1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Insects and the Transmission of Bacterial Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Maureen Laroche1, Didier Raoult2, Philippe Parola3
  • Editors: Fernando Baquero4, Emilio Bouza5, J.A. Gutiérrez-Fuentes6, Teresa M. Coque7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; 2: Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France; 3: Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France; 4: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 5: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain; 6: Complutensis University, Madrid, Spain; 7: Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
  • Source: microbiolspec October 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.MTBP-0017-2016
  • Received 12 March 2018 Accepted 21 March 2018 Published 11 October 2018
  • Pr. Philippe Parola, [email protected]
image of Insects and the Transmission of Bacterial Agents
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Insects and the Transmission of Bacterial Agents, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/MTBP-0017-2016-1.gif /docserver/preview/fulltext/microbiolspec/6/5/MTBP-0017-2016-2.gif
  • Abstract:

    Arthropods are small invertebrate animals, among which some species are hematophagous. It is during their blood meal that they can transmit pathogenic microorganisms that they may be harboring to the vertebrate host that they parasitize, which in turn will potentially develop a vector-borne disease. The transmission may occur directly through their bite, but also through contaminated feces. Zoonotic diseases, diseases that can naturally be transmitted between humans and animals, are a considerable part of emerging diseases worldwide, and a major part of them are vector-borne. Research and public attention has long been focused on malaria and mosquito-borne arboviruses, and bacterial vector-borne diseases remains today a neglected field of medical entomology. Despite the emphasis on Lyme disease in recent decades, and despite the major outbreaks caused by bacteria in the last few centuries, this field has in fact been poorly explored and is therefore relatively poorly known, other than the most famous examples such as the plague and epidemic typhus outbreaks. Here we propose to review the state of knowledge of bacterial agents transmitted by arthropod vectors.

  • Keywords: lice; Bacteria; Rickettsia; arthropods; mosquitoes

  • Citation: Laroche M, Raoult D, Parola P. 2018. Insects and the Transmission of Bacterial Agents. Microbiol Spectrum 6(5):MTBP-0017-2016. doi:10.1128/microbiolspec.MTBP-0017-2016.

