1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Gene Transfer in : Shuttle Phasmids to Enlightenment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    205.92 Kb
  • XML
    167.81 Kb
  • PDF
    772.06 Kb
  • Author: William R. Jacobs, Jr.1
  • Editors: Graham F. Hatfull2, William R. Jacobs Jr.3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Howard Hughes Medical Institute, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461; 2: University of Pittsburgh, Pittsburgh, PA; 3: Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY
  • Source: microbiolspec April 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0037-2013
  • Received 02 December 2013 Accepted 19 December 2013 Published 11 April 2014
  • W. R. Jacobs, Jr., jacobsw@hhmi.org
image of Gene Transfer in <span class="jp-italic">Mycobacterium tuberculosis</span>: Shuttle Phasmids to Enlightenment
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Gene Transfer in : Shuttle Phasmids to Enlightenment, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/2/MGM2-0037-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/2/MGM2-0037-2013-2.gif
  • Abstract:

    Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in by the difficulty of transferring genes or alleles into or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for This review will discuss genetic systems and their impact on tuberculosis research.

  • Citation: Jacobs, Jr. W. 2014. Gene Transfer in : Shuttle Phasmids to Enlightenment. Microbiol Spectrum 2(2):MGM2-0037-2013. doi:10.1128/microbiolspec.MGM2-0037-2013.

Key Concept Ranking

Bacterial Genetics
0.5311707
Genetic Elements
0.4860287
Genetic Recombination
0.4860287
DNA Restriction Enzymes
0.43593916
0.5311707

References

1. Kaji M. 1972. Prevention of viral hepatitis—with special reference to the possibility of development of a vaccine in relation to Australia antigen. Nihon Rinsho 30:1159–1163. (In Japanese.) [PubMed]
2. Yap SF. 2004. Hepatitis B: review of development from the discovery of the “Australia Antigen” to end of the twentieth century. Malaysian J Pathol 26:1–12. [PubMed]
3. Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356. [PubMed]
4. Jacobs WR Jr, Tuckman M, Bloom BR. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–535. [PubMed][CrossRef]
5. Snapper SB, Lugosi L, Jekkel A, Melton RE, Kieser T, Bloom BR, Jacobs WR Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991. [PubMed]
6. Lee MH, Pascopella L, Jacobs WR Jr, Hatfull GF. 1991. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci USA 88:3111–3115. [PubMed]
7. Stover CK, Delacruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR, Bloom BR. 1991. New use of BCG for recombinant vaccines. Nature 351:456–460.
8. Collins DM, Kawakami RP, de Lisle GW, Pascopella L, Bloom BR, Jacobs WR Jr. 1995. Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 92:8036–8040. [PubMed]
9. Pascopella L, Collins FM, Martin JM, Jacobs WR Jr, Bloom BR. 1993. Identification of a genomic fragment of Mycobacterium tuberculosis responsible for in vivo growth advantage. Infect. Agents Dis 2:282–284. [PubMed]
10. Pascopella L, Collins FM, Martin JM, Lee MH, Hatfull GF, Stover CK, Bloom BR, Jacobs WR Jr. 1994. Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319. [PubMed]
11. Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919. [PubMed]
12. Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR Jr, Bloom BR. 1991. New use of BCG for recombinant vaccines. Nature 351:456–460.
13. Labidi A, Mardis E, Roe BA, Wallace RJ Jr. 1992. Cloning and DNA sequence of the Mycobacterium fortuitum var fortuitum plasmid pAL5000. Plasmid 27:130–140. [PubMed]
14. Ranes MG, Rauzier J, Lagranderie M, Gheorghiu M, Gicquel B. 1990. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini” mycobacterium-Escherichia coli shuttle vector. J Bacteriol 172:2793–2797. [PubMed]
15. Stolt P, Stoker NG. 1996. Protein-DNA interactions in the ori region of the Mycobacterium fortuitum plasmid pAL5000. J Bacteriol 178:6693–6700. [PubMed]
16. Stolt P, Stoker NG. 1997. Mutational analysis of the regulatory region of the Mycobacterium plasmid pAL5000. Nucleic Acids Res 25:3840–3846. [PubMed]
17. Villar CA, Benitez J. 1992. Functional analysis of pAL5000 plasmid in Mycobacterium fortuitum. Plasmid 28:166–169. [PubMed]
18. Belisle JT, Pascopella L, Inamine JM, Brennan PJ, Jacobs WR Jr. 1991. Isolation and expression of a gene cluster responsible for biosynthesis of the glycopeptidolipid antigens of Mycobacterium avium. J Bacteriol 173:6991–6997. [PubMed]
19. Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227–230. [PubMed]
