1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: José Luis Martínez1
  • Editors: Fernando Baquero2, Emilio Bouza3, J.A. Gutiérrez-Fuentes4, Teresa M. Coque5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain; 2: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 3: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 4: Complutensis University, Madrid, Spain; 5: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
  • Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.MTBP-0006-2016
  • Received 07 March 2017 Accepted 17 June 2017 Published 18 January 2018
  • José Luis Martínez, jlmtnez@cnb.csic.es
image of Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/1/MTBP-0006-2016-1.gif /docserver/preview/fulltext/microbiolspec/6/1/MTBP-0006-2016-2.gif
  • Abstract:

    Inspection of the genomes of bacterial pathogens indicates that their pathogenic potential relies, at least in part, on the activity of different elements that have been acquired by horizontal gene transfer from other (usually unknown) microorganisms. Similarly, in the case of resistance to antibiotics, besides mutation-driven resistance, the incorporation of novel resistance genes is a widespread evolutionary procedure for the acquisition of this phenotype. Current information in the field supports the idea that most (if not all) genes acquired by horizontal gene transfer by bacterial pathogens and contributing to their virulence potential or to antibiotic resistance originate in environmental, not human-pathogenic, microorganisms. Herein I discuss the potential functions that the genes that are dubbed virulence or antibiotic resistance genes may have in their original hosts in nonclinical, natural ecosystems. In addition, I discuss the potential bottlenecks modulating the transfer of virulence and antibiotic resistance determinants and the consequences in terms of speciation of acquiring one or another of both categories of genes. Finally, I propose that exaptation, a process by which a change of function is achieved by a change of habitat and not by changes in the element with the new functionality, is the basis of the evolution of virulence determinants and of antibiotic resistance genes.

  • Keywords: Bacterial evolution; Virulence; Horizontal gene transfer; Shoort sighted evolution; Bacterial pathogens; Microbiome; Antibiotic resistance

  • Citation: Martínez J. 2018. Ecology and Evolution of Chromosomal Gene Transfer between Environmental Microorganisms and Pathogens. Microbiol Spectrum 6(1):MTBP-0006-2016. doi:10.1128/microbiolspec.MTBP-0006-2016.

References

1. Ochman H, Groisman EA. 1994. The origin and evolution of species differences in Escherichia coli and Salmonella typhimurium. EXS 69:479–493. http://dx.doi.org/10.1007/978-3-0348-7527-1_27.
2. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145. http://dx.doi.org/10.1073/pnas.95.6.3140.
3. Achtman M, Wagner M. 2008. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440. http://dx.doi.org/10.1038/nrmicro1872. [PubMed]
4. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. http://dx.doi.org/10.1038/35012500. [PubMed]
5. Wiedenbeck J, Cohan FM. 2011. Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976. http://dx.doi.org/10.1111/j.1574-6976.2011.00292.x. [PubMed]
6. Groisman EA, Ochman H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791–794. http://dx.doi.org/10.1016/S0092-8674(00)81985-6. [PubMed]
7. Rouli L, Merhej V, Fournier PE, Raoult D. 2015. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect 7:72–85. http://dx.doi.org/10.1016/j.nmni.2015.06.005. [PubMed]
8. Martínez JL. 2013. Bacterial pathogens: from natural ecosystems to human hosts. Environ Microbiol 15:325–333. http://dx.doi.org/10.1111/j.1462-2920.2012.02837.x. [PubMed]
9. Martínez JL. 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367. http://dx.doi.org/10.1126/science.1159483. [PubMed]
10. Martínez JL, Baquero F, Andersson DI. 2007. Predicting antibiotic resistance. Nat Rev Microbiol 5:958–965. http://dx.doi.org/10.1038/nrmicro1796. [PubMed]
11. Martinez JL, Fajardo A, Garmendia L, Hernandez A, Linares JF, Martínez-Solano L, Sánchez MB. 2009. A global view of antibiotic resistance. FEMS Microbiol Rev 33:44–65. http://dx.doi.org/10.1111/j.1574-6976.2008.00142.x. [PubMed]
12. Fajardo A, Linares JF, Martínez JL. 2009. Towards an ecological approach to antibiotics and antibiotic resistance genes. Clin Microbiol Infect 15(Suppl 1):14–16. http://dx.doi.org/10.1111/j.1469-0691.2008.02688.x. [PubMed]
13. Lukjancenko O, Wassenaar TM, Ussery DW. 2010. Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720. http://dx.doi.org/10.1007/s00248-010-9717-3. [PubMed]
14. Levin BR, Bergstrom CT. 2000. Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A 97:6981–6985. http://dx.doi.org/10.1073/pnas.97.13.6981.
