1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Transmission Surveillance for Antimicrobial-Resistant Organisms in the Health System

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Johann D. D. Pitout1
  • Editors: Fernando Baquero2, Emilio Bouza3, J.A. Gutiérrez-Fuentes4, Teresa M. Coque5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Departments of Pathology & Laboratory Medicine, Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada; and Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa; 2: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 3: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 4: Complutensis University, Madrid, Spain; 5: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
  • Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.MTBP-0010-2016
  • Received 06 March 2018 Accepted 10 July 2018 Published 07 September 2018
  • Johann D. D. Pitout, [email protected]
image of Transmission Surveillance for Antimicrobial-Resistant Organisms in the Health System
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Transmission Surveillance for Antimicrobial-Resistant Organisms in the Health System, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/MTBP-0010-2016-1.gif /docserver/preview/fulltext/microbiolspec/6/5/MTBP-0010-2016-2.gif
  • Abstract:

    Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility patterns undertaken by clinical microbiology laboratories on bacteria isolated from clinical specimens. Global surveillance programs have shown that antibiotic resistance is a major threat to the public at large and play a crucial role in the development of enhanced diagnostics as well as potential vaccines and novel antibiotics with activity against antimicrobial-resistant organisms. This review focuses primarily on examples of global surveillance systems. Local, national, and global integrated surveillance programs with sufficient data linkage between these schemes, accompanied by enhanced genomics and user-friendly bioinformatics systems, promise to overcome some of the stumbling blocks encountered in the understanding, emergence, and transmission of antimicrobial-resistant organisms.

  • Citation: Pitout J. 2018. Transmission Surveillance for Antimicrobial-Resistant Organisms in the Health System. Microbiol Spectrum 6(5):MTBP-0010-2016. doi:10.1128/microbiolspec.MTBP-0010-2016.

