1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Intracellular Lifestyles and Their Impact on Host-to-Host Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: M. Graciela Pucciarelli1, Francisco García-Del Portillo3
  • Editors: Fernando Baquero4, Emilio Bouza5, J.A. Gutiérrez-Fuentes6, Teresa M. Coque7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain; 2: Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; 3: Laboratory of Intracellular Bacterial Pathogens, Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain; 4: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 5: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 6: Complutensis University, Madrid, Spain; 7: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
  • Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.MTBP-0009-2016
  • Received 14 February 2017 Accepted 03 March 2017 Published 21 July 2017
  • M. Graciela Pucciarelli, fgportillo@cnb.csic.es
image of <span class="jp-italic">Salmonella</span> Intracellular Lifestyles and Their Impact on Host-to-Host Transmission
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Intracellular Lifestyles and Their Impact on Host-to-Host Transmission, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/5/4/MTBP-0009-2016-1.gif /docserver/preview/fulltext/microbiolspec/5/4/MTBP-0009-2016-2.gif
  • Abstract:

    More than a century ago, infections by were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some serovars could be transmitted by “carriers,” individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both and infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of serovars.

  • Keywords: carrier state; transmission; cytosolic bacteria; persistence; Salmonella-containing vacuole; intracellular lifestyle; autophagy; extracellular

  • Citation: Pucciarelli M, García-Del Portillo F. 2017. Intracellular Lifestyles and Their Impact on Host-to-Host Transmission. Microbiol Spectrum 5(4):MTBP-0009-2016. doi:10.1128/microbiolspec.MTBP-0009-2016.

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43461612
0.43461612

References

1. Rivera-Chávez F, Bäumler AJ. 2015. The pyromaniac inside you: Salmonella metabolism in the host gut. Annu Rev Microbiol 69:31–48. http://dx.doi.org/10.1146/annurev-micro-091014-104108. [PubMed]
2. LaRock DL, Chaudhary A, Miller SI. 2015. Salmonellae interactions with host processes. Nat Rev Microbiol 13:191–205. http://dx.doi.org/10.1038/nrmicro3420.
3. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 2012. Host-pathogen interaction in invasive salmonellosis. PLoS Pathog 8:e1002933. http://dx.doi.org/10.1371/journal.ppat.1002933. [PubMed]
4. Graham SM. 2010. Nontyphoidal salmonellosis in Africa. Curr Opin Infect Dis 23:409–414. http://dx.doi.org/10.1097/QCO.0b013e32833dd25d. [PubMed]
5. Wiesner M, Calva JJ, Bustamante VH, Pérez-Morales D, Fernández-Mora M, Calva E, Silva C. 2016. A multi-drug resistant Salmonella Typhimurium ST213 human-invasive strain (33676) containing the blaCMY-2 gene on an IncF plasmid is attenuated for virulence in BALB/c mice. BMC Microbiol 16:18. http://dx.doi.org/10.1186/s12866-016-0633-7.
6. Monack DM. 2012. Salmonella persistence and transmission strategies. Curr Opin Microbiol 15:100–107 http://dx.doi.org/10.1016/j.mib.2011.10.013.
7. Gopinath S, Carden S, Monack D. 2012. Shedding light on Salmonella carriers. Trends Microbiol 20:320–327 http://dx.doi.org/10.1016/j.tim.2012.04.004.
8. Ledingham JCG, Arkwright JA. 1912. The Carrier Problem in Infectious Diseases. Edward Arnold, London, United Kingdom.
9. Søndberg E, Jelsbak L. 2016. Salmonella Typhimurium undergoes distinct genetic adaption during chronic infections of mice. BMC Microbiol 16:30. http://dx.doi.org/10.1186/s12866-016-0646-2.
10. Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, Monack DM. 2006. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2:e11. http://dx.doi.org/10.1371/journal.ppat.0020011.
11. Takeuchi A. 1967. Electron microscope studies of experimental Salmonella infection. I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 50:109–136. [PubMed]
12. Kihlström E, Edebo L. 1976. Association of viable and inactivated Salmonella typhimurium 395 MS and MR 10 with HeLa cells. Infect Immun 14:851–857.
13. Giannella RA, Washington O, Gemski P, Formal SB. 1973. Invasion of HeLa cells by Salmonella typhimurium: a model for study of invasiveness of Salmonella. J Infect Dis 128:69–75. http://dx.doi.org/10.1093/infdis/128.1.69. [PubMed]
14. Garcia-del Portillo F, Finlay BB. 1995. Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J Cell Biol 129:81–97. http://dx.doi.org/10.1083/jcb.129.1.81.
15. Brumell JH, Perrin AJ, Goosney DL, Finlay BB. 2002. Microbial pathogenesis: new niches for Salmonella. Curr Biol 12:R15–R17. http://dx.doi.org/10.1016/S0960-9822(01)00640-6.
16. Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I, Broeks A, Shukla VK, Kumar M, Janssen H, Song JY, Neefjes-Borst EA, te Riele H, Holden DW, Nath G, Neefjes J. 2015. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe 17:763–774. http://dx.doi.org/10.1016/j.chom.2015.05.002.
17. Forbester JL, Goulding D, Vallier L, Hannan N, Hale C, Pickard D, Mukhopadhyay S, Dougan G. 2015. Interaction of Salmonella enterica serovar Typhimurium with intestinal organoids derived from human induced pluripotent stem cells. Infect Immun 83:2926–2934. http://dx.doi.org/10.1128/IAI.00161-15. [PubMed]
18. Zhang YG, Wu S, Xia Y, Sun J. 2014. Salmonella-infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiol Rep 2:e12147. http://dx.doi.org/10.14814/phy2.12147.
19. Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. 2014. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208. http://dx.doi.org/10.1126/science.1244705. [PubMed]
20. Knodler LA. 2015. Salmonella enterica: living a double life in epithelial cells. Curr Opin Microbiol 23:23–31. http://dx.doi.org/10.1016/j.mib.2014.10.010.
21. Malik-Kale P, Winfree S, Steele-Mortimer O. 2012. The bimodal lifestyle of intracellular Salmonella in epithelial cells: replication in the cytosol obscures defects in vacuolar replication. PLoS One 7:e38732. http://dx.doi.org/10.1371/journal.pone.0038732.
22. Figueira R, Holden DW. 2012. Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors. Microbiology 158:1147–1161. http://dx.doi.org/10.1099/mic.0.058115-0. [PubMed]
23. Moest TP, Méresse S. 2013. Salmonella T3SSs: successful mission of the secret(ion) agents. Curr Opin Microbiol 16:38–44. http://dx.doi.org/10.1016/j.mib.2012.11.006. [PubMed]
24. Galán JE, Wolf-Watz H. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573. http://dx.doi.org/10.1038/nature05272. [PubMed]
25. Patel JC, Galán JE. 2005. Manipulation of the host actin cytoskeleton by Salmonella—all in the name of entry. Curr Opin Microbiol 8:10–15. http://dx.doi.org/10.1016/j.mib.2004.09.001.
26. Schlumberger MC, Hardt WD. 2005. Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr Top Microbiol Immunol 291:29–42. http://dx.doi.org/10.1007/3-540-27511-8_3. [PubMed]
27. Agbor TA, McCormick BA. 2011. Salmonella effectors: important players modulating host cell function during infection. Cell Microbiol 13:1858–1869. http://dx.doi.org/10.1111/j.1462-5822.2011.01701.x.
28. Aiastui A, Pucciarelli MG, García-del Portillo F. 2010. Salmonella enterica serovar Typhimurium invades fibroblasts by multiple routes differing from the entry into epithelial cells. Infect Immun 78:2700–2713. http://dx.doi.org/10.1128/IAI.01389-09.
29. Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I. 2012. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. MicrobiologyOpen 1:243–258. http://dx.doi.org/10.1002/mbo3.28. [PubMed]
30. Mijouin L, Rosselin M, Bottreau E, Pizarro-Cerda J, Cossart P, Velge P, Wiedemann A. 2012. Salmonella enteritidis Rck-mediated invasion requires activation of Rac1, which is dependent on the class I PI 3-kinases-Akt signaling pathway. FASEB J 26:1569–1581. http://dx.doi.org/10.1096/fj.11-189647. [PubMed]
31. Rosselin M, Abed N, Virlogeux-Payant I, Bottreau E, Sizaret PY, Velge P, Wiedemann A. 2011. Heterogeneity of type III secretion system (T3SS)-1-independent entry mechanisms used by Salmonella Enteritidis to invade different cell types. Microbiology 157:839–847. http://dx.doi.org/10.1099/mic.0.044941-0. [PubMed]
32. Desin TS, Lam PK, Koch B, Mickael C, Berberov E, Wisner AL, Townsend HG, Potter AA, Köster W. 2009. Salmonella enterica serovar Enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77:2866–2875. http://dx.doi.org/10.1128/IAI.00039-09. [PubMed]
33. Rychlik I, Karasova D, Sebkova A, Volf J, Sisak F, Havlickova H, Kummer V, Imre A, Szmolka A, Nagy B. 2009. Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9:268. http://dx.doi.org/10.1186/1471-2180-9-268.
34. Jones MA, Wigley P, Page KL, Hulme SD, Barrow PA. 2001. Salmonella enterica serovar Gallinarum requires the Salmonella pathogenicity island 2 type III secretion system but not the Salmonella pathogenicity island 1 type III secretion system for virulence in chickens. Infect Immun 69:5471–5476. http://dx.doi.org/10.1128/IAI.69.9.5471-5476.2001.
35. Rathman M, Barker LP, Falkow S. 1997. The unique trafficking pattern of Salmonella typhimurium-containing phagosomes in murine macrophages is independent of the mechanism of bacterial entry. Infect Immun 65:1475–1485.