References

1. Giribet G, Ribera C. 2000. A review of arthropod phylogeny: new data based on ribosomal DNA sequences and direct character optimization. Cladistics 16:204–231. http://dx.doi.org/10.1111/j.1096-0031.2000.tb00353.x.
2. Pérez-Eid C. 2007. Les tiques: identification, biologie, importance médicale et vétérinaire. Tec & Doc Lavoisier.
3. Mathison BA, Pritt BS. 2014. Laboratory identification of arthropod ectoparasites. Clin Microbiol Rev 27:48–67. http://dx.doi.org/10.1128/CMR.00008-13. [PubMed]
4. Zeller H, Marrama L, Sudre B, Van Bortel W, Warns-Petit E. 2013. Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin Microbiol Infect 19:693–698. http://dx.doi.org/10.1111/1469-0691.12230. [PubMed]
5. Musso D, Gubler DJ. 2016. Zika virus. Clin Microbiol Rev 29:487–524. http://dx.doi.org/10.1128/CMR.00072-15. [PubMed]
6. Stanek G, Wormser GP, Gray J, Strle F. 2012. Lyme borreliosis. Lancet 379:461–473. http://dx.doi.org/10.1016/S0140-6736(11)60103-7.
7. Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, Abdad MY, Stenos J, Bitam I, Fournier PE, Raoult D. 2013. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev 26:657–702. http://dx.doi.org/10.1128/CMR.00032-13. [PubMed]
8. Mueller AK, Kohlhepp F, Hammerschmidt C, Michel K. 2010. Invasion of mosquito salivary glands by malaria parasites: prerequisites and defense strategies. Int J Parasitol 40:1229–1235. http://dx.doi.org/10.1016/j.ijpara.2010.05.005. [PubMed]
9. Andersen JF. 2010. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon 56:1120–1129. http://dx.doi.org/10.1016/j.toxicon.2009.11.002. [PubMed]
10. Benelli G, Jeffries CL, Walker T. 2016. Biological control of mosquito vectors: past, present, and future. Insects 7:E52. http://dx.doi.org/10.3390/insects704005. [PubMed]
11. Bäckman S, Näslund J, Forsman M, Thelaus J. 2015. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci Rep 5:7793. http://dx.doi.org/10.1038/srep07793. [PubMed]
12. La Scola B, Meconi S, Fenollar F, Rolain JM, Roux V, Raoult D. 2002. Emended description of Rickettsia felis (Bouyer et al. 2001), a temperature-dependent cultured bacterium. Int J Syst Evol Microbiol 52:2035–2041. [PubMed]
13. Parola P. 2011. Rickettsia felis: from a rare disease in the USA to a common cause of fever in sub-Saharan Africa. Clin Microbiol Infect 17:996–1000. http://dx.doi.org/10.1111/j.1469-0691.2011.03516.x. [PubMed]
14. Mediannikov O, Socolovschi C, Edouard S, Fenollar F, Mouffok N, Bassene H, Diatta G, Tall A, Niangaly H, Doumbo O, Lekana-Douki JB, Znazen A, Sarih M, Ratmanov P, Richet H, Ndiath MO, Sokhna C, Parola P, Raoult D. 2013. Common epidemiology of Rickettsia felis infection and malaria, Africa. Emerg Infect Dis 19:1775–1783. http://dx.doi.org/10.3201/eid1911.130361. [PubMed]
15. Angelakis E, Mediannikov O, Parola P, Raoult D. 2016. Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol 32:554–564. http://dx.doi.org/10.1016/j.pt.2016.04.009. [PubMed]
16. Dieme C, Bechah Y, Socolovschi C, Audoly G, Berenger JM, Faye O, Raoult D, Parola P. 2015. Transmission potential of Rickettsia felis infection by Anopheles gambiae mosquitoes. Proc Natl Acad Sci U S A 112:8088–8093. http://dx.doi.org/10.1073/pnas.1413835112. [PubMed]
17. Boutellis A, Abi-Rached L, Raoult D. 2014. The origin and distribution of human lice in the world. Infect Genet Evol 23:209–217. http://dx.doi.org/10.1016/j.meegid.2014.01.017. [PubMed]
18. Raoult D, Roux V. 1999. The body louse as a vector of reemerging human diseases. Clin Infect Dis 29:888–911. http://dx.doi.org/10.1086/520454. [PubMed]
19. Raoult D, Ndihokubwayo JB, Tissot-Dupont H, Roux V, Faugere B, Abegbinni R, Birtles RJ. 1998. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352:353–358. http://dx.doi.org/10.1016/S0140-6736(97)12433-3.