15. Hacker J, Kaper JB. 2000. Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54:641–679. http://dx.doi.org/10.1146/annurev.micro.54.1.641. [PubMed]
16. Berg G, Martinez JL. 2015. Friends or foes: can we make a distinction between beneficial and harmful strains of the Stenotrophomonas maltophilia complex? Front Microbiol 6:241. http://dx.doi.org/10.3389/fmicb.2015.00241. [PubMed]
17. Alonso A, Rojo F, Martínez JL. 1999. Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. Environ Microbiol 1:421–430. http://dx.doi.org/10.1046/j.1462-2920.1999.00052.x. [PubMed]
18. Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Köhler T, van Delden C, Weinel C, Slickers P, Tümmler B. 2007. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8101–8106. http://dx.doi.org/10.1073/pnas.0609213104. [PubMed]
19. Morales G, Wiehlmann L, Gudowius P, van Delden C, Tümmler B, Martínez JL, Rojo F. 2004. Structure of Pseudomonas aeruginosa populations analyzed by single nucleotide polymorphism and pulsed-field gel electrophoresis genotyping. J Bacteriol 186:4228–4237. http://dx.doi.org/10.1128/JB.186.13.4228-4237.2004. [PubMed]
20. Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J, Walendziewicz CL, Tompkins RG. 2000. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821. http://dx.doi.org/10.1073/pnas.97.16.8815. [PubMed]
21. Mahajan-Miklos S, Rahme LG, Ausubel FM. 2000. Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37:981–988. http://dx.doi.org/10.1046/j.1365-2958.2000.02056.x. [PubMed]
22. Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902. http://dx.doi.org/10.1126/science.7604262. [PubMed]
23. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:8484–8489. http://dx.doi.org/10.1073/pnas.0832438100. [PubMed]
24. Libisch B, Gacs M, Csiszár K, Muzslay M, Rókusz L, Füzi M. 2004. Isolation of an integron-borne blaVIM-4 type metallo-β-lactamase gene from a carbapenem-resistant Pseudomonas aeruginosa clinical isolate in Hungary. Antimicrob Agents Chemother 48:3576–3578. http://dx.doi.org/10.1128/AAC.48.9.3576-3578.2004. [PubMed]
25. Lee K, Lim JB, Yum JH, Yong D, Chong Y, Kim JM, Livermore DM. 2002. blaVIM-2 cassette-containing novel integrons in metallo-β-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob Agents Chemother 46:1053–1058. http://dx.doi.org/10.1128/AAC.46.4.1053-1058.2002. [PubMed]
26. Yizhak K, Tuller T, Papp B, Ruppin E. 2011. Metabolic modeling of endosymbiont genome reduction on a temporal scale. Mol Syst Biol 7:479. http://dx.doi.org/10.1038/msb.2011.11. [PubMed]
27. Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A. 2006. A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313. http://dx.doi.org/10.1126/science.1130441. [PubMed]
28. Gil R, Latorre A, Moya A. 2004. Bacterial endosymbionts of insects: insights from comparative genomics. Environ Microbiol 6:1109–1122. http://dx.doi.org/10.1111/j.1462-2920.2004.00691.x. [PubMed]
29. Tamas I, Klasson L, Canbäck B, Näslund AK, Eriksson AS, Wernegreen JJ, Sandström JP, Moran NA, Andersson SG. 2002. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379. http://dx.doi.org/10.1126/science.1071278. [PubMed]
30. Brites D, Gagneux S. 2015. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev 264:6–24. http://dx.doi.org/10.1111/imr.12264. [PubMed]
31. Gagneux S. 2012. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci 367:850–859. http://dx.doi.org/10.1098/rstb.2011.0316. [PubMed]
32. Chouikha I, Hinnebusch BJ. 2012. Yersinia—flea interactions and the evolution of the arthropod-borne transmission route of plague. Curr Opin Microbiol 15:239–246. http://dx.doi.org/10.1016/j.mib.2012.02.003. [PubMed]
33. Zhou D, Yang R. 2009. Molecular Darwinian evolution of virulence in Yersinia pestis. Infect Immun 77:2242–2250. http://dx.doi.org/10.1128/IAI.01477-08. [PubMed]
34. Lesic B, Carniel E. 2005. Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J Bacteriol 187:3352–3358. http://dx.doi.org/10.1128/JB.187.10.3352-3358.2005. [PubMed]
35. Zhou D, Han Y, Song Y, Tong Z, Wang J, Guo Z, Pei D, Pang X, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Du Z, Bao J, Zhang X, Yu J, Wang J, Huang P, Yang R. 2004. DNA microarray analysis of genome dynamics in Yersinia pestis: insights into bacterial genome microevolution and niche adaptation. J Bacteriol 186:5138–5146. http://dx.doi.org/10.1128/JB.186.15.5138-5146.2004. [PubMed]
36. Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P. 2004. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A 101:17837–17842. http://dx.doi.org/10.1073/pnas.0408026101. [PubMed]
37. Wren BW. 2003. The yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1:55–64. http://dx.doi.org/10.1038/nrmicro730. [PubMed]
38. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E. 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96:14043–14048. http://dx.doi.org/10.1073/pnas.96.24.14043. [PubMed]
39. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. 2007. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol Biol Evol 24:2373–2384. http://dx.doi.org/10.1093/molbev/msm172. [PubMed]
40. Smati M, Clermont O, Bleibtreu A, Fourreau F, David A, Daubié AS, Hignard C, Loison O, Picard B, Denamur E. 2015. Quantitative analysis of commensal Escherichia coli populations reveals host-specific enterotypes at the intra-species level. MicrobiologyOpen 4:604–615. http://dx.doi.org/10.1002/mbo3.266. [PubMed]
41. Zhang Y, Lin K. 2012. A phylogenomic analysis of Escherichia coli/Shigella group: implications of genomic features associated with pathogenicity and ecological adaptation. BMC Evol Biol 12:174. http://dx.doi.org/10.1186/1471-2148-12-174. [PubMed]
42. Alteri CJ, Mobley HL. 2012. Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15:3–9. http://dx.doi.org/10.1016/j.mib.2011.12.004. [PubMed]
43. Carlos C, Pires MM, Stoppe NC, Hachich EM, Sato MI, Gomes TA, Amaral LA, Ottoboni LM. 2010. Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of fecal contamination. BMC Microbiol 10:161. http://dx.doi.org/10.1186/1471-2180-10-161. [PubMed]
44. Luo C, Walk ST, Gordon DM, Feldgarden M, Tiedje JM, Konstantinidis KT. 2011. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc Natl Acad Sci U S A 108:7200–7205. http://dx.doi.org/10.1073/pnas.1015622108. [PubMed]
45. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 8:207–217. http://dx.doi.org/10.1038/nrmicro2298. [PubMed]
46. Milkman R. 1997. Recombination and population structure in Escherichia coli. Genetics 146:745–750. [PubMed]
47. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M. 2006. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–1151. http://dx.doi.org/10.1111/j.1365-2958.2006.05172.x. [PubMed]
48. Heesemann J. 2004. Darwin’s principle of divergence revisited: small steps and quantum leaps set the path of microbial evolution. Int J Med Microbiol 294:65–66. http://dx.doi.org/10.1016/j.ijmm.2004.06.012. [PubMed]
49. Ghosh AR. 2013. Appraisal of microbial evolution to commensalism and pathogenicity in humans. Clin Med Insights Gastroenterol 6:1–12. http://dx.doi.org/10.4137/CGast.S11858. [PubMed]
50. Levin BR, Bull JJ. 1994. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2:76–81. http://dx.doi.org/10.1016/0966-842X(94)90538-X. [PubMed]
51. Sokurenko EV, Gomulkiewicz R, Dykhuizen DE. 2006. Source-sink dynamics of virulence evolution. Nat Rev Microbiol 4:548–555. http://dx.doi.org/10.1038/nrmicro1446. [PubMed]
52. Martínez-Solano L, Macia MD, Fajardo A, Oliver A, Martinez JL. 2008. Chronic Pseudomonas aeruginosa infection in chronic obstructive pulmonary disease. Clin Infect Dis 47:1526–1533. http://dx.doi.org/10.1086/593186. [PubMed]
53. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253. http://dx.doi.org/10.1126/science.288.5469.1251. [PubMed]
54. van Mansfeld R, de Vrankrijker A, Brimicombe R, Heijerman H, Teding van Berkhout F, Spitoni C, Grave S, van der Ent C, Wolfs T, Willems R, Bonten M. 2016. The effect of strict segregation on Pseudomonas aeruginosa in cystic fibrosis patients. PLoS One 11:e0157189. http://dx.doi.org/10.1371/journal.pone.0157189. [PubMed]
55. Wiehlmann L, Cramer N, Tümmler B. 2015. Habitat-associated skew of clone abundance in the Pseudomonas aeruginosa population. Environ Microbiol Rep 7:955–960. http://dx.doi.org/10.1111/1758-2229.12340. [PubMed]
56. Oliver A, Mulet X, López-Causapé C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat 21–22:41–59. http://dx.doi.org/10.1016/j.drup.2015.08.002. [PubMed]
57. de Vrankrijker AM, Brimicombe RW, Wolfs TF, Heijerman HG, van Mansfeld R, van Berkhout FT, Willems RJ, Bonten MJ, van der Ent CK. 2011. Clinical impact of a highly prevalent Pseudomonas aeruginosa clone in Dutch cystic fibrosis patients. Clin Microbiol Infect 17:382–385. http://dx.doi.org/10.1111/j.1469-0691.2010.03295.x. [PubMed]
58. van Mansfeld R, Willems R, Brimicombe R, Heijerman H, van Berkhout FT, Wolfs T, van der Ent C, Bonten M. 2009. Pseudomonas aeruginosa genotype prevalence in Dutch cystic fibrosis patients and age dependency of colonization by various P. aeruginosa sequence types. J Clin Microbiol 47:4096–4101. http://dx.doi.org/10.1128/JCM.01462-09. [PubMed]
59. San Millan A, Toll-Riera M, Qi Q, MacLean RC. 2015. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 6:6845. http://dx.doi.org/10.1038/ncomms7845. [PubMed]
60. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271. http://dx.doi.org/10.1038/nrmicro2319. [PubMed]
61. Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, Dantas G. 2014. Bacterial phylogeny structures soil resistomes across habitats. Nature 509:612–616. http://dx.doi.org/10.1038/nature13377. [PubMed]
62. Benveniste R, Davies J. 1973. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 70:2276–2280. http://dx.doi.org/10.1073/pnas.70.8.2276. [PubMed]
63. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. 2005. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49:3523–3525. http://dx.doi.org/10.1128/AAC.49.8.3523-3525.2005. [PubMed]
64. Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. 2002. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob Agents Chemother 46:3045–3049. http://dx.doi.org/10.1128/AAC.46.9.3045-3049.2002. [PubMed]
65. Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P. 2014. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. mBio 5:e01972-e14. http://dx.doi.org/10.1128/mBio.01972-14. [PubMed]
66. Wright GD. 2010. The antibiotic resistome. Expert Opin Drug Discov 5:779–788. http://dx.doi.org/10.1517/17460441.2010.497535. [PubMed]
67. D’Costa VM, McGrann KM, Hughes DW, Wright GD. 2006. Sampling the antibiotic resistome. Science 311:374–377. http://dx.doi.org/10.1126/science.1120800. [PubMed]
68. Laskaris P, Tolba S, Calvo-Bado L, Wellington EM. 2010. Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 12:783–796. http://dx.doi.org/10.1111/j.1462-2920.2009.02125.x. [PubMed]
69. Thanassi DG, Cheng LW, Nikaido H. 1997. Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518. http://dx.doi.org/10.1128/jb.179.8.2512-2518.1997. [PubMed]
70. Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. 1995. Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol 16:45–55. http://dx.doi.org/10.1111/j.1365-2958.1995.tb02390.x. [PubMed]
71. Jacoby GA. 2009. AmpC β-lactamases. Clin Microbiol Rev 22:161–182. http://dx.doi.org/10.1128/CMR.00036-08. [PubMed]
72. Morosini MI, Ayala JA, Baquero F, Martínez JL, Blázquez J. 2000. Biological cost of AmpC production for Salmonella enterica serotype Typhimurium. Antimicrob Agents Chemother 44:3137–3143. http://dx.doi.org/10.1128/AAC.44.11.3137-3143.2000. [PubMed]
73. Wiedemann B, Pfeifle D, Wiegand I, Janas E. 1998. β-Lactamase induction and cell wall recycling in gram-negative bacteria. Drug Resist Updat 1:223–226. http://dx.doi.org/10.1016/S1368-7646(98)80002-2.
74. Henderson TA, Young KD, Denome SA, Elf PK. 1997. AmpC and AmpH, proteins related to the class C β-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 179:6112–6121. http://dx.doi.org/10.1128/jb.179.19.6112-6121.1997. [PubMed]
75. Macinga DR, Rather PN. 1999. The chromosomal 2′-N-acetyltransferase of Providencia stuartii: physiological functions and genetic regulation. Front Biosci 4:D132–D140. http://dx.doi.org/10.2741/Macinga. [PubMed]
76. Piddock LJ. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev 19:382–402. http://dx.doi.org/10.1128/CMR.19.2.382-402.2006. [PubMed]
77. Vila J, Martínez JL. 2008. Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. Curr Drug Targets 9:797–807. http://dx.doi.org/10.2174/138945008785747806. [PubMed]
78. Li XZ, Plésiat P, Nikaido H. 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 28:337–418. http://dx.doi.org/10.1128/CMR.00117-14. [PubMed]
79. Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. 2016. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 28:13–27. http://dx.doi.org/10.1016/j.drup.2016.06.007. [PubMed]
80. Piddock LJ. 2006. Multidrug-resistance efflux pumps—not just for resistance. Nat Rev Microbiol 4:629–636. http://dx.doi.org/10.1038/nrmicro1464. [PubMed]
81. Alvarez-Ortega C, Olivares J, Martínez JL. 2013. RND multidrug efflux pumps: what are they good for? Front Microbiol 4:7. http://dx.doi.org/10.3389/fmicb.2013.00007. [PubMed]
82. Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, Alvarez-Ortega C. 2009. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev 33:430–449. http://dx.doi.org/10.1111/j.1574-6976.2008.00157.x. [PubMed]
83. Martínez JL, Coque TM, Baquero F. 2015. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol 13:396. http://dx.doi.org/10.1038/nrmicro3399-c2. [PubMed]
84. Martínez JL, Coque TM, Baquero F. 2015. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13:116–123. http://dx.doi.org/10.1038/nrmicro3399. [PubMed]
85. Levin BR, Antia R. 2001. Why we don’t get sick: the within-host population dynamics of bacterial infections. Science 292:1112–1115. http://dx.doi.org/10.1126/science.1058879.
