1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Cholera: Environmental Reservoirs and Impact on Disease Transmission

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    114.18 Kb
  • HTML
    133.40 Kb
  • PDF
    307.72 Kb
  • Authors: Salvador Almagro-Moreno1, Ronald K. Taylor2
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; 2: Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755; 3: University of Louisville, Louisville, KY
  • Source: microbiolspec December 2013 vol. 1 no. 2 doi:10.1128/microbiolspec.OH-0003-2012
  • Received 10 September 2012 Accepted 09 December 2012 Published 20 December 2013
  • Ronald K. Taylor, Ronald.K.Taylor@Dartmouth.Edu
image of Cholera: Environmental Reservoirs and Impact on Disease Transmission
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Cholera: Environmental Reservoirs and Impact on Disease Transmission, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/1/2/OH-0003-2012-1.gif /docserver/preview/fulltext/microbiolspec/1/2/OH-0003-2012-2.gif
  • Abstract:

    is widely known to be the etiological agent of the life-threatening diarrheal disease cholera. Cholera remains a major scourge in many developing countries, infecting hundreds of thousands every year. Remarkably, is a natural inhabitant of brackish riverine, estuarine, and coastal waters, and only a subset of strains are known to be pathogenic to humans. Recent studies have begun to uncover a very complex network of relationships between and other sea dwellers, and the mechanisms associated with the occurrence of seasonal epidemics in regions where cholera is endemic are beginning to be elucidated. Many of the factors required for the organism's survival and persistence in its natural environment have been revealed, as well as the ubiquitous presence of horizontal gene transfer in the emergence of pathogenic strains of . In this article, we will focus on the environmental stage of pathogenic and the interactions of the microorganism with other inhabitants of aquatic environments. We will discuss the impact that its environmental reservoirs have on disease transmission and the distinction between reservoirs of and the vectors that establish cholera as a zoonosis.

  • Citation: Almagro-Moreno S, Taylor R. 2013. Cholera: Environmental Reservoirs and Impact on Disease Transmission. Microbiol Spectrum 1(2):OH-0003-2012. doi:10.1128/microbiolspec.OH-0003-2012.

References

1. Kaper JB, Morris JG, Levine MM. 1995. Cholera. Clin Microbiol Rev 8:4886.
2. Faruque SM, Albert MJ, Mekalanos JJ. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:13011314. [PubMed]
3. Finkelstein RA, LoSpalluto JJ. 1969. Pathogenesis of experimental cholera. Preparation and isolation of choleragen and choleragenoid. J Exp Med 130:185202. [PubMed]
4. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84:28332837. [PubMed]
5. Dalsgaard A, Albert MJ, Taylor DN, Shimada T, Meza R, Serichantalergs O, Echeverria P. 1995. Characterization of Vibrio cholerae non-O1 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J Clin Microbiol 33:27152722. [PubMed]
6. Bagchi K, Echeverria P, Arthur JD, Sethabutr O, Serichantalergs O, Hoge CW. 1993. Epidemic of diarrhea caused by Vibrio cholerae non-O1 that produced heat-stable toxin among Khmers in a camp in Thailand. J Clin Microbiol 31:13151317. [PubMed]
7. Dalsgaard A, Serichantalergs O, Pitarangsi C, Echeverria P. 1995. Molecular characterization and antibiotic susceptibility of Vibrio cholerae non-O1. Epidemiol Infect 114:5163.
8. Morris JG, Wilson R, Davis BR, Wachsmuth IK, Riddle CF, Wathen HG, Pollard RA, Blake PA. 1981. Non-O group 1 Vibrio cholerae gastroenteritis in the United States: clinical, epidemiologic, and laboratory characteristics of sporadic cases. Ann Intern Med 94:656658. [PubMed]
9. Bag PK, Bhowmik P, Hajra TK, Ramamurthy T, Sarkar P, Majumder M, Chowdhury G, Das SC. 2008. Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Appl Environ Microbiol 74:56355644. [PubMed][CrossRef]
10. Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P, Faruque SM, Rahman MH, Heidelberg JF, Decker J, Li L, Montgomery KT, Grills G, Kucherlapati R, Mekalanos JJ. 2005. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. Proc Natl Acad Sci USA 102:34653470. [PubMed]
11. Shin OS, Tam VC, Suzuki M, Ritchie JM, Bronson RT, Waldor MK, Mekalanos JJ. 2011. Type III secretion is essential for the rapidly fatal diarrheal disease caused by non-O1, non-O139 Vibrio cholerae. MBio 2:e00106-11. [PubMed][CrossRef]
12. Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF. 2006. The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4:697704. [PubMed][CrossRef]
13. de Magny GC, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Sack RB, Huq A, Colwell RR. 2011. Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl Environ Microbiol 77:61256132. [PubMed][CrossRef]
14. Huq A, West PA, Small EB, Huq MI, Colwell RR. 1984. Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar 01 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420424. [PubMed]
15. Senderovich Y, Izhaki I, Halpern M. 2010. Fish as reservoirs and vectors of Vibrio cholerae. PLoS ONE 5:e8607. [PubMed][CrossRef]
16. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR. 1990. Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:19771980. [PubMed]
17. Abd H, Saeed A, Weintraub A, Nair GB, Sandstrm G. 2007. Vibrio cholerae O1 strains are facultative intracellular bacteria, able to survive and multiply symbiotically inside the aquatic free-living amoeba Acanthamoeba castellanii. FEMS Microbiol Ecol 60:3339. [PubMed][CrossRef]
18. Halpern M, Senderovich Y, Izhaki I. 2008. Waterfowl: the missing link in epidemic and pandemic cholera dissemination? PLoS Pathog 4:e1000173. [PubMed][CrossRef]
19. Islam MS, Drasar BS, Sack RB. 1994. The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J Diarrhoeal Dis Res 12:8796. [PubMed]
20. Islam MS, Miah MA, Hasan MK, Sack RB, Albert MJ. 1994. Detection of non-culturable Vibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh. Trans R Soc Trop Med Hyg 88:298299. [PubMed]
21. Huq A, Yunus M, Sohel SS, Bhuiya A, Emch M, Luby SP, Russek-Cohen E, Nair GB, Sack RB, Colwell RR. 2010. Simple sari cloth filtration of water is sustainable and continues to protect villagers from cholera in Matlab, Bangladesh. MBio 1:e00034-10. [PubMed][CrossRef]
22. Huo A, Xu B, Chowdhury MA, Islam MS, Montilla R, Colwell RR. 1996. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol 62:25082512. [PubMed]
23. Colwell RR, Huq A, Islam MS, Aziz KMA, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J, Sack DA, Russek-Cohen E. 2003. Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100:10511055. [PubMed][CrossRef]
24. Sack DA, Sack RB, Nair GB, Siddique AK. 2004. Cholera. Lancet 363:223233.
25. Ansaruzzaman M, Bhuiyan NA, Safa A, Sultana M, McUamule A, Mondlane C, Wang XY, Deen JL, von Seidlein L, Clemens JD, Lucas M, Sack DA, Nair GB. 2007. Genetic diversity of El Tor strains of Vibrio cholerae O1 with hybrid traits isolated from Bangladesh and Mozambique. Int J Med Microbiol 297:443449. [PubMed][CrossRef]
26. Nair GB, Faruque SM, Bhuiyan NA, Kamruzzaman M, Siddique AK, Sack DA. 2002. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:32963299. [PubMed]
27. Lan R, Reeves PR. 2002. Pandemic spread of cholera: genetic diversity and relationships within the seventh pandemic clone of Vibrio cholerae determined by amplified fragment length polymorphism. J Clin Microbiol 40:172181. [PubMed]
28. Safa A, Nair GB, Kong RYC. 2010. Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18:4654.
29. Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK. 2011. Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49:37393749. [PubMed][CrossRef]
30. World Health Organization. 2009. State of the World's Vaccines and Immunization, 3rd ed. World Health Organization, Geneva, Switzerland. http://whqlibdoc.who.int/publications/2009/9789241563864_eng.pdf (last accessed April 30, 2013).
31. Sontag D. 2012. In Haiti, global failures on a cholera epidemic. March 31, 2012. The New York Times. http://www.nytimes.com/2012/04/01/world/americas/haitis-cholera-outraced-the-experts-and-tainted-the-un.html?pagewanted=all (last accessed April 30, 2013).
32. Krukonis ES, DiRita VJ. 2003. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol 6:186190. [PubMed]
33. Childers BM, Klose KE. 2007. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol 2:335344. [PubMed][CrossRef]
34. Chatterjee S, Ghosh K, Raychoudhuri A, Chowdhury G, Bhattacharya MK, Mukhopadhyay AK, Ramamurthy T, Bhattacharya SK, Klose KE, Nandy RK. 2009. Incidence, virulence factors, and clonality among clinical strains of non-O1, non-O139 Vibrio cholerae isolates from hospitalized diarrheal patients in Kolkata, India. J Clin Microbiol 47:10871095. [PubMed][CrossRef]
35. Sharma C, Thungapathra M, Ghosh A, Mukhopadhyay AK, Basu A, Mitra R, Basu I, Bhattacharya SK, Shimada T, Ramamurthy T, Takeda T, Yamasaki S, Takeda Y, Nair GB. 1998. Molecular analysis of non-O1, non-O139 Vibrio cholerae associated with an unusual upsurge in the incidence of cholera-like disease in Calcutta, India. J Clin Microbiol 36:756763. [PubMed]
36. Faruque SM, Chowdhury N, Kamruzzaman M, Dziejman M, Rahman MH, Sack DA, Nair GB, Mekalanos JJ. 2004. Genetic diversity and virulence potential of environmental Vibrio cholerae population in a cholera-endemic area. Proc Natl Acad Sci USA 101:21232128. [PubMed][CrossRef]
37. Zheng J, Ho B, Mekalanos JJ. 2011. Genetic analysis of anti-amoebae and anti-bacterial activities of the type VI secretion system in Vibrio cholerae. PLoS ONE 6:e23876. [PubMed][CrossRef]
38. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. 2010. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci USA 107:1952019524. [PubMed][CrossRef]
39. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg F, Mekalanos JJ. 2006. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci USA 103:15281533. [PubMed][CrossRef]
40. Ma AT, Mekalanos JJ. 2010. In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated with intestinal inflammation. Proc Natl Acad Sci USA 107:43654370. [PubMed][CrossRef]
41. Tam VC, Suzuki M, Coughlin M, Saslowsky D, Biswas K, Lencer WI, Faruque SM, Mekalanos JJ. 2010. Functional analysis of VopF activity required for colonization in Vibrio cholerae. MBio 1:e00289-10. [PubMed][CrossRef]
42. Colwell RR, Huq A. 1994. Environmental reservoir of Vibrio cholerae. The causative agent of cholera. Ann N Y Acad Sci 740:4454. [PubMed]
43. Faruque SM, Islam MJ, Ahmad QS, Biswas K, Faruque ASG, Nair GB, Sack RB, Sack DA, Mekalanos JJ. 2006. An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple-antibiotic-resistant epidemic strain in Bangladesh. J Infect Dis 193:10291036. [PubMed][CrossRef]
44. de Magny GC, Colwell RR. 2009. Cholera and climate: a demonstrated relationship. Trans Am Clin Climatol Assoc 120:119128. [PubMed]
45. Islam MS. 1990. Increased toxin production by Vibrio cholerae O1 during survival with a green alga, Rhizoclonium fontanum, in an artificial aquatic environment. Microbiol Immunol 34:557563. [PubMed]
46. Islam MS, Drasar BS, Bradley DJ. 1990. Long-term persistence of toxigenic Vibrio cholerae O1 in the mucilaginous sheath of a blue-green alga, Anabaena variabilis. J Trop Med Hyg 93:133139. [PubMed]
47. Morris JG, Acheson D. 2003. Cholera and other types of vibriosis: a story of human pandemics and oysters on the half shell. Clin Infect Dis 37:272280. [PubMed][CrossRef]
48. Nahar S, Sultana M, Naser MN, Nair GB, Watanabe H, Ohnishi M, Yamamoto S, Endtz H, Cravioto A, Sack RB, Hasan NA, Sadique A, Huq A, Colwell RR, Alam M. 2011. Role of shrimp chitin in the ecology of toxigenic Vibrio cholerae and cholera transmission. Front Microbiol 2:260. [PubMed][CrossRef]
49. Dalsgaard A, Huss HH, H-Kittikun A, Larsen JL. 1995. Prevalence of Vibrio cholerae and Salmonella in a major shrimp production area in Thailand. Int J Food Microbiol 28:101113. [PubMed]
50. de Sousa OV, Vieira RH, de Menezes FG, dos Reis CM, Hofer E. 2004. Detection of Vibrio parahaemolyticus and Vibrio cholerae in oyster, Crassostrea rhizophorae, collected from a natural nursery in the Coc river estuary, Fortaleza, Cear, Brazil. Rev Inst Med Trop Sao Paulo 46:5962. [PubMed][CrossRef]
51. Broza M, Halpern M. 2001. Pathogen reservoirs. Chironomid egg masses and Vibrio cholerae. Nature 412:40. [PubMed][CrossRef]
52. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275283. [PubMed]
53. Chiavelli DA, Marsh JW, Taylor RK. 2001. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67:32203225. [PubMed][CrossRef]
54. Forssman B, Mannes T, Musto J, Gottlieb T, Robertson G, Natoli JD, Shadbolt C, Biffin B, Gupta L. 2007. Vibrio cholerae O1 El Tor cluster in Sydney linked to imported whitebait. Med J Aust 187:345347. [PubMed]
55. Carvajal GH, Sanchez J, Ayala ME, Hase A. 1998. Differences among marine and hospital strains of Vibrio cholