoontorn P, Endy D. 2013. Amplifying genetic logic gates. Science 340:599–603. [PubMed][CrossRef]
215. Court DL, Sawitzke JA, Thomason LC. 2002. Genetic engineering using homologous recombination. Annu Rev Genet 36:361–388. [PubMed][CrossRef]
216. Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645. [PubMed][CrossRef]
217. Murphy KC. 2012. Phage recombinases and their applications. Adv Virus Res 83:367–414. [PubMed][CrossRef]
218. Datta S, Costantino N, Zhou X, Court DL. 2008. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci USA 105:1626–1631.
219. Swingle B, Bao Z, Markel E, Chambers A, Cartinhour S. 2010. Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol 76:4960–4968. [PubMed][CrossRef]
220. Jain P, Thaler DS, Maiga M, Timmins GS, Bishai WR, Hatfull GF, Larsen MH, Jacobs WR. 2011. Reporter phage and breath tests: emerging phenotypic assays for diagnosing active tuberculosis, antibiotic resistance, and treatment efficacy. J Infect Dis 204(Suppl 4):S1142–S1150. [PubMed]
221. Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. 1997. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 3:465–468. [PubMed]
222. Watterson SA, Wilson SM, Yates MD, Drobniewski FA. 1998. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J Clin Microbiol 36:1969–1973. [PubMed]
223. McNerney R, Kiepiela P, Bishop KS, Nye PM, Stoker NG. 2000. Rapid screening of Mycobacterium tuberculosis for susceptibility to rifampicin and streptomycin. Int J Tuberc Lung Dis 4:69–75. [PubMed]
224. Pai M, Kalantri S, Pascopella L, Riley LW, Reingold AL. 2005. Bacteriophage-based assays for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a meta-analysis. J Infect 51:175–187. [PubMed][CrossRef]
225. Minion J, Pai M. 2010. Bacteriophage assays for rifampicin resistance detection in Mycobacterium tuberculosis: updated meta-analysis. Int J Tuberc Lung Dis 14:941–951. [PubMed]
226. Pearson RE, Jurgensen S, Sarkis GJ, Hatfull GF, Jacobs WR, Jr. 1996. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183:129–136. [PubMed]
227. Riska PF, Su Y, Bardarov S, Freundlich L, Sarkis G, Hatfull G, Carriere C, Kumar V, Chan J, Jacobs WR, Jr. 1999. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37:1144–1149. [PubMed]
228. Bardarov S, Jr, Dou H, Eisenach K, Banaiee N, Ya S, Chan J, Jacobs WR, Jr, Riska PF. 2003. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn Microbiol Infect Dis 45:53–61. [PubMed]
229. Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR, Jr. 1997. Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239. [PubMed]
230. Banaiee N, Bobadilla-Del-Valle M, Bardarov S, Jr, Riska PF, Small PM, Ponce-De-Leon A, Jacobs WR, Jr, Hatfull GF, Sifuentes-Osornio J. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol 39:3883–3888. [PubMed][CrossRef]
231. Banaiee N, Bobadilla-del-Valle M, Riska PF, Bardarov S, Jr, Small PM, Ponce-de-Leon A, Jacobs WR, Jr, Hatfull GF, Sifuentes-Osornio J. 2003. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J Med Microbiol 52:557–561. [PubMed]
232. Banaiee N, January V, Barthus C, Lambrick M, Roditi D, Behr MA, Jacobs WR, Jr, Steyn LM. 2008. Evaluation of a semi-automated reporter phage assay for susceptibility testing of Mycobacterium tuberculosis isolates in South Africa. Tuberculosis (Edinb) 88:64–68. [PubMed][CrossRef]
233. Rondon L, Piuri M, Jacobs WR, Jr, de Waard J, Hatfull GF, Takiff H. 2011. Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842. [PubMed][CrossRef]
234. Hazbon MH, Guarin N, Ferro BE, Rodriguez AL, Labrada LA, Tovar R, Riska PF, Jacobs WR, Jr. 2003. Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 41:4865–4869. [PubMed]
235. Lu B, Fu Z, Xu S. 2000. Rapid rifampicin susceptibility test by using recombinant mycobacteriophages. Zhonghua Jie He He Hu Xi Za Zhi 23:480–484. (In Chinese.) [PubMed]
236. Piuri M, Rondon L, Urdaniz E, Hatfull GF. 2013. Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol. [Epub ahead of print.] doi:10.1128/AEM.01016-13. [CrossRef]
237. Summers WC. 1999. Felix d’Herelle and the Origins of Molecular Biology. Yale University Press, New Haven, CT.
238. Chang KC, Yew WW. 2013. Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: update 2012. Respirology 18:8–21. [PubMed][CrossRef]
239. Sula L, Sulova J, Stolcpartova M. 1981. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A, GR-21 T, My-327. Czech Med 4:209–214. [PubMed]
240. Broxmeyer L, Sosnowska D, Miltner E, Chacon O, Wagner D, McGarvey J, Barletta RG, Bermudez LE. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis 186:1155–1160. [PubMed][CrossRef]
241. Danelishvili L, Young LS, Bermudez LE. 2006. In vivo efficacy of phage therapy for Mycobacterium avium infection as delivered by a nonvirulent mycobacterium. Microb Drug Resist 12:1–6. [PubMed][CrossRef]
242. Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23:1026–1028. [PubMed][CrossRef]
243. Pimentel M. 2014. Genetics of phage lysis. Microbiol Spectrum 2(1):MGM2-0017-2013.
244. Smith MC, Hendrix RW, Dedrick R, Mitchell K, Ko CC, Russell D, Bell E, Gregory M, Bibb MJ, Pethick F, Jacobs-Sera D, Herron P, Buttner MJ, Hatfull GF. 2013. Evolutionary relationships among actinophages and a putative adaptation for growth in Streptomyces spp. J Bacteriol 195:4924–4935. [PubMed][CrossRef]
245. Jacobs, WR, Jr. Gene transfer in Mycobacterium tuberculosis: shuttle phasmids to enlightenment. In Hatfull GF, Jacobs WR, Jr (ed), Molecular Genetics of Mycobacteria, 2nd ed. ASM Press, Washington, DC, in press.
246. Lee S, Kriakov J, Vilcheze C, Dai Z, Hatfull GF, Jacobs WR, Jr. 2004. Bxz1, a new generalized transducing phage for mycobacteria. FEMS Microbiol Lett 241:271–276. [PubMed][CrossRef]
microbiolspec.MGM2-0032-2013.citations
cm/2/2
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0032-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0032-2013
2014-03-07
2017-11-21