86. Eisenreich W, Dandekar T, Heesemann J, Goebel W. 2010. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412. http://dx.doi.org/10.1038/nrmicro2351. [PubMed]
87. Martínez JL, Baquero F. 2002. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 15:647–679. http://dx.doi.org/10.1128/CMR.15.4.647-679.2002. [PubMed]
88. Martínez JL, Delgado-Iribarren A, Baquero F. 1990. Mechanisms of iron acquisition and bacterial virulence. FEMS Microbiol Rev 6:45–56. http://dx.doi.org/10.1016/0378-1097(90)90522-R. [PubMed]
89. de Lorenzo V, Martinez JL. 1988. Aerobactin production as a virulence factor: a reevaluation. Eur J Clin Microbiol Infect Dis 7:621–629. http://dx.doi.org/10.1007/BF01964239. [PubMed]
90. Trueba G, Dunthorn M. 2012. Many neglected tropical diseases may have originated in the Paleolithic or before: new insights from genetics. PLoS Negl Trop Dis 6:e1393. http://dx.doi.org/10.1371/journal.pntd.0001393. [PubMed]
91. Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. 2006. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 188:977–987. http://dx.doi.org/10.1128/JB.188.3.977-987.2006. [PubMed]
92. Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B. 2001. Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun 69:6012–6021. http://dx.doi.org/10.1128/IAI.69.10.6012-6021.2001. [PubMed]
93. Hacker J, Carniel E. 2001. Ecological fitness, genomic islands and bacterial pathogenicity. A Darwinian view of the evolution of microbes. EMBO Rep 2:376–381. http://dx.doi.org/10.1093/embo-reports/kve097. [PubMed]
94. Schubert S, Rakin A, Karch H, Carniel E, Heesemann J. 1998. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66:480–485. [PubMed]
95. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866. http://dx.doi.org/10.1038/nature04249. [PubMed]
96. Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E. 2003. Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 71:2404–2413. http://dx.doi.org/10.1128/IAI.71.5.2404-2413.2003. [PubMed]
97. Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96:47–56. http://dx.doi.org/10.1016/S0092-8674(00)80958-7. [PubMed]
98. Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, Skelton J, Kay RR, Ivens A, Martinez JL, Escalante R. 2008. Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiol 8:109. http://dx.doi.org/10.1186/1471-2180-8-109. [PubMed]
99. Cosson P, Zulianello L, Join-Lambert O, Faurisson F, Gebbie L, Benghezal M, Van Delden C, Curty LK, Köhler T. 2002. Pseudomonas aeruginosa virulence analyzed in a Dictyostelium discoideum host system. J Bacteriol 184:3027–3033. http://dx.doi.org/10.1128/JB.184.11.3027-3033.2002. [PubMed]
100. Hueck CJ. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433. [PubMed]
101. Gao LY, Harb OS, Abu Kwaik Y. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect Immun 65:4738–4746. [PubMed]
102. Lainhart W, Stolfa G, Koudelka GB. 2009. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J Bacteriol 191:5116–5122. http://dx.doi.org/10.1128/JB.00508-09. [PubMed]
103. Steinberg KM, Levin BR. 2007. Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc Biol Sci 274:1921–1929. http://dx.doi.org/10.1098/rspb.2007.0245. [PubMed]
104. Pushkareva VI, Ermolaeva SA. 2010. Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. BMC Microbiol 10:26. http://dx.doi.org/10.1186/1471-2180-10-26. [PubMed]
105. Keim PS, Wagner DM. 2009. Humans and evolutionary and ecological forces shaped the phylogeography of recently emerged diseases. Nat Rev Microbiol 7:813–821. http://dx.doi.org/10.1038/nrmicro2219. [PubMed]
106. Murros-Kontiainen A, Johansson P, Niskanen T, Fredriksson-Ahomaa M, Korkeala H, Björkroth J. 2011. Yersinia pekkanenii sp. nov. Int J Syst Evol Microbiol 61:2363–2367. http://dx.doi.org/10.1099/ijs.0.019984-0. [PubMed]
107. Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, Cui Y, Thomson NR, Jombart T, Leblois R, Lichtner P, Rahalison L, Petersen JM, Balloux F, Keim P, Wirth T, Ravel J, Yang R, Carniel E, Achtman M. 2010. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42:1140–1143. http://dx.doi.org/10.1038/ng.705. [PubMed]
108. Perry RD, Fetherston JD. 1997. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66. [PubMed]
109. Ramirez MS, Traglia GM, Lin DL, Tran T, Tolmasky ME. 2014. Plasmid-mediated antibiotic resistance and virulence in Gram-negatives: the Klebsiella pneumoniae paradigm. Microbiol Spectr 2:PLAS-0016-2013. http://dx.doi.org/10.1128/microbiolspec.PLAS-0016-2013.