20. Drancourt M, Tran-Hung L, Courtin J, Lumley H, Raoult D. 2005. Bartonella quintana in a 4000-year-old human tooth. J Infect Dis 191:607–611. http://dx.doi.org/10.1086/427041. [PubMed]
21. Raoult D, Dutour O, Houhamdi L, Jankauskas R, Fournier PE, Ardagna Y, Drancourt M, Signoli M, La VD, Macia Y, Aboudharam G. 2006. Evidence for louse-transmitted diseases in soldiers of Napoleon’s Grand Army in Vilnius. J Infect Dis 193:112–120. http://dx.doi.org/10.1086/498534. [PubMed]
22. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A 95:12637–12640. http://dx.doi.org/10.1073/pnas.95.21.12637. [PubMed]
23. Raoult D, Aboudharam G, Crubézy E, Larrouy G, Ludes B, Drancourt M. 2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A 97:12800–12803. http://dx.doi.org/10.1073/pnas.220225197. [PubMed]
24. Piarroux R, Abedi AA, Shako JC, Kebela B, Karhemere S, Diatta G, Davoust B, Raoult D, Drancourt M. 2013. Plague epidemics and lice, Democratic Republic of the Congo. Emerg Infect Dis 19:505–506. http://dx.doi.org/10.3201/eid1903.121542. [PubMed]
25. Lewis RE. 1993. Checklist of the valid genus-group names in the Siphonaptera, 1758–1991. J Med Entomol 30:64–79. http://dx.doi.org/10.1093/jmedent/30.1.64. [PubMed]
26. Mullen GR, Durden LA. 2009. Medical and Veterinary Entomology, 2nd ed. Academic Press, Burlington, MA.
27. Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D. 2010. Fleas and flea-borne diseases. Int J Infect Dis 14:e667–e676. http://dx.doi.org/10.1016/j.ijid.2009.11.011. [PubMed]
28. Leulmi H, Socolovschi C, Laudisoit A, Houemenou G, Davoust B, Bitam I, Raoult D, Parola P. 2014. Detection of Rickettsia felis, Rickettsia typhi, Bartonella species and Yersinia pestis in fleas (Siphonaptera) from Africa. PLoS Negl Trop Dis 8:e3152. http://dx.doi.org/10.1371/journal.pntd.0003152. [PubMed]
29. Stenseth NC, Atshabar BB, Begon M, Belmain SR, Bertherat E, Carniel E, Gage KL, Leirs H, Rahalison L. 2008. Plague: past, present, and future. PLoS Med 5:e3. http://dx.doi.org/10.1371/journal.pmed.0050003. [PubMed]
30. Prentice MB, Rahalison L. 2007. Plague. Lancet 369:1196–1207. http://dx.doi.org/10.1016/S0140-6736(07)60566-2.
31. Perry RD, Fetherston JD. 1997. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10:35–66. [PubMed]
32. Azad AF, Radulovic S, Higgins JA, Noden BH, Troyer JM. 1997. Flea-borne rickettsioses: ecologic considerations. Emerg Infect Dis 3:319–327. http://dx.doi.org/10.3201/eid0303.970308. [PubMed]
33. Dumler JS, Taylor JP, Walker DH. 1991. Clinical and laboratory features of murine typhus in south Texas, 1980 through 1987. JAMA 266:1365–1370. http://dx.doi.org/10.1001/jama.1991.03470100057033. [PubMed]
34. Hirunkanokpun S, Thepparit C, Foil LD, Macaluso KR. 2011. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Mol Ecol 20:4577–4586. http://dx.doi.org/10.1111/j.1365-294X.2011.05289.x. [PubMed]
35. Thepparit C, Hirunkanokpun S, Popov VL, Foil LD, Macaluso KR. 2013. Dissemination of bloodmeal acquired Rickettsia felis in cat fleas, Ctenocephalides felis. Parasit Vectors 6:149. http://dx.doi.org/10.1186/1756-3305-6-149. [PubMed]
36. Macaluso KR, Pornwiroon W, Popov VL, Foil LD. 2008. Identification of Rickettsia felis in the salivary glands of cat fleas. Vector Borne Zoonotic Dis 8:391–396. http://dx.doi.org/10.1089/vbz.2007.0218. [PubMed]
37. Moriarty RA, Margileth AM. 1987. Cat scratch disease. Infect Dis Clin North Am 1:575–590. [PubMed]
38. Fournier PE, Lelievre H, Eykyn SJ, Mainardi JL, Marrie TJ, Bruneel F, Roure C, Nash J, Clave D, James E, Benoit-Lemercier C, Deforges L, Tissot-Dupont H, Raoult D. 2001. Epidemiologic and clinical characteristics of Bartonella quintana and Bartonella henselae endocarditis: a study of 48 patients. Medicine (Baltimore) 80:245–251. http://dx.doi.org/10.1097/00005792-200107000-00003.