Abstract:

Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/2/MGM2-0032-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0032-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Mycobacteriophage morphologies. Three examples of virion morphologies are illustrated. Phaedrus and Babsiella exhibit siphoviral morphologies with long flexible tails; Phaedrus has an isometric head, whereas the Babsiella head is prolate. Cali is an example of myoviral morphology. Scale bar is 100 nm. doi:10.1128/microbiolspec.MGM2-0032-2013.f1

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Dotplot comparison of 285 mycobacteriophage genomes. A concatenated file of 285 mycobacteriophage nucleotide sequences was compared against itself using the Gepard program ( 242 ) to generate the dotplot. The order of the genomes was arranged such that genomically related phages were adjacent to each other in this file, and the clusters of related phages (Clusters A, B, C, etc.) are shown above the plot. Five of the genomes are singletons with no closely related phages and are denoted collectively as Sin. doi:10.1128/microbiolspec.MGM2-0032-2013.f2

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Comparison of mycobacteriophage Che9d and Jabbawokkie genome maps. Mycobacteriophages Che9d and Jabbawokkie are grouped into Subcluster F2, and their genome maps are shown as represented by the Phamerator program ( 100 ). Each genome is shown with markers, and the shading between the genomes reflects nucleotide sequence similarity determined by BLASTN, spectrum-colored with the greatest similarity in purple and the least in red. Protein-coding genes are shown as colored boxes above or below the genomes, reflecting rightward or leftward transcription, respectively. Each gene is assigned a phamily (Pham) designation based on amino acid sequence similarity (see text), as shown above or below each box, with the number of phamily members shown in parentheses; genes shown as white boxes are orphams and have no other phamily members. Putative gene functions are indicated. doi:10.1128/microbiolspec.MGM2-0032-2013.f3

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Functional genomics of mycobacteriophage Giles. A map of the mycobacteriophage Giles was generated using Phamerator and annotated as described for Fig. 3. Boxes below the genome indicate whether the gene is nonessential for lytic growth (yellow), likely essential (blue), or essential (green). Arrows indicate genes expressed in lysogeny (red) or early (green) or late (purple) lytic growth, with line thickness reflecting transcription strength. Reproduced with permission from Dedrick et al. ( 107 ). doi:10.1128/microbiolspec.MGM2-0032-2013.f4

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Genome map of mycobacteriophage Alma. The genome map of mycobacteriophage Alma was generated using Phamerator and is illustrated as described for Fig. 3 . Alma is a Subcluster A6 phage and shares the features of other Cluster A phages in having multiple binding sites for its repressor protein (gp75). These stoperator sites are indicated by vertical arrows, and the orientation of the asymmetric sites relative to genome orientation are shown as (-) or (+). Stoperators were identified as sequences corresponding to the consensus sequence 5′-GATGAGTGTCAAG with no more than a single mismatch. Note that the stoperator consensus sequences can differ for different Subcluster A phages ( 98 ). doi:10.1128/microbiolspec.MGM2-0032-2013.f5

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Click to view

FIGURE 6

A model for mycobacteriophage diversity. The large number of different types of mycobacteriophages isolated on mc155 can be explained by a model in which phages can readily infect new bacterial hosts—either by a switch or an expansion of host range—using a highly diverse bacterial population that includes many closely related strains. As such, phages with distinctly different genome sequences and GC% contents infecting distantly related bacterial hosts, such as those to the left (red) or right (blue) extremes of a spectrum of hosts, can migrate across a microbial landscape through multiple steps. Each host switch occurs at a relatively high frequency (∼1 in 10 particles, or an average of about one every 10 bursts of lytic growth) and much faster than either amelioration of phage GC% to its new host or genetic recombination. Two phages (such as those shown in red and blue) can thus “arrive” at a common host ( mc155) but be of distinctly different types (clusters, subclusters, and singletons). Reproduced with permission from Jacobs-Sera et al. ( 99 ). doi:10.1128/microbiolspec.MGM2-0032-2013.f6

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

Table 1

Sequenced mycobacteriophage genomes

Source: microbiolspec March 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0032-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error