110. Colonna B, Ranucci L, Fradiani PA, Casalino M, Calconi A, Nicoletti M. 1992. Organization of aerobactin, hemolysin, and antibacterial resistance genes in lactose-negative Escherichia coli strains of serotype O4 isolated from children with diarrhea. Infect Immun 60:5224–5231. [PubMed]
111. Darfeuille-Michaud A, Jallat C, Aubel D, Sirot D, Rich C, Sirot J, Joly B. 1992. R-plasmid-encoded adhesive factor in Klebsiella pneumoniae strains responsible for human nosocomial infections. Infect Immun 60:44–55. [PubMed]
112. Delgado-Iribarren A, Martinez-Suarez J, Baquero F, Perez-Diaz JC, Martinez JL. 1987. Aerobactin-producing multi-resistance plasmids. J Antimicrob Chemother 19:552–553. http://dx.doi.org/10.1093/jac/19.4.552. [PubMed]
113. Martínez-Suárez JV, Martínez JL, López de Goicoechea MJ, Pérez-Díaz JC, Baquero F, Meseguer M, Liñares J. 1987. Acquisition of antibiotic resistance plasmids in vivo by extraintestinal Salmonella spp. J Antimicrob Chemother 20:452–453. http://dx.doi.org/10.1093/jac/20.3.452. [PubMed]
114. Bentley SD, Parkhill J. 2015. Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 282:20150488. http://dx.doi.org/10.1098/rspb.2015.0488. [PubMed]
115. de la Cruz F, Davies J. 2000. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol 8:128–133. http://dx.doi.org/10.1016/S0966-842X(00)01703-0. [PubMed]
116. Olivares J, Álvarez-Ortega C, Martínez JL. 2014. Metabolic compensation of fitness costs associated with overexpression of the multidrug efflux pump MexEF-OprN in Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:3904–3913. http://dx.doi.org/10.1128/AAC.00121-14. [PubMed]
117. Schulz zur Wiesch P, Engelstädter J, Bonhoeffer S. 2010. Compensation of fitness costs and reversibility of antibiotic resistance mutations. Antimicrob Agents Chemother 54:2085–2095. http://dx.doi.org/10.1128/AAC.01460-09. [PubMed]
118. Andersson DI. 2006. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr Opin Microbiol 9:461–465. http://dx.doi.org/10.1016/j.mib.2006.07.002. [PubMed]
119. Gould SJ, Lloyd EA. 1999. Individuality and adaptation across levels of selection: how shall we name and generalize the unit of Darwinism? Proc Natl Acad Sci U S A 96:11904–11909. http://dx.doi.org/10.1073/pnas.96.21.11904. [PubMed]
120. Gould SJ, Vrba S. 1982. Exaptation: a missing term in the science of form. Paleobiology 8:4–15. http://dx.doi.org/10.1017/S0094837300004310.
121. Olivares J, Alvarez-Ortega C, Linares JF, Rojo F, Köhler T, Martínez JL. 2012. Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. Environ Microbiol 14:1968–1981. http://dx.doi.org/10.1111/j.1462-2920.2012.02727.x. [PubMed]
122. Lamarche MG, Déziel E. 2011. MexEF-OprN efflux pump exports the Pseudomonas quinolone signal (PQS) precursor HHQ (4-hydroxy-2-heptylquinoline). PLoS One 6:e24310. http://dx.doi.org/10.1371/journal.pone.0024310. [PubMed]
123. Köhler T, van Delden C, Curty LK, Hamzehpour MM, Pechere JC. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J Bacteriol 183:5213–5222. http://dx.doi.org/10.1128/JB.183.18.5213-5222.2001. [PubMed]
124. Evans K, Passador L, Srikumar R, Tsang E, Nezezon J, Poole K. 1998. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J Bacteriol 180:5443–5447. [PubMed]
125. Martínez JL. 2012. Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front Microbiol 3:1. http://dx.doi.org/10.3389/fmicb.2012.00001. [PubMed]
126. Martinez JL. 2009. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276:2521–2530. http://dx.doi.org/10.1098/rspb.2009.0320. [PubMed]
127. Baquero F, Alvarez-Ortega C, Martinez JL. 2009. Ecology and evolution of antibiotic resistance. Environ Microbiol Rep 1:469–476. http://dx.doi.org/10.1111/j.1758-2229.2009.00053.x. [PubMed]
128. Martínez JL. 2012. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front Microbiol 2:265. http://dx.doi.org/10.3389/fmicb.2011.00265. [PubMed]
129. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons MN, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez JL. 2015. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol 13:310–317. http://dx.doi.org/10.1038/nrmicro3439. [PubMed]
130. Baquero F, Martínez JL, Cantón R. 2008. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265. http://dx.doi.org/10.1016/j.copbio.2008.05.006. [PubMed]
131. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. 2013. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942. http://dx.doi.org/10.1111/1462-2920.12134. [PubMed]
132. Chen MY, Lira F, Liang HQ, Wu RT, Duan JH, Liao XP, Martínez JL, Liu YH, Sun J. 2016. Multilevel selection of bcrABDR-mediated bacitracin resistance in Enterococcus faecalis from chicken farms. Sci Rep 6:34895. http://dx.doi.org/10.1038/srep34895. [PubMed]
133. Köhler CD, Dobrindt U. 2011. What defines extraintestinal pathogenic Escherichia coli? Int J Med Microbiol 301:642–647. http://dx.doi.org/10.1016/j.ijmm.2011.09.006. [PubMed]
134. San Millan A, Toll-Riera M, Qi Q, MacLean RC. 2015. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. Nat Commun 6:6845. http://dx.doi.org/10.1038/ncomms7845. [PubMed]
135. Baltrus DA. 2013. Exploring the costs of horizontal gene transfer. Trends Ecol Evol 28:489–495. http://dx.doi.org/10.1016/j.tree.2013.04.002. [PubMed]
136. Starikova I, Harms K, Haugen P, Lunde TT, Primicerio R, Samuelsen Ø, Nielsen KM, Johnsen PJ. 2012. A trade-off between the fitness cost of functional integrases and long-term stability of integrons. PLoS Pathog 8:e1003043. http://dx.doi.org/10.1371/journal.ppat.1003043. [PubMed]
137. Park C, Zhang J. 2012. High expression hampers horizontal gene transfer. Genome Biol Evol 4:523–532. http://dx.doi.org/10.1093/gbe/evs030. [PubMed]
138. Johnsen PJ, Levin BR. 2010. Adjusting to alien genes. Mol Microbiol 75:1061–1063. http://dx.doi.org/10.1111/j.1365-2958.2010.07075.x. [PubMed]
139. Knöppel A, Lind PA, Lustig U, Näsvall J, Andersson DI. 2014. Minor fitness costs in an experimental model of horizontal gene transfer in bacteria. Mol Biol Evol 31:1220–1227. http://dx.doi.org/10.1093/molbev/msu076. [PubMed]
140. Schaufler K, Semmler T, Pickard DJ, de Toro M, de la Cruz F, Wieler LH, Ewers C, Guenther S. 2016. Carriage of extended-spectrum beta-lactamase-plasmids does not reduce fitness but enhances virulence in some strains of pandemic E. coli lineages. Front Microbiol 7:336. http://dx.doi.org/10.3389/fmicb.2016.00336. [PubMed]
141. Sánchez MB, Martínez JL. 2012. Differential epigenetic compatibility of qnr antibiotic resistance determinants with the chromosome of Escherichia coli. PLoS One 7:e35149. http://dx.doi.org/10.1371/journal.pone.0035149. [PubMed]
142. Björkman J, Nagaev I, Berg OG, Hughes D, Andersson DI. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287:1479–1482. http://dx.doi.org/10.1126/science.287.5457.1479. [PubMed]
143. Handel A, Regoes RR, Antia R. 2006. The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol 2:e137. http://dx.doi.org/10.1371/journal.pcbi.0020137. [PubMed]
144. Maisnier-Patin S, Berg OG, Liljas L, Andersson DI. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 46:355–366. http://dx.doi.org/10.1046/j.1365-2958.2002.03173.x. [PubMed]
145. Böttger EC, Springer B, Pletschette M, Sander P. 1998. Fitness of antibiotic-resistant microorganisms and compensatory mutations. Nat Med 4:1343–1344. http://dx.doi.org/10.1038/3906. [PubMed]
146. Hernando-Amado S, Sanz-García F, Blanco P, Martínez JL. 2017. Fitness costs associated with the acquisition of antibiotic resistance. Essays Biochem 61:37–48. http://dx.doi.org/10.1042/EBC20160057. [PubMed]
147. Martínez JL, Baquero F. 2014. Emergence and spread of antibiotic resistance: setting a parameter space. Ups J Med Sci 119:68–77. http://dx.doi.org/10.3109/03009734.2014.901444. [PubMed]
148. Fitzpatrick D, Walsh F. 2016. Antibiotic resistance genes across a wide variety of metagenomes. FEMS Microbiol Ecol 92:92. http://dx.doi.org/10.1093/femsec/fiv168.
149. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, Pan Y, Li J, Zhu L, Wang X, Meng Z, Zhao F, Liu D, Ma J, Qin N, Xiang C, Xiao Y, Li L, Yang H, Wang J, Yang R, Gao GF, Wang J, Zhu B. 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun 4:2151. http://dx.doi.org/10.1038/ncomms3151. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MTBP-0006-2016
2018-01-18
2018-04-25

Abstract:

Inspection of the genomes of bacterial pathogens indicates that their pathogenic potential relies, at least in part, on the activity of different elements that have been acquired by horizontal gene transfer from other (usually unknown) microorganisms. Similarly, in the case of resistance to antibiotics, besides mutation-driven resistance, the incorporation of novel resistance genes is a widespread evolutionary procedure for the acquisition of this phenotype. Current information in the field supports the idea that most (if not all) genes acquired by horizontal gene transfer by bacterial pathogens and contributing to their virulence potential or to antibiotic resistance originate in environmental, not human-pathogenic, microorganisms. Herein I discuss the potential functions that the genes that are dubbed virulence or antibiotic resistance genes may have in their original hosts in nonclinical, natural ecosystems. In addition, I discuss the potential bottlenecks modulating the transfer of virulence and antibiotic resistance determinants and the consequences in terms of speciation of acquiring one or another of both categories of genes. Finally, I propose that exaptation, a process by which a change of function is achieved by a change of habitat and not by changes in the element with the new functionality, is the basis of the evolution of virulence determinants and of antibiotic resistance genes.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) The process of speciation of a pathogen (larger circles) such as . This process usually begins with the acquisition, by HGT, of a set of genes (red circle) that allow the shift of the pathogen’s habitat from the environment to an infected host ( 1 ). If the rate of transmission is high enough, the newborn pathogen will disseminate among different individuals ( 2 ) and evolve by different mechanisms that include mutation and eventually genome reduction ( 4 ). These evolutionary processes might cause the deadaptation of the pathogen to its original habitat, in which case the chances of the microorganism recolonizing natural ecosystems will be low ( 3 ). Once the organism is a pathogen, it can change host specificity by acquiring novel genes ( 5 ) and eventually by losing of determinants unneeded in the novel host ( 6 ). In all cases, the integration of the acquired elements into the preformed bacterial metabolic and regulatory networks will be tuned by mutation. (B) The process of short-sighted evolution of opportunistic pathogens with an environmental origin, like . These microorganisms infect patients, presenting a basal disease, using virulence determinants already encoded in their genomes ( 7 ). During chronic infection, the infective strain evolves mainly by mutation and genome rearrangements ( 8 ). However, since it only infects people with a basal disease, transmission rates are usually low, which precludes clonal expansion and further diversification. Since adaptation to the new host is of no value for colonizing the environmental habitat ( 9 ), this is a dead-end evolutionary process. (C) The evolution of pathogens such as that present virulence determinants with a dual role in the environment and for infections, in which case the colonization of one of these two habitats does not severely compromise the colonization of the other ( 10 ). Reproduced with permission from reference 8 .

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.MTBP-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The process of speciation from an environmental, nonpathogenic ancestor is a good example of the evolutionary steps that are involved in the emergence of bacterial pathogens. This process began with the acquisition of the plasmid pCD1 by environmental . This plasmid harbors genes encoding virulence determinants such as type III secretion systems and effector Yop proteins. From this ancestor of virulent species, two branches have evolved. One diverged through the acquisition of the stable toxin (Yst) and led to the speciation of . This species has further evolved through acquisition and loss of genes (not shown in this figure). The other branch diverged through the acquisition of the high pathogenicity island (HPI*), which encodes an iron-uptake system and is present as well in different , and by the incorporation of insecticidal genes. is a successful clone that emerged recently from through the acquisition of the plasmids pCP1, which encodes the plasminogen activator gene, and pMT1, which allows colonization of the gut of fleas. The loss of insect toxins is an important event for the persistence of in its insect vectors. The acquisition of insertion sequences is the basis of the genome rearrangements and gene loss of . Finally, the entire process of adaptation to a new host is modulated by the mutation-driven optimization of the regulatory and metabolic networks of the pathogen. This evolutionary process is described in more detail in references 33 , 37 , and 105 . Reproduced with permission from reference 8 .

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.MTBP-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Antibiotic resistance genes () have evolved for millions of years located in the chromosomes of their original hosts (a). During this evolution, the expression of these determinants (R) from their promoters (P) has been finely tuned to respond to several signals that might include the response to environmental and metabolic changes (blue arrows). Besides, the determinants encoded by these genes are integrated in physiological networks, where they can play a role as metabolic enzymes. S1 to S3 represent metabolites of the same pathway, and A1 and B1 metabolites of other interconnected pathways. When these genes are integrated in gene capture (for instance, an integron) and transfer units (for instance, a plasmid), they can be transferred to a new host and submitted to strong antibiotic selective pressure (b), and they can be constitutively expressed from a strong promoter (P) present in the capture unit and therefore lack the regulatory and physiological network encountered in the original host (gene decontextualization). Under these circumstances, the only function these determinants can play is antibiotic resistance, in such a way that this functional shift is not the consequence of adaptive changes in the determinants but rather of changes in their environment (exaptation). Reproduced with permission from reference 127 .

Source: microbiolspec January 2018 vol. 6 no. 1 doi:10.1128/microbiolspec.MTBP-0006-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error