20. Zhang Y, Heym B, Allen B, Young D, Cole S. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593.
21. Baulard AR, Betts JC, Engohang-Ndong J, Quan S, McAdam RA, Brennan PJ, Locht C, Besra GS. 2000. Activation of the pro-drug ethionamide is regulated in mycobacteria. J Biol Chem 275:28326–28331. [PubMed][CrossRef]
22. DeBarber AE, Mdluli K, Bosman M, Bekker LG, Barry CE, 3rd. 2000. Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. Proc Natl Acad Sci USA 97:9677–9682. [PubMed]
23. Belanger AE, Besra GS, Ford ME, Mikusova K, Belisle JT, Brennan PJ, Inamine JM. 1996. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci USA 93:11919–11924. [PubMed]
24. Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr. 1997. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nature Med 3:567–570. [PubMed]
25. Scorpio A, Zhang Y. 1996. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nature Med 2:662–667. [PubMed]
26. Gannoun-Zaki L, Alibaud L, Kremer L. 2013. Point mutations within the fatty acid synthase type II dehydratase components HadA or HadC contribute to isoxyl resistance in Mycobacterium tuberculosis. Antimicrobial Agents Chemother 57:629–632. [PubMed][CrossRef]
27. Grzegorzewicz AE, Kordulakova J, Jones V, Born SE, Belardinelli JM, Vaquie A, Gundi VA, Madacki J, Slama N, Laval F, Vaubourgeix J, Crew RM, Gicquel B, Daffe M, Morbidoni HR, Brennan PJ, Quemard A, McNeil MR, Jackson M. 2012. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J Biol Chem 287:38434–38441. [PubMed][CrossRef]
28. Andries K, Verhasselt P, Guillemont J, Gohlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V. 2005. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307:223–227. [PubMed][CrossRef]
29. Pavelka MS Jr, Jacobs WR Jr. 1996. Biosynthesis of diaminopimelate, the precursor of lysine and a component of peptidoglycan, is an essential function of Mycobacterium smegmatis. J Bacteriol 178:6496–6507. [PubMed]
30. van Kessel JC, Hatfull GF. 2007. Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147–152. [PubMed][CrossRef]
31. McAdam RA, Weisbrod TR, Martin J, Scuderi JD, Brown AM, Cirillo JD, Bloom BR, Jacobs WR Jr. 1995. In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63:1004–1012. [PubMed]
32. George JR, Pine L, Reeves MW, Harrell WK. 1980. Amino acid requirements of Legionella pneumophila. J Clin Microbiol 11:286–291. [PubMed]
33. Tesh MJ, Miller RD. 1981. Amino acid requirements for Legionella pneumophila growth. J Clin Microbiol 13:865–869. [PubMed]
34. Guleria I, Teitelbaum R, McAdam RA, Kalpana G, Jacobs WR Jr, Bloom BR. 1996. Auxotrophic vaccines for tuberculosis. Nat Med 2:334–337. [PubMed]
35. McDonough KA, Kress Y, Bloom BR. 1993. Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun 61:2763–2773.
36. Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WR Jr, Bloom BR. 2000. Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 68:2888–2898. [PubMed]
37. Pavelka MS Jr, Chen B, Kelley CL, Collins FM, Jacobs WR Jr. 2003. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect Immun 71:4190–4192. [PubMed]
38. Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr. 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8:1171–1174. [PubMed][CrossRef]
39. Jensen K, Ranganathan UD, Van Rompay KK, Canfield DR, Khan I, Ravindran R, Luciw PA, Jacobs WR Jr, Fennelly G, Larsen MH, Abel K. 2012. A recombinant attenuated Mycobacterium tuberculosis vaccine strain is safe in immunosuppressed simian immunodeficiency virus-infected infant macaques. Clin Vaccine Immunol 19:1170–1181. [PubMed][CrossRef]
40. Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR Jr, Bloom BR, Hondalus MK. 2004. Protection elicited by a double leucine and pantothenate auxotroph of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72:3031–3037. [PubMed]
41. Sampson SL, Mansfield KG, Carville A, Magee DM, Quitugua T, Howerth EW, Bloom BR, Hondalus MK. 2011. Extended safety and efficacy studies of a live attenuated double leucine and pantothenate auxotroph of Mycobacterium tuberculosis as a vaccine candidate. Vaccine 29:4839–4847. [PubMed][CrossRef]
42. Zimmerman DM, Waters WR, Lyashchenko KP, Nonnecke BJ, Armstrong DL, Jacobs WR Jr, Larsen MH, Egan E, Dean GA. 2009. Safety and immunogenicity of the Mycobacterium tuberculosis DeltalysA DeltapanCD vaccine in domestic cats infected with feline immunodeficiency virus. Clin Vaccine Immunol 16:427–429. [PubMed][CrossRef]