References

1. Medina E, Pieper DH. 2016. Tackling threats and future problems of multidrug-resistant bacteria. Curr Top Microbiol Immunol 398:3–33. http://dx.doi.org/10.1007/82_2016_492.
2. Huskins WC. 2007. Interventions to prevent transmission of antimicrobial-resistant bacteria in the intensive care unit. Curr Opin Crit Care 13:572–577. http://dx.doi.org/10.1097/MCC.0b013e3282efc30e. [PubMed]
3. Infectious Diseases Society of America. 2010. The 10 × ’20 Initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin Infect Dis 50:1081–1083. http://dx.doi.org/10.1086/652237. [PubMed]
4. Baker S. 2015. Infectious disease. A return to the pre-antimicrobial era? Science 347:1064–1066. http://dx.doi.org/10.1126/science.aaa2868. [PubMed]
5. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. 2006. Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 50:1257–1262. http://dx.doi.org/10.1128/AAC.50.4.1257-1262.2006. [PubMed]
6. Grayson ML, Jarvie LJ, Martin R, Johnson PD, Jodoin ME, McMullan C, Gregory RH, Bellis K, Cunnington K, Wilson FL, Quin D, Kelly AM, Hand Hygiene Study Group and Hand Hygiene Statewide Roll-out Group, Victorian Quality Council. 2008. Significant reductions in methicillin-resistant Staphylococcus aureus bacteraemia and clinical isolates associated with a multisite, hand hygiene culture-change program and subsequent successful statewide roll-out. Med J Aust 188:633–640. [PubMed]
7. Nolan SM, Gerber JS, Zaoutis T, Prasad P, Rettig S, Gross K, McGowan KL, Reilly AF, Coffin SE. 2009. Outbreak of vancomycin-resistant enterococcus colonization among pediatric oncology patients. Infect Control Hosp Epidemiol 30:338–345. http://dx.doi.org/10.1086/596202. [PubMed]
8. Calfee DP, Farr BM. 2002. Infection control and cost control in the era of managed care. Infect Control Hosp Epidemiol 23:407–410 http://dx.doi.org/10.1086/502077. [PubMed]
9. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM, SHEA. 2003. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect Control Hosp Epidemiol 24:362–386. [PubMed]
10. Farr BM. 2004. Prevention and control of methicillin-resistant Staphylococcus aureus infections. Curr Opin Infect Dis 17:317–322. http://dx.doi.org/10.1097/01.qco.0000136926.52673.cd. [PubMed]
11. Spellberg B, Bartlett JG, Gilbert DN. 2013. The future of antibiotics and resistance. N Engl J Med 368:299–302. http://dx.doi.org/10.1056/NEJMp1215093. [PubMed]
12. Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, Laxminarayan R, Heddini A, Stelling J. 2011. A framework for global surveillance of antibiotic resistance. Drug Resist Updat 14:79–87. http://dx.doi.org/10.1016/j.drup.2011.02.007. [PubMed]
13. Johnson AP. 2015. Surveillance of antibiotic resistance. Philos Trans R Soc Lond B Biol Sci 370:20140080. http://dx.doi.org/10.1098/rstb.2014.0080. [PubMed]
14. World Health Organization (WHO). 2014. Antimicrobial Resistance: Global Report on Surveillance 2014. WHO, Geneva, Switzerland.
15. Stelling JM, O’Brien TF. 1997. Surveillance of antimicrobial resistance: the WHONET program. Clin Infect Dis 24(Suppl 1):S157–S168. http://dx.doi.org/10.1093/clinids/24.Supplement_1.S157. [PubMed]
16. O’Brien TF, Stelling J. 2011. Integrated multilevel surveillance of the world’s infecting microbes and their resistance to antimicrobial agents. Clin Microbiol Rev 24:281–295. http://dx.doi.org/10.1128/CMR.00021-10. [PubMed]
17. Ghosh AN, Bhatta DR, Ansari MT, Tiwari HK, Mathuria JP, Gaur A, Supram HS, Gokhale S. 2013. Application of WHONET in the antimicrobial resistance surveillance of uropathogens: a first user experience from Nepal. J Clin Diagn Res 7:845–848.
18. Weist K, Diaz Högberg L. 2014. ECDC publishes 2013 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Euro Surveill 19:20962. http://dx.doi.org/10.2807/1560-7917.ES2014.19.46.20962. [PubMed]
19. European Centre for Disease Prevention and Control (ECDC). 2015. Antimicrobial Resistance Surveillance in Europe 2014. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC, Stockholm, Sweden.
20. Bielicki JA, Lundin R, Sharland M, Project A, ARPEC Project. 2015. Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J 34:734–741. http://dx.doi.org/10.1097/INF.0000000000000652. [PubMed]
21. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. 2013. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol 34:1–14. http://dx.doi.org/10.1086/668770. [PubMed]
22. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Evangelista AT, Critchley IA, Sahm DF. 2002. Susceptibility to fluoroquinolones among commonly isolated Gram-negative bacilli in 2000: TRUST and TSN data for the United States. Int J Antimicrob Agents 19:21–31. http://dx.doi.org/10.1016/S0924-8579(01)00466-6.
23. Centers for Disease Control and Prevention (CDC). 2013. Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep 62:165–170. [PubMed]
24. Brennan BM, Coyle JR, Marchaim D, Pogue JM, Boehme M, Finks J, Malani AN, VerLee KE, Buckley BO, Mollon N, Sundin DR, Washer LL, Kaye KS. 2014. Statewide surveillance of carbapenem-resistant Enterobacteriaceae in Michigan. Infect Control Hosp Epidemiol 35:342–349. http://dx.doi.org/10.1086/675611. [PubMed]
25. Johnson JK, Wilson LE, Zhao L, Richards K, Thom KA, Harris AD, Maryland Multidrug-Resistant Organism Prevention Collaborative. 2014. Point prevalence of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae in Maryland. Infect Control Hosp Epidemiol 35:443–445. http://dx.doi.org/10.1086/675610. [PubMed]
26. Wright MS, Perez F, Brinkac L, Jacobs MR, Kaye K, Cober E, van Duin D, Marshall SH, Hujer AM, Rudin SD, Hujer KM, Bonomo RA, Adams MD. 2014. Population structure of KPC-producing Klebsiella pneumoniae isolates from midwestern U.S. hospitals. Antimicrob Agents Chemother 58:4961–4965. http://dx.doi.org/10.1128/AAC.00125-14. [PubMed]