36. Drecktrah D, Knodler LA, Ireland R, Steele-Mortimer O. 2006. The mechanism of Salmonella entry determines the vacuolar environment and intracellular gene expression. Traffic 7:39–51. http://dx.doi.org/10.1111/j.1600-0854.2005.00360.x.
37. Valdez Y, Ferreira RB, Finlay BB. 2009. Molecular mechanisms of Salmonella virulence and host resistance. Curr Top Microbiol Immunol 337:93–127. http://dx.doi.org/10.1007/978-3-642-01846-6_4. [PubMed]
38. Fields PI, Swanson RV, Haidaris CG, Heffron F. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci U S A 83:5189–5193. http://dx.doi.org/10.1073/pnas.83.14.5189. [PubMed]
39. Malik-Kale P, Jolly CE, Lathrop S, Winfree S, Luterbach C, Steele-Mortimer O. 2011. Salmonella—at home in the host cell. Front Microbiol 2:125. http://dx.doi.org/10.3389/fmicb.2011.00125.
40. Bakowski MA, Braun V, Brumell JH. 2008. Salmonella-containing vacuoles: directing traffic and nesting to grow. Traffic 9:2022–2031. http://dx.doi.org/10.1111/j.1600-0854.2008.00827.x.
41. García-del Portillo F, Núñez-Hernández C, Eisman B, Ramos-Vivas J. 2008. Growth control in the Salmonella-containing vacuole. Curr Opin Microbiol 11:46–52. http://dx.doi.org/10.1016/j.mib.2008.01.001. [PubMed]
42. Holden DW. 2002. Trafficking of the Salmonella vacuole in macrophages. Traffic 3:161–169. http://dx.doi.org/10.1034/j.1600-0854.2002.030301.x.
43. Steele-Mortimer O. 2008. The Salmonella-containing vacuole: moving with the times. Curr Opin Microbiol 11:38–45. http://dx.doi.org/10.1016/j.mib.2008.01.002.
44. Ramsden AE, Holden DW, Mota LJ. 2007. Membrane dynamics and spatial distribution of Salmonella-containing vacuoles. Trends Microbiol 15:516–524. http://dx.doi.org/10.1016/j.tim.2007.10.002.
45. Zhao Y, Gorvel JP, Méresse S. 2016. Effector proteins support the asymmetric apportioning of Salmonella during cytokinesis. Virulence 7:669–678. http://dx.doi.org/10.1080/21505594.2016.1173298. [PubMed]
46. van der Heijden J, Finlay BB. 2012. Type III effector-mediated processes in Salmonella infection. Future Microbiol 7:685–703. http://dx.doi.org/10.2217/fmb.12.49. [PubMed]
47. Liss V, Hensel M. 2015. Take the tube: remodelling of the endosomal system by intracellular Salmonella enterica. Cell Microbiol 17:639–647. http://dx.doi.org/10.1111/cmi.12441. [PubMed]
48. Jackson LK, Nawabi P, Hentea C, Roark EA, Haldar K. 2008. The Salmonella virulence protein SifA is a G protein antagonist. Proc Natl Acad Sci U S A 105:14141–14146. http://dx.doi.org/10.1073/pnas.0801872105.
49. D’Costa VM, Braun V, Landekic M, Shi R, Proteau A, McDonald L, Cygler M, Grinstein S, Brumell JH. 2015. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Rep 12:1508–1518. http://dx.doi.org/10.1016/j.celrep.2015.07.063.
50. Spanò S, Galán JE. 2012. A Rab32-dependent pathway contributes to Salmonella typhi host restriction. Science 338:960–963. http://dx.doi.org/10.1126/science.1229224. [PubMed]
51. Spanò S, Liu X, Galán JE. 2011. Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. Proc Natl Acad Sci U S A 108:18418–18423. http://dx.doi.org/10.1073/pnas.1111959108.
52. Garcia-del Portillo F, Zwick MB, Leung KY, Finlay BB. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc Natl Acad Sci U S A 90:10544–10548. http://dx.doi.org/10.1073/pnas.90.22.10544.
53. Schroeder N, Mota LJ, Méresse S. 2011. Salmonella-induced tubular networks. Trends Microbiol 19:268–277. http://dx.doi.org/10.1016/j.tim.2011.01.006.
54. Stein MA, Leung KY, Zwick M, Garcia-del Portillo F, Finlay BB. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol Microbiol 20:151–164. http://dx.doi.org/10.1111/j.1365-2958.1996.tb02497.x. [PubMed]
55. Freeman JA, Ohl ME, Miller SI. 2003. The Salmonella enterica serovar Typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect Immun 71:418–427. http://dx.doi.org/10.1128/IAI.71.1.418-427.2003. [PubMed]
56. McEwan DG, Richter B, Claudi B, Wigge C, Wild P, Farhan H, McGourty K, Coxon FP, Franz-Wachtel M, Perdu B, Akutsu M, Habermann A, Kirchof A, Helfrich MH, Odgren PR, Van Hul W, Frangakis AS, Rajalingam K, Macek B, Holden DW, Bumann D, Dikic I. 2015. PLEKHM1 regulates Salmonella-containing vacuole biogenesis and infection. Cell Host Microbe 17:58–71. http://dx.doi.org/10.1016/j.chom.2014.11.011.