43. Villemin JA. 1868. Etudes sur la Tuberculose. J.-B. Baillière et Fils, Paris.
44. Koch R. 1882. Die Aetiologie der Tuberkulose. Berl Klin Wochenschr 19:221–230.
45. Beadle GW, Tatum EL. 1941. Genetic control of biochemical reactions in Neurospora. Proc Natl Acad Sci USA 27:499–506. [PubMed]
46. Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli.Nature 158:558.
47. Griffith F. 1928. The significance of pneumococcal types. J Hyg 27:113–159. [PubMed]
48. Avery OT, Macleod CM, McCarty M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med 79:137–158. [PubMed]
49. Hershey AD, Chase M. 1952. Independent functions of viral protein and nucleic acid in growth of bacteriophage. J Gen Physiol 36:39–56. [PubMed]
50. Watson JD, Crick FH. 1953. Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967. [PubMed]
51. Watson JD, Crick FH. 1953. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 171:737–738. [PubMed]
52. Crick F. 1970. Central dogma of molecular biology. Nature 227:561–563.
53. Falkow S. 1988. Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10(Suppl 2):S274–S276. [PubMed]
54. Zinder ND. 1992. Forty years ago: the discovery of bacterial transduction. Genetics 132:291–294. [PubMed]
55. Waksman SA, Schatz A. 1943. Strain specificity and production of antibiotic substances. Proc Natl Acad Sci USA 29:74–79. [PubMed]
56. Schatz A, Waksman SA. 1945. Strain specificity and production of antibiotic substances. IV. Variations among actionomycetes, with special reference to Actinomyces griseus. Proc Natl Acad Sci USA 31:129–137. [PubMed]
57. Waksman SA, Reilly HC, Schatz A. 1945. Strain specificity and production of antibiotic substances. V. Strain resistance of bacteria to antibiotic substances, especially to streptomycin. Proc Natl Acad Sci USA 31:157–164. [PubMed]
58. Demerec M. 1951. Studies of the streptomycin-resistance system of mutations in E. coli. Genetics 36:585–597. [PubMed]
59. Hashimoto K. 1960. Streptomycin resistance in Escherichia coli analyzed by transduction. Genetics 45:49–62. [PubMed]
60. Lennox ES. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1:190–206. [PubMed]
61. Newcombe HB, Nyholm MH. 1950. The inheritance of streptomycin resistance and dependence in crosses of Escherichia coli. Genetics 35:603–611. [PubMed]
62. Spotts CR, Stanier RY. 1961. Mechanism of streptomycin action on bacteria: a unitary hypothesis. Nature 192:633–637. [PubMed]
63. Erdos T, Ullmann A. 1959. Effect of streptomycin on the incorporation of amino-acids labelled with carbon-14 into ribonucleic acid and protein in a cell-free system of a mycobacterium. Nature 183:618–619. [PubMed]
64. Erdos T, Ullmann A. 1960. Effect of streptomycin on the incorporation of tyrosine labelled with carbon-14 into protein of Mycobacterium cell fractions in vivo. Nature 185:100–101. [PubMed]
65. Davies JE. 1964. Studies on the ribosomes of streptomycin-sensitive and resistant strains of Escherichia coli. Proc Natl Acad Sci USA 51:659–664. [PubMed]
66. Ozaki M, Mizushima S, Nomura M. 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222:333–339. [PubMed]
67. Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348. [PubMed][CrossRef]
68. Finken M, Kirschner P, Meier A, Wrede A, Bottger EC. 1993. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol Microbiol 9:1239–1246. [PubMed]