27. Lin MY, Lyles-Banks RD, Lolans K, Hines DW, Spear JB, Petrak R, Trick WE, Weinstein RA, Hayden MK, Centers for Disease Control and Prevention Epicenters Program. 2013. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 57:1246–1252. http://dx.doi.org/10.1093/cid/cit500. [PubMed]
28. Thaden JT, Lewis SS, Hazen KC, Huslage K, Fowler VG, Jr, Moehring RW, Chen LF, Jones CD, Moore ZS, Sexton DJ, Anderson DJ. 2014. Rising rates of carbapenem-resistant Enterobacteriaceae in community hospitals: a mixed-methods review of epidemiology and microbiology practices in a network of community hospitals in the southeastern United States. Infect Control Hosp Epidemiol 35:978–983. http://dx.doi.org/10.1086/677157. [PubMed]
29. Lesho EP, Waterman PE, Chukwuma U, McAuliffe K, Neumann C, Julius MD, Crouch H, Chandrasekera R, English JF, Clifford RJ, Kester KE. 2014. The Antimicrobial Resistance Monitoring and Research (ARMoR) Program: the US Department of Defense response to escalating antimicrobial resistance. Clin Infect Dis 59:390–397. http://dx.doi.org/10.1093/cid/ciu319. [PubMed]
30. Livermore DM, Hope R, Reynolds R, Blackburn R, Johnson AP, Woodford N. 2013. Declining cephalosporin and fluoroquinolone non-susceptibility among bloodstream Enterobacteriaceae from the UK: links to prescribing change? J Antimicrob Chemother 68:2667–2674. http://dx.doi.org/10.1093/jac/dkt212. [PubMed]
31. White AR, BSAC Working Parties on Resistance Surveillance. 2008. The British Society for Antimicrobial Chemotherapy Resistance Surveillance Project: a successful collaborative model. J Antimicrob Chemother 62(Suppl 2):ii3–ii14. http://dx.doi.org/10.1093/jac/dkn348. [PubMed]
32. Lascols C, Peirano G, Hackel M, Laupland KB, Pitout JD. 2013. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother 57:130–136. http://dx.doi.org/10.1128/AAC.01686-12. [PubMed]
33. Peirano G, Bradford PA, Kazmierczak KM, Badal RE, Hackel M, Hoban DJ, Pitout JD. 2014. Global incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis 20:1928–1931. http://dx.doi.org/10.3201/eid2011.141388. [PubMed]
34. Kazmierczak KM, Biedenbach DJ, Hackel M, Rabine S, de Jonge BL, Bouchillon SK, Sahm DF, Bradford PA. 2016. Global dissemination of blaKPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob Agents Chemother 60:4490–4500. http://dx.doi.org/10.1128/AAC.00107-16. [PubMed]
35. Nguyen KV, Thi Do NT, Chandna A, Nguyen TV, Pham CV, Doan PM, Nguyen AQ, Thi Nguyen CK, Larsson M, Escalante S, Olowokure B, Laxminarayan R, Gelband H, Horby P, Thi Ngo HB, Hoang MT, Farrar J, Hien TT, Wertheim HF. 2013. Antibiotic use and resistance in emerging economies: a situation analysis for Viet Nam. BMC Public Health 13:1158 http://dx.doi.org/10.1186/1471-2458-13-1158. [PubMed]
36. Wertheim HF, Chandna A, Vu PD, Pham CV, Nguyen PD, Lam YM, Nguyen CV, Larsson M, Rydell U, Nilsson LE, Farrar J, Nguyen KV, Hanberger H. 2013. Providing impetus, tools, and guidance to strengthen national capacity for antimicrobial stewardship in Viet Nam. PLoS Med 10:e1001429. http://dx.doi.org/10.1371/journal.pmed.1001429. [PubMed]
37. Shallcross LJ, Davies SC. 2014. The World Health Assembly resolution on antimicrobial resistance. J Antimicrob Chemother 69:2883–2885. http://dx.doi.org/10.1093/jac/dku346. [PubMed]
38. Hernández-Gómez C, Blanco VM, Motoa G, Correa A, Vallejo M, Villegas MV, Grupo de Resistencia Bacteriana Nosocomial en Colombia. 2014. Evolution of antimicrobial resistance in Gram negative bacilli from intensive care units in Colombia. Biomedica 34(Suppl 1):91–100. (In Spanish.) http://dx.doi.org/10.7705/biomedica.v34i0.1667. [PubMed]
39. Teodoro D, Pasche E, Gobeill J, Emonet S, Ruch P, Lovis C. 2012. Building a transnational biosurveillance network using semantic web technologies: requirements, design, and preliminary evaluation. J Med Internet Res 14:e73. http://dx.doi.org/10.2196/jmir.2043. [PubMed]
40. Brandt C, Makarewicz O, Fischer T, Stein C, Pfeifer Y, Werner G, Pletz MW. 2014. The bigger picture: the history of antibiotics and antimicrobial resistance displayed by scientometric data. Int J Antimicrob Agents 44:424–430. http://dx.doi.org/10.1016/j.ijantimicag.2014.08.001. [PubMed]
41. Conlan S, Thomas PJ, Deming C, Park M, Lau AF, Dekker JP, Snitkin ES, Clark TA, Luong K, Song Y, Tsai YC, Boitano M, Dayal J, Brooks SY, Schmidt B, Young AC, Thomas JW, Bouffard GG, Blakesley RW, NISC Comparative Sequencing Program, Mullikin JC, Korlach J, Henderson DK, Frank KM, Palmore TN, Segre JA, Segre JA. 2014. Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci Transl Med 6:254ra126. http://dx.doi.org/10.1126/scitranslmed.3009845. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MTBP-0010-2016
2018-09-07
2018-11-19

Abstract:

Surveillance of antibiotic resistance involves the collection of antibiotic susceptibility patterns undertaken by clinical microbiology laboratories on bacteria isolated from clinical specimens. Global surveillance programs have shown that antibiotic resistance is a major threat to the public at large and play a crucial role in the development of enhanced diagnostics as well as potential vaccines and novel antibiotics with activity against antimicrobial-resistant organisms. This review focuses primarily on examples of global surveillance systems. Local, national, and global integrated surveillance programs with sufficient data linkage between these schemes, accompanied by enhanced genomics and user-friendly bioinformatics systems, promise to overcome some of the stumbling blocks encountered in the understanding, emergence, and transmission of antimicrobial-resistant organisms.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Tables

Generic image for table
TABLE 1

Summary of surveillance networks discussed herein

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.MTBP-0010-2016

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error