57. López-Montero N, Ramos-Marquès E, Risco C, García-Del Portillo F. 2016. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections. Autophagy 12:1886–1901. http://dx.doi.org/10.1080/15548627.2016.1208888. [PubMed]
58. Knodler LA, Nair V, Steele-Mortimer O. 2014. Quantitative assessment of cytosolic Salmonella in epithelial cells. PLoS One 9:e84681. http://dx.doi.org/10.1371/journal.pone.0084681.
59. Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, Montero M, Steele-Mortimer O. 2010. Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107:17733–17738. http://dx.doi.org/10.1073/pnas.1006098107.
60. Menendez A, Arena ET, Guttman JA, Thorson L, Vallance BA, Vogl W, Finlay BB. 2009. Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever. J Infect Dis 200:1703–1713. http://dx.doi.org/10.1086/646608.
61. Crowley SM, Knodler LA, Vallance BA. 2016. Salmonella and the inflammasome: battle for intracellular dominance. Curr Top Microbiol Immunol 397:43–67. http://dx.doi.org/10.1007/978-3-319-41171-2_3.
62. Sellin ME, Maslowski KM, Maloy KJ, Hardt WD. 2015. Inflammasomes of the intestinal epithelium. Trends Immunol 36:442–450. http://dx.doi.org/10.1016/j.it.2015.06.002. [PubMed]
63. Sellin ME, Müller AA, Felmy B, Dolowschiak T, Diard M, Tardivel A, Maslowski KM, Hardt WD. 2014. Epithelium-intrinsic NAIP/NLRC4 inflammasome drives infected enterocyte expulsion to restrict Salmonella replication in the intestinal mucosa. Cell Host Microbe 16:237–248. http://dx.doi.org/10.1016/j.chom.2014.07.001.
64. Núñez-Hernández C, Tierrez A, Ortega AD, Pucciarelli MG, Godoy M, Eisman B, Casadesús J, García-del Portillo F. 2013. Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 81:154–165. http://dx.doi.org/10.1128/IAI.01080-12. [PubMed]
65. Cano DA, Martínez-Moya M, Pucciarelli MG, Groisman EA, Casadesús J, García-Del Portillo F. 2001. Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69:6463–6474. http://dx.doi.org/10.1128/IAI.69.10.6463-6474.2001. [PubMed]
66. Garcia-del Portillo F, Stein MA, Finlay BB. 1997. Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65:24–34. [PubMed]
67. Ruby T, McLaughlin L, Gopinath S, Monack D. 2012. Salmonella’s long-term relationship with its host. FEMS Microbiol Rev 36:600–615. http://dx.doi.org/10.1111/j.1574-6976.2012.00332.x.
68. Lawley TD, Bouley DM, Hoy YE, Gerke C, Relman DA, Monack DM. 2008. Host transmission of Salmonella enterica serovar Typhimurium is controlled by virulence factors and indigenous intestinal microbiota. Infect Immun 76:403–416. http://dx.doi.org/10.1128/IAI.01189-07.
69. Monack DM, Bouley DM, Falkow S. 2004. Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNγ neutralization. J Exp Med 199:231–241. http://dx.doi.org/10.1084/jem.20031319.
70. Eisele NA, Ruby T, Jacobson A, Manzanillo PS, Cox JS, Lam L, Mukundan L, Chawla A, Monack DM. 2013. Salmonella require the fatty acid regulator PPARδ for the establishment of a metabolic environment essential for long-term persistence. Cell Host Microbe 14:171–182. http://dx.doi.org/10.1016/j.chom.2013.07.010.
71. Gonzalez-Escobedo G, Gunn JS. 2013. Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun 81:2920–2930. http://dx.doi.org/10.1128/IAI.00258-13. [PubMed]
72. Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC, Ryan ET. 2014. Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. Trends Microbiol 22:648–655. http://dx.doi.org/10.1016/j.tim.2014.06.007. [PubMed]
73. Bäumler AJ, Winter SE, Thiennimitr P, Casadesús J. 2011. Intestinal and chronic infections: Salmonella lifestyles in hostile environments. Environ Microbiol Rep 3:508–517. http://dx.doi.org/10.1111/j.1758-2229.2011.00242.x.
74. Gonzalez-Escobedo G, Gunn JS. 2013. Identification of Salmonella enterica serovar Typhimurium genes regulated during biofilm formation on cholesterol gallstone surfaces. Infect Immun 81:3770–3780. http://dx.doi.org/10.1128/IAI.00647-13. [PubMed]
75. Cano DA, Pucciarelli MG, Martínez-Moya M, Casadesús J, García-del Portillo F. 2003. Selection of small-colony variants of Salmonella enterica serovar Typhimurium in nonphagocytic eucaryotic cells. Infect Immun 71:3690–3698. http://dx.doi.org/10.1128/IAI.71.7.3690-3698.2003.
76. Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. 2014. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol 4:99. http://dx.doi.org/10.3389/fcimb.2014.00099.
77. George AS, Salas González I, Lorca GL, Teplitski M. 2015. Contribution of the Salmonella enterica KdgR regulon to persistence of the pathogen in vegetable soft rots. Appl Environ Microbiol 82:1353–1360. http://dx.doi.org/10.1128/AEM.03355-15.
78. Popp J, Noster J, Busch K, Kehl A, Zur Hellen G, Hensel M. 2015. Role of host cell-derived amino acids in nutrition of intracellular Salmonella enterica. Infect Immun 83:4466–4475. http://dx.doi.org/10.1128/IAI.00624-15.
79. Steeb B, Claudi B, Burton NA, Tienz P, Schmidt A, Farhan H, Mazé A, Bumann D. 2013. Parallel exploitation of diverse host nutrients enhances Salmonella virulence. PLoS Pathog 9:e1003301. http://dx.doi.org/10.1371/journal.ppat.1003301. [PubMed]
80. Bowden SD, Rowley G, Hinton JC, Thompson A. 2009. Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar Typhimurium. Infect Immun 77:3117–3126. http://dx.doi.org/10.1128/IAI.00093-09.
81. Bowden SD, Hopper-Chidlaw AC, Rice CJ, Ramachandran VK, Kelly DJ, Thompson A. 2014. Nutritional and metabolic requirements for the infection of HeLa cells by Salmonella enterica serovar Typhimurium. PLoS One 9:e96266. http://dx.doi.org/10.1371/journal.pone.0096266.
82. Barat S, Steeb B, Mazé A, Bumann D. 2012. Extensive in vivo resilience of persistent Salmonella. PLoS One 7:e42007. http://dx.doi.org/10.1371/journal.pone.0042007. [PubMed]
83. Fang FC, Frawley ER, Tapscott T, Vázquez-Torres A. 2016. Bacterial stress responses during host infection. Cell Host Microbe 20:133–143. http://dx.doi.org/10.1016/j.chom.2016.07.009. [PubMed]
84. Wileman T. 2013. Autophagy as a defence against intracellular pathogens. Essays Biochem 55:153–163. http://dx.doi.org/10.1042/bse0550153.
85. Jo EK, Yuk JM, Shin DM, Sasakawa C. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Front Immunol 4:97. http://dx.doi.org/10.3389/fimmu.2013.00097. [PubMed]
86. Steele S, Brunton J, Kawula T. 2015. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 5:51. http://dx.doi.org/10.3389/fcimb.2015.00051.
87. Winchell CG, Steele S, Kawula T, Voth DE. 2016. Dining in: intracellular bacterial pathogen interplay with autophagy. Curr Opin Microbiol 29:9–14. http://dx.doi.org/10.1016/j.mib.2015.09.004. [PubMed]
88. Birmingham CL, Brumell JH. 2006. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2:156–158. http://dx.doi.org/10.4161/auto.2825.
89. Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ. 2012. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12:778–790. http://dx.doi.org/10.1016/j.chom.2012.10.019. [PubMed]
90. Spinnenhirn V, Farhan H, Basler M, Aichem A, Canaan A, Groettrup M. 2014. The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice. J Cell Sci 127:4883–4893. http://dx.doi.org/10.1242/jcs.152371.
91. Yu HB, Croxen MA, Marchiando AM, Ferreira RB, Cadwell K, Foster LJ, Finlay BB. 2014. Autophagy facilitates Salmonella replication in HeLa cells. mBio 5:e00865-e14. http://dx.doi.org/10.1128/mBio.00865-14. [PubMed]
92. Wessling-Resnick M. 2015. Nramp1 and other transporters involved in metal withholding during infection. J Biol Chem 290:18984–18990. http://dx.doi.org/10.1074/jbc.R115.643973.
93. Vassiloyanakopoulos AP, Okamoto S, Fierer J. 1998. The crucial role of polymorphonuclear leukocytes in resistance to Salmonella dublin infections in genetically susceptible and resistant mice. Proc Natl Acad Sci U S A 95:7676–7681. http://dx.doi.org/10.1073/pnas.95.13.7676. [PubMed]
94. Segal BH, Grimm MJ, Khan AN, Han W, Blackwell TS. 2012. Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53:72–80. http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.022. [PubMed]
95. Bogdan C. 2015. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 36:161–178. http://dx.doi.org/10.1016/j.it.2015.01.003. [PubMed]
96. Puri AW, Broz P, Shen A, Monack DM, Bogyo M. 2012. Caspase-1 activity is required to bypass macrophage apoptosis upon Salmonella infection. Nat Chem Biol 8:745–747. http://dx.doi.org/10.1038/nchembio.1023.
97. Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galán JE. 2006. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412. http://dx.doi.org/10.1084/jem.20060206.
98. Miao EA, Rajan JV. 2011. Salmonella and caspase-1: a complex interplay of detection and evasion. Front Microbiol 2:85. http://dx.doi.org/10.3389/fmicb.2011.00085. [PubMed]
99. Broz P, Newton K, Lamkanfi M, Mariathasan S, Dixit VM, Monack DM. 2010. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J Exp Med 207:1745–1755. http://dx.doi.org/10.1084/jem.20100257.
100. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J Biol Chem 281:11374–11383. http://dx.doi.org/10.1074/jbc.M509157200.
101. Kreibich S, Emmenlauer M, Fredlund J, Rämö P, Münz C, Dehio C, Enninga J, Hardt WD. 2015. Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1. Cell Host Microbe 18:527–537. http://dx.doi.org/10.1016/j.chom.2015.10.015. [PubMed]
102. Benjamin JL, Sumpter R Jr, Levine B, Hooper LV. 2013. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13:723–734. http://dx.doi.org/10.1016/j.chom.2013.05.004.
103. Shiloh MU, MacMicking JD, Nicholson S, Brause JE, Potter S, Marino M, Fang F, Dinauer M, Nathan C. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10:29–38. http://dx.doi.org/10.1016/S1074-7613(00)80004-7.
104. Boyle KB, Randow F. 2013. The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol 16:339–348. http://dx.doi.org/10.1016/j.mib.2013.03.010.
105. Begun J, Lassen KG, Jijon HB, Baxt LA, Goel G, Heath RJ, Ng A, Tam JM, Kuo SY, Villablanca EJ, Fagbami L, Oosting M, Kumar V, Schenone M, Carr SA, Joosten LA, Vyas JM, Daly MJ, Netea MG, Brown GD, Wijmenga C, Xavier RJ. 2015. Integrated genomics of Crohn’s disease risk variant identifies a role for CLEC12A in antibacterial autophagy. Cell Rep 11:1905–1918. http://dx.doi.org/10.1016/j.celrep.2015.05.045.
106. Miller SI, Chaudhary A. 2016. A cellular GWAS approach to define human variation in cellular pathways important to inflammation. Pathogens 5:E39. http://dx.doi.org/10.3390/pathogens5020039.
107. Kuijl C, Savage ND, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJ, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff TH, Neefjes J. 2007. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450:725–730. http://dx.doi.org/10.1038/nature06345. [PubMed]
108. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233. http://dx.doi.org/10.1126/science.1205405. [PubMed]
109. Thurston TL, Boyle KB, Allen M, Ravenhill BJ, Karpiyevich M, Bloor S, Kaul A, Noad J, Foeglein A, Matthews SA, Komander D, Bycroft M, Randow F. 2016. Recruitment of TBK1 to cytosol-invading Salmonella induces WIPI2-dependent antibacterial autophagy. EMBO J 35:1779–1792. http://dx.doi.org/10.15252/embj.201694491.
110. Radtke AL, Delbridge LM, Balachandran S, Barber GN, O’Riordan MX. 2007. TBK1 protects vacuolar integrity during intracellular bacterial infection. PLoS Pathog 3:e29. http://dx.doi.org/10.1371/journal.ppat.0030029.
111. Osborne SE, Tuinema BR, Mok MC, Lau PS, Bui NK, Tomljenovic-Berube AM, Vollmer W, Zhang K, Junop M, Coombes BK. 2012. Characterization of DalS, an ATP-binding cassette transporter for d-alanine, and its role in pathogenesis in Salmonella enterica. J Biol Chem 287:15242–15250. http://dx.doi.org/10.1074/jbc.M112.348227.
112. Tuinema BR, Reid-Yu SA, Coombes BK. 2014. Salmonella evades d-amino acid oxidase to promote infection in neutrophils. mBio 5:e01886. http://dx.doi.org/10.1128/mBio.01886-14. [PubMed]
113. Westermann AJ, Förstner KU, Amman F, Barquist L, Chao Y, Schulte LN, Müller L, Reinhardt R, Stadler PF, Vogel J. 2016. Dual RNA-seq unveils noncoding RNA functions in host-pathogen interactions. Nature 529:496–501. http://dx.doi.org/10.1038/nature16547.
114. Saliba AE, Westermann AJ, Gorski SA, Vogel J. 2014. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860. http://dx.doi.org/10.1093/nar/gku555. [PubMed]
115. Saliba AE, Li L, Westermann AJ, Appenzeller S, Stapels DA, Schulte LN, Helaine S, Vogel J. 2016. Single-cell RNA-seq ties macrophage polarization to growth rate of intracellular Salmonella. Nat Microbiol 2:16206. http://dx.doi.org/10.1038/nmicrobiol.2016.206.