39. Ives TJ, Marston EL, Regnery RL, Butts JD. 2001. In vitro susceptibilities of Bartonella and Rickettsia spp. to fluoroquinolone antibiotics as determined by immunofluorescent antibody analysis of infected Vero cell monolayers. Int J Antimicrob Agents 18:217–222. http://dx.doi.org/10.1016/S0924-8579(01)00388-0.
40. Rolain JM, Franc M, Davoust B, Raoult D. 2003. Molecular detection of Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis, and Wolbachia pipientis in cat fleas, France. Emerg Infect Dis 9:338–342. http://dx.doi.org/10.3201/eid0903.020278. [PubMed]
41. Kernif T, Leulmi H, Socolovschi C, Berenger JM, Lepidi H, Bitam I, Rolain JM, Raoult D, Parola P. 2014. Acquisition and excretion of Bartonella quintana by the cat flea, Ctenocephalides felis felis. Mol Ecol 23:1204–1212. http://dx.doi.org/10.1111/mec.12663. [PubMed]
42. Laroche M, Berenger JM, Mediannikov O, Raoult D, Parola P. 2017. Detection of a potential new Bartonella species “Candidatus Bartonella rondoniensis” in human biting kissing bugs (Reduviidae; Triatominae). PLoS Negl Trop Dis 11:e0005297. http://dx.doi.org/10.1371/journal.pntd.0005297. [PubMed]
43. Bern C. 2015. Chagas’ disease. N Engl J Med 373:456–466. http://dx.doi.org/10.1056/NEJMra1410150. [PubMed]
44. Dujardin JP, Lam TX, Khoa PT, Schofield CJ. 2015. The rising importance of Triatoma rubrofasciata. Mem Inst Oswaldo Cruz 110:319–323. http://dx.doi.org/10.1590/0074-02760140446. [PubMed]
45. Guerri-Guttenberg RA, Ciannameo A, Di Girolamo C, Milei JJ. 2009. Chagas disease: an emerging public health problem in Italy? Infez Med 17:5–13. (In Italian.) [PubMed]
46. Delaunay P. 2012. Human travel and traveling bedbugs. J Travel Med 19:373–379. http://dx.doi.org/10.1111/j.1708-8305.2012.00653.x. [PubMed]
47. Delaunay P, Blanc V, Dandine M, Del Giudice P, Franc M, Pomares-Estran C, Marty P, Chosidow O. 2009. Bedbugs and healthcare-associated dermatitis, France. Emerg Infect Dis 15:989–990. http://dx.doi.org/10.3201/eid1506.081480. [PubMed]
48. Angelakis E, Socolovschi C, Raoult D. 2013. Bartonella quintana in Cimex hemipterus, Rwanda. Am J Trop Med Hyg 89:986–987. http://dx.doi.org/10.4269/ajtmh.13-0182. [PubMed]
49. Leulmi H, Bitam I, Berenger JM, Lepidi H, Rolain JM, Almeras L, Raoult D, Parola P. 2015. Competence of Cimex lectularius bed bugs for the transmission of Bartonella quintana, the agent of trench fever. PLoS Negl Trop Dis 9:e0003789. http://dx.doi.org/10.1371/journal.pntd.0003789. [PubMed]
50. Parola P, Musso D, Raoult D. 2016. Rickettsia felis: the next mosquito-borne outbreak? Lancet Infect Dis 16:1112–1113. http://dx.doi.org/10.1016/S1473-3099(16)30331-0.
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.MTBP-0017-2016
2018-10-11
2018-12-17

Abstract:

Arthropods are small invertebrate animals, among which some species are hematophagous. It is during their blood meal that they can transmit pathogenic microorganisms that they may be harboring to the vertebrate host that they parasitize, which in turn will potentially develop a vector-borne disease. The transmission may occur directly through their bite, but also through contaminated feces. Zoonotic diseases, diseases that can naturally be transmitted between humans and animals, are a considerable part of emerging diseases worldwide, and a major part of them are vector-borne. Research and public attention has long been focused on malaria and mosquito-borne arboviruses, and bacterial vector-borne diseases remains today a neglected field of medical entomology. Despite the emphasis on Lyme disease in recent decades, and despite the major outbreaks caused by bacteria in the last few centuries, this field has in fact been poorly explored and is therefore relatively poorly known, other than the most famous examples such as the plague and epidemic typhus outbreaks. Here we propose to review the state of knowledge of bacterial agents transmitted by arthropod vectors.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error