69. Jackson DA, Symons RH, Berg P. 1972. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA 69:2904–2909. [PubMed]
70. Lark C, Arber W. 1970. Host specificity of DNA produced by Escherichia coli. 13. Breakdown of cellular DNA upon growth in ethionine of strains with r plus-15, r plus-P1 or r plus-N3 restriction phenotypes. J Mol Biol 52:337–348. [PubMed]
71. Smith HO, Wilcox KW. 1970. A restriction enzyme from Haemophilus influenzae. I. Purification and general properties. J Mol Biol 51:379–391. [PubMed]
72. Chang AC, Lansman RA, Clayton DA, Cohen SN. 1975. Studies of mouse mitochondrial DNA in Escherichia coli: structure and function of the eucaryotic-procaryotic chimeric plasmids. Cell 6:231–244. [PubMed]
73. Cohen SN, Chang AC, Boyer HW, Helling RB. 1973. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70:3240–3244. [PubMed]
74. Kedes LH, Chang AC, Houseman D, Cohen SN. 1975. Isolation of histone genes from unfractionated sea urchin DNA by subculture cloning in E. coli. Nature 255:533–538. [PubMed]
75. Morrow JF, Cohen SN, Chang AC, Boyer HW, Goodman HM, Helling RB. 1974. Replication and transcription of eukaryotic DNA in Escherichia coli. Proc Natl Acad Sci USA 71:1743–1747. [PubMed]
76. Ratzkin B, Carbon J. 1977. Functional expression of cloned yeast DNA in Escherichia coli. Proc Natl Acad Sci USA 74:487–491. [PubMed]
77. Borck K, Beggs JD, Brammar WJ, Hopkins AS, Murray NE. 1976. The construction in vitro of transducing derivatives of phage lambda. Mol Gen Genet 146:199–207. [PubMed]
78. Hohn B, Murray K. 1977. Packaging recombinant DNA molecules into bacteriophage particles in vitro. Proc Natl Acad Sci USA 74:3259–3263. [PubMed]
79. Murray NE, Murray K. 1974. Manipulation of restriction targets in phage lambda to form receptor chromosomes for DNA fragments. Nature 251:476–481. [PubMed]
80. Struhl K, Cameron JR, Davis RW. 1976. Functional genetic expression of eukaryotic DNA in Escherichia coli. Proc Natl Acad Sci USA 73:1471–1475. [PubMed]
81. Maxam AM, Gilbert W. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560. [PubMed]
82. Sanger F, Donelson JE, Coulson AR, Kossel H, Fischer D. 1973. Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage fl DNA. Proc Natl Acad Sci USA 70:1209–1213. [PubMed]
83. Berg P, Baltimore D, Brenner S, Roblin RO, Singer MF. 1975. Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci USA 72:1981–1984. [PubMed]
84. Curtiss R 3rd. 1978. Biological containment and cloning vector transmissibility. J Infect Dis 137:668–675. [PubMed]
85. Alexander WJ, Alexander LS, Curtiss R 3rd. 1980. Bactericidal activity of human serum against Escherichia coli chi1776. Infect Immun 28:837–841. [PubMed]
86. Shepard CC. 1960. The experimental disease that follows the injection of human leprosy bacilli into foot-pads of mice. J Exp Med 112:445–454. [PubMed]
87. Shepard CC. 1971. The first decade in experimental leprosy. Bull World Health Organ 44:821–827. [PubMed]
88. Kirchheimer WF, Storrs EE. 1971. Attempts to establish the armadillo (Dasypus novemcinctus Linn.) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int J Lepr Other Mycobact Dis 39:693–702. [PubMed]
89. Clark-Curtiss JE, Jacobs WR, Docherty MA, Ritchie LR, Curtiss R 3rd. 1985. Molecular analysis of DNA and construction of genomic libraries of Mycobacterium leprae. J Bacteriol 161:1093–1102. [PubMed]
90. Jacobs WR, Barrett JF, Clark-Curtiss JE, Curtiss R 3rd. 1986. In vivo repackaging of recombinant cosmid molecules for analyses of Salmonella typhimurium, Streptococcus mutans, and mycobacterial genomic libraries. Infect Immun 52:101–109. [PubMed]
91. Jacobs WR, Docherty MA, Curtiss R 3rd, Clark-Curtiss JE. 1986. Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. Proc Natl Acad Sci USA 83:1926–1930. [PubMed]
92. Young RA, Davis RW. 1983. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci USA 80:1194–1198. [PubMed]
93. Young RA, Mehra V, Sweetser D, Buchanan T, Clark-Curtiss J, Davis RW, Bloom BR. 1985. Genes for the major protein antigens of the leprosy parasite Mycobacterium leprae. Nature 316:450–452. [PubMed]
94. Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW. 1985. Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82:2583–2587. [PubMed]
95. Raj CV, Ramakrishnan T. 1970. Transduction in Mycobacterium smegmatis. Nature 228:280–281. [PubMed]
96. Mizuguchi Y, Tokunaga T. 1970. Genetic recombination between Mycobacterium smegmatis (strains jucho and lactocola). Igaku to Seibutsugaku. 81:163–167. (In Japanese.) [PubMed]
97. Takahashi M, Tanaka M, Okudera T, Mihara K, Tokunaga M. 1973. Angiography with a new contrast medium, Isopaque. Rinsho Hoshasen 18:1001–1006. [PubMed]
98. Crawford JT, Bates JH. 1979. Isolation of plasmids from mycobacteria. Infect Immun 24:979–981. [PubMed]
99. Labidi A, David HL, Roulland-Dussoix D. 1985. Restriction endonuclease mapping and cloning of Mycobacterium fortuitum var. fortuitum plasmid pAL5000. Ann Inst Pasteur Microbiol 136B:209–215. [PubMed]
100. Bibb MJ, Ward JM, Hopwood DA. 1978. Transformation of plasmid DNA into Streptomyces at high frequency. Nature 274:398–400. [PubMed]
101. Timme TL, Brennan PJ. 1984. Induction of bacteriophage from members of the Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum serocomplex. J Gen Microbiol 130:2059–2066. [PubMed]
102. Hatfull GF, Sarkis GJ. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405. [PubMed]
103. Miller JF, Dower WJ, Tompkins LS. 1988. High-voltage electroporation of bacteria: genetic transformation of Campylobacter jejuni with plasmid DNA. Proc Natl Acad Sci USA 85:856–860. [PubMed]
104. Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ, DeJong RJ, Elgin SC, Guilfoile FR, Forsyth MH, Harris AD, Harvey SE, Hughes LE, Hynes PM, Jackson AS, Jalal MD, MacMurray EA, Manley CM, McDonough MJ, Mosier JL, Osterbann LJ, Rabinowitz HS, Rhyan CN, Russell DA, Saha MS, Shaffer CD, Simon SE, Sims EF, Tovar IG, Weisser EG, Wertz JT, Weston-Hafer KA, Williamson KE, Zhang B, Cresawn SG, Jain P, Piuri M, Jacobs WR Jr, Hendrix RW, Hatfull GF. 2011. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PloS One 6:e26750. [PubMed][CrossRef]
105. Kleckner N, Roth J, Botstein D. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J Mol Biol 116:125–159. [PubMed]
106. Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94:10961–10966. [PubMed]
107. Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR Jr. 1997. Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239. [PubMed]
108. Ulitzur S, Kuhn J. 1989. Detection and/or identification of microorganisms in a test sample using bioluminescence or other genetically introduced marker. US Patent No. 4,861,709.
109. Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822. [PubMed]
110. Banaiee N, Bobadilla-Del-Valle M, Bardarov S Jr, Riska PF, Small PM, Ponce-De-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol 39:3883–3888. [PubMed][CrossRef]
111. Banaiee N, Bobadilla-del-Valle M, Riska PF, Bardarov S Jr, Small PM, Ponce-de-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J. 2003. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J Med Microbiol 52:557–561. [PubMed]
112. Bardarov S Jr, Dou H, Eisenach K, Banaiee N, Ya S, Chan J, Jacobs WR Jr, Riska PF. 2003. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn Microbiol Infect Dis 45:53–61. [PubMed]
113. Riska PF, Jacobs WR Jr. 1998. The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol Biol 101:431–455. [PubMed]
114. Riska PF, Jacobs WR Jr, Bloom BR, McKitrick J, Chan J. 1997. Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-alpha-acetylamino-beta-hydroxy propiophenone. J Clin Microbiol 35:3225–3231. [PubMed]
115. Riska PF, Su Y, Bardarov S, Freundlich L, Sarkis G, Hatfull G, Carriere C, Kumar V, Chan J, Jacobs WR Jr. 1999. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 37:1144–1149. [PubMed]
116. Piuri M, Jacobs WR Jr, Hatfull GF. 2009. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PloS One 4:e4870. [PubMed][CrossRef]
117. Rondon L, Piuri M, Jacobs WR Jr, de Waard J, Hatfull GF, Takiff HE. 2011. Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842. [PubMed][CrossRef]
118. Jain P, Hartman TE, Eisenberg N, O’Donnell MR, Kriakov J, Govender K, Makume M, Thaler DS, Hatfull GF, Sturm AW, Larsen MH, Moodley P, Jacobs WR Jr. 2012. phi(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol 50:1362–1369. [PubMed][CrossRef]
119. Martin C, Timm J, Rauzier J, Gomez-Lus R, Davies J, Gicquel B. 1990. Transposition of an antibiotic resistance element in mycobacteria. Nature 345:739–743. [PubMed][CrossRef]
120. Guilhot C, Otal I, Van Rompaey I, Martin C, Gicquel B. 1994. Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176:535–539. [PubMed]
121. Otero J, Jacobs WR Jr, Glickman MS. 2003. Efficient allelic exchange and transposon mutagenesis in Mycobacterium avium by specialized transduction. Appl Environ Microbiol 69:5039–5044. [PubMed]
122. Stinear TP, Mve-Obiang A, Small PL, Frigui W, Pryor MJ, Brosch R, Jenkin GA, Johnson PD, Davies JK, Lee RE, Adusumilli S, Garnier T, Haydock SF, Leadlay PF, Cole ST. 2004. Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. Proc Natl Acad Sci USA 101:1345–1349. [PubMed][CrossRef]
123. Harris NB, Feng Z, Liu X, Cirillo SL, Cirillo JD, Barletta RG. 1999. Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett 175:21–26. [PubMed]
124. Glickman MS, Cox JS, Jacobs WR Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5:717–727. [PubMed]
125. Hensel M, Shea JE, Gleeson C, Jones MD, Dalton E, Holden DW. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403. [PubMed]
126. Cox JS, Chen B, McNeil M, Jacobs WR Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83. [PubMed]
127. McAdam RA, Quan S, Smith DA, Bardarov S, Betts JC, Cook FC, Hooker EU, Lewis AP, Woollard P, Everett MJ, Lukey PT, Bancroft GJ, Jacobs WR Jr, Duncan K. 2002. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148:2975–2986. [PubMed]
128. Hisert KB, Kirksey MA, Gomez JE, Sousa AO, Cox JS, Jacobs WR Jr, Nathan CF, McKinney JD. 2004. Identification of Mycobacterium tuberculosis counterimmune (cim) mutants in immunodeficient mice by differential screening. Infect Immun 72:5315–5321. [PubMed][CrossRef]
129. Sassetti CM, Boyd DH, Rubin EJ. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci USA 98:12712–12717. [PubMed][CrossRef]
130. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. 2011. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog 7:e1002251. [PubMed][CrossRef]
131. Sassetti CM, Rubin EJ. 2003. Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci USA 100:12989–12994. [PubMed][CrossRef]
132. Morse ML, Lederberg EM, Lederberg J. 1956. Transduction in Escherichia coli K-12. Genetics 41:142–156.
133. Bardarov S, Bardarov S Jr, Pavelka MS Jr, Sambandamurthy V, Larsen M, Tufariello J, Chan J, Hatfull G, Jacobs WR Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:3007–3017. [PubMed]
134. Hsu T, Hingley-Wilson SM, Chen B, Chen M, Dai AZ, Morin PM, Marks CB, Padiyar J, Goulding C, Gingery M, Eisenberg D, Russell RG, Derrick SC, Collins FM, Morris SL, King CH, Jacobs WR Jr. 2003. The primary mechanism of attenuation of bacillus Calmette-Guerin is a loss of secreted lytic function required for invasion of lung interstitial tissue. Proc Natl Acad Sci USA 100:12420–12425. [PubMed][CrossRef]
135. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282. [PubMed]
136. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST. 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717. [PubMed]
137. Vilcheze C, Wang F, Arai M, Hazbon MH, Colangeli R, Kremer L, Weisbrod TR, Alland D, Sacchettini JC, Jacobs WR Jr. 2006. Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 12:1027–1029. [PubMed][CrossRef]
138. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512. [PubMed]
139. Anonymous. 1997. The yeast genome directory. Nature 387:5. [PubMed]
140. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. 1986. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51(Pt 1):263–273. [PubMed]
141. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354. [PubMed]
142. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. [PubMed][CrossRef]
143. [Reference deleted.]
144. [Reference deleted.]
145. Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, Chan J, Porcelli SA, Kobayashi K, Besra GS, Jacobs WR Jr. 2007. Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci USA 104:5157–5162. [PubMed][CrossRef]
146. Wong KW, Jacobs WR Jr. 2013. Mycobacterium tuberculosis exploits human interferon gamma to stimulate macrophage extracellular trap formation and necrosis. J Infect Dis 208:109–119. [PubMed][CrossRef]
147. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. [PubMed][CrossRef]
148. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544. [PubMed][CrossRef]
149. Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM. 2002. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490. [PubMed]
150. Hatfull GF. 2014. Molecular genetics of mycobacteriophages. Microbiol Spectrum 2(2):MGM2-0032-2013.
microbiolspec.MGM2-0037-2013.citations
cm/2/2
content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0037-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0037-2013
2014-04-11
2017-10-17

Abstract:

Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in by the difficulty of transferring genes or alleles into or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for This review will discuss genetic systems and their impact on tuberculosis research.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/2/MGM2-0037-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.MGM2-0037-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Specialized transduction is outlined as follows: the center plasmid represents the shuttle phasmid phA159, which contains 90% TM4 phage DNA and 10% plasmid DNA. The stars mark the sites of the mutations in the TM4 genome. The nonessential genes that are deleted to create the shuttle phasmid are noted in the picture, flanked by PacI sites. This site can be replaced with one of three things: (i) a reporter gene such as green fluorescent protein (GFP), (ii) an allelic exchange substrate (AES) that contains an antibiotic resistance marker, or (iii) a transposase gene to facilitate transposon mutagenesis. Going counterclockwise in this schematic, the recombinant cosmid can be packaged into phage heads using an packaging mix, and the subsequent phages can be used to transduce to create transductant colonies. Going clockwise from the shuttle phasmid, one can transfect mc155 at 30°C to yield plaques on an lawn, resulting from lysis of the cells. The plaques can then be purified and amplified to obtain a high-titer phage lysate that can subsequently be used to transduce any mycobacterial species. doi:10.1128/microbiolspec.MGM2-0037-2013.f1

Source: microbiolspec April 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0037-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Generation of mutants in the region of and Schematic of H37Rv region showing predicted NcoI sites. Arrows at the top represent the genes in this region. Upstream flanking sequences (UFS) and downstream flanking sequences (DFS) used to generate the knockout are indicated as filled bars above the grid line. Each increment in the grid line represents 1 kbp. The sequence deleted from BCG is represented by an open bar spanning from to . The site of the insertion of transposon Tn is also indicated. Southern analysis of the NcoI-digested genomic DNA isolated from the wild type and the Δ mutants generated by using specialized transduction in and . Lane 1, H37Rv; lane 2, H37Rv Δ; lane 3, Erdman; lane 4, Erdman Δ; lane 5, CDC1551; lane 6, CDC1551 Δ; lane 7, Ravenel; lane 8, Ravenel Δ. The probe used in the Southern analysis was either DFS (left), demonstrating the deletion of , or IS-specific (right). The IS probe is used to characterize the four strains. Reprinted with permission. doi:10.1128/microbiolspec.MGM2-0037-2013.f2

Source: microbiolspec April 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0037-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Schematic representation of the specialized transducing phage. A replicating shuttle phasmid phAE2067 containing , carrying the S94A mutation, a resistance cassette, and was used to transduce (). The two possible sites of recombination are marked 1 and 2. The recombination can occur either before the point mutation (crossover type 1), resulting in an INH-resistant and ETH-resistant recombinant carrying the S94A mutation, or after the point mutation (crossover type 2; the strain contains a wild-type gene). Individual H37Rv (S94A) transductants (= 150) were screened by picking and patching onto plates containing either hygromycin (50 µg/ml) or INH (0.2 µg/ml). Reprinted with permission doi:10.1128/microbiolspec.MGM2-0037-2013.f3

Source: microbiolspec April 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0037-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Improvements for high-throughput specialized transduction

Source: microbiolspec April 2014 vol. 2 no. 2 doi:10.1128/microbiolspec.MGM2-0037-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error