116. Watson KG, Holden DW. 2010. Dynamics of growth and dissemination of Salmonellain vivo. Cell Microbiol 12:1389–1397. http://dx.doi.org/10.1111/j.1462-5822.2010.01511.x.
117. Gog JR, Murcia A, Osterman N, Restif O, McKinley TJ, Sheppard M, Achouri S, Wei B, Mastroeni P, Wood JL, Maskell DJ, Cicuta P, Bryant CE. 2012. Dynamics of Salmonella infection of macrophages at the single cell level. J R Soc Interface 9:2696–2707. http://dx.doi.org/10.1098/rsif.2012.0163. [PubMed]
118. Richter-Dahlfors A, Buchan AM, Finlay BB. 1997. Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580. http://dx.doi.org/10.1084/jem.186.4.569.
119. Salcedo SP, Noursadeghi M, Cohen J, Holden DW. 2001. Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell Microbiol 3:587–597. http://dx.doi.org/10.1046/j.1462-5822.2001.00137.x. [PubMed]
120. Mastroeni P, Grant A, Restif O, Maskell D. 2009. A dynamic view of the spread and intracellular distribution of Salmonella enterica. Nat Rev Microbiol 7:73–80. http://dx.doi.org/10.1038/nrmicro2034.
121. Claudi B, Spröte P, Chirkova A, Personnic N, Zankl J, Schürmann N, Schmidt A, Bumann D. 2014. Phenotypic variation of Salmonella in host tissues delays eradication by antimicrobial chemotherapy. Cell 158:722–733. http://dx.doi.org/10.1016/j.cell.2014.06.045.
122. Burton NA, Schürmann N, Casse O, Steeb AK, Claudi B, Zankl J, Schmidt A, Bumann D. 2014. Disparate impact of oxidative host defenses determines the fate of Salmonella during systemic infection in mice. Cell Host Microbe 15:72–83. http://dx.doi.org/10.1016/j.chom.2013.12.006.
123. Bumann D. 2015. Heterogeneous host-pathogen encounters: act locally, think globally. Cell Host Microbe 17:13–19. http://dx.doi.org/10.1016/j.chom.2014.12.006. [PubMed]
124. Gerdes K, Maisonneuve E. 2012. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66:103–123. http://dx.doi.org/10.1146/annurev-micro-092611-150159. [PubMed]
125. Hauryliuk V, Atkinson GC, Murakami KS, Tenson T, Gerdes K. 2015. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat Rev Microbiol 13:298–309. http://dx.doi.org/10.1038/nrmicro3448.
126. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:539–548. http://dx.doi.org/10.1016/j.cell.2014.02.050.
127. Kussell E, Leibler S. 2005. Phenotypic diversity, population growth, and information in fluctuating environments. Science 309:2075–2078. http://dx.doi.org/10.1126/science.1114383.
128. Kussell E, Kishony R, Balaban NQ, Leibler S. 2005. Bacterial persistence: a model of survival in changing environments. Genetics 169:1807–1814. http://dx.doi.org/10.1534/genetics.104.035352.
129. Lobato-Márquez D, Díaz-Orejas R, García-Del Portillo F. 2016. Toxin-antitoxins and bacterial virulence. FEMS Microbiol Rev 40:592–609. http://dx.doi.org/10.1093/femsre/fuw022.
130. Helaine S, Kugelberg E. 2014. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol 22:417–424. http://dx.doi.org/10.1016/j.tim.2014.03.008.
131. Page R, Peti W. 2016. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208–214. http://dx.doi.org/10.1038/nchembio.2044. [PubMed]
132. Correia FF, D’Onofrio A, Rejtar T, Li L, Karger BL, Makarova K, Koonin EV, Lewis K. 2006. Kinase activity of overexpressed HipA is required for growth arrest and multidrug tolerance in Escherichia coli. J Bacteriol 188:8360–8367. http://dx.doi.org/10.1128/JB.01237-06.
133. Germain E, Castro-Roa D, Zenkin N, Gerdes K. 2013. Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248–254. http://dx.doi.org/10.1016/j.molcel.2013.08.045. [PubMed]
134. Lobato-Márquez D, Moreno-Córdoba I, Figueroa V, Díaz-Orejas R, García-del Portillo F. 2015. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci Rep 5:9374. http://dx.doi.org/10.1038/srep09374.
135. Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S. 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63:86–96. http://dx.doi.org/10.1016/j.molcel.2016.05.002. [PubMed]
136. Nuccio SP, Bäumler AJ. 2014. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. mBio 5:e00929-e14. http://dx.doi.org/10.1128/mBio.00929-14. [PubMed]
137. Srikumar S, Kröger C, Hébrard M, Colgan A, Owen SV, Sivasankaran SK, Cameron AD, Hokamp K, Hinton JC. 2015. RNA-seq brings new insights to the intra-macrophage transcriptome of Salmonella Typhimurium. PLoS Pathog 11:e1005262. http://dx.doi.org/10.1371/journal.ppat.1005262.
138. Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJ, Ahmad N, Rhen M, Hinton JC. 2008. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol 10:958–984. http://dx.doi.org/10.1111/j.1462-5822.2007.01099.x.
139. Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR, Hale C, Heath JN, Wileman T, Clare S, Kane L, Goulding D, Otto TD, Kay S, Doffinger R, Cooke FJ, Carmichael A, Lever AML, Parkhill J, MacLennan CA, Kumararatne D, Dougan G, Kingsley RA. 2016. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat Microbiol 1:15023. http://dx.doi.org/10.1038/nmicrobiol.2015.23.
140. Okoro CK, Barquist L, Connor TR, Harris SR, Clare S, Stevens MP, Arends MJ, Hale C, Kane L, Pickard DJ, Hill J, Harcourt K, Parkhill J, Dougan G, Kingsley RA. 2015. Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa. PLoS Negl Trop Dis 9:e0003611. http://dx.doi.org/10.1371/journal.pntd.0003611.
141. Wrande M, Andrews-Polymenis H, Twedt DJ, Steele-Mortimer O, Porwollik S, McClelland M, Knodler LA. 2016. Genetic determinants of Salmonella enterica serovar Typhimurium proliferation in the cytosol of epithelial cells. Infect Immun 84:3517–3526. http://dx.doi.org/10.1128/IAI.00734-16.
142. Schlumberger MC, Hardt WD. 2006. Salmonella type III secretion effectors: pulling the host cell’s strings. Curr Opin Microbiol 9:46–54. http://dx.doi.org/10.1016/j.mib.2005.12.006.
143. Rosselin M, Virlogeux-Payant I, Roy C, Bottreau E, Sizaret PY, Mijouin L, Germon P, Caron E, Velge P, Wiedemann A. 2010. Rck of Salmonella enterica, subspecies enterica serovar Enteritidis, mediates Zipper-like internalization. Cell Res 20:647–664. http://dx.doi.org/10.1038/cr.2010.45. [PubMed]
microbiolspec.MTBP-0009-2016.citations
cm/5/4
content/journal/microbiolspec/10.1128/microbiolspec.MTBP-0009-2016
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MTBP-0009-2016
2017-07-21
2017-09-26

Abstract:

More than a century ago, infections by were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some serovars could be transmitted by “carriers,” individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both and infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of serovars.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(1) Limited proliferation of serovar Typhimurium in intestinal epithelial cells (IECs) during penetration of the intestinal barrier. The pathogen proliferates actively in a few IECs, which are rapidly extruded by a mechanism that depends on the inflammasome proteins NAIP/NLRC4. This proliferation was reported to occur within phagosomes and in the cytosol. Bacteria have also been observed in phagocytic (neutrophils, macrophages) and nonphagocytic cells (fibroblasts) in the underlying lamina propria. (2) Extrusion of heavily infected epithelial cells observed in the epithelium lining the gallbladder. As in the IECs, there is also evidence for replication of intracellular cytosolic serovar Typhimurium cells. (3) Serovar Typhimurium targets mainly macrophages in the liver. The most-accepted models support an increase in infection foci due to subsequent episodes of macrophage infection, a few rounds of intracellular replication of the pathogen, and reinfection of nearby macrophages. The intracellular lifestyle in these macrophages is entirely intraphagosomal. (4) Serovar Typhimurium colonizes distinct types of phagocytes in the red pulp of the spleen. The infection is highly contained by inflammatory monocytes and neutrophils, although some bacteria colonize and persist in resident macrophages. Note that the proliferation detected in the few epithelial cells that extrude in the intestinal epithelium and gallbladder ultimately favors shedding of the pathogen outside the host. Although not shown, serovar Typhimurium has also been shown to persist in macrophages present in mesenteric lymph nodes.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.MTBP-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

These examples include (A) the production by intracellular serovar Typhi of defined type III effector proteins targeting Rab proteins (see text for details); (B) inflammasome intervention in IECs to exclude cells heavily infected with serovar Typhimurium; and (C) attenuation of intracellular growth in fibroblasts linked to changes in yet undefined functions of intracellular serovar Typhimurium regulated by the two-component regulatory system PhoP-PhoQ or other regulators (SlyA, RpoS). This process could be either followed by or occur concomitantly with selective autophagy attack (aggrephagy). Formation of small-colony serovar Typhimurium variants has also been shown to occur in fibroblasts at long postinfection times. (D) The actions of toxins encoded in TA loci contribute to the selection of serovar Typhimurium persisters following ingestion by macrophages.

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.MTBP-0009-2016
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

and host responses discussed in this chapter with probable impact on host-to-host transmission of the pathogen

Source: microbiolspec July 2017 vol. 5 no. 4 doi:10.1128/microbiolspec.MTBP-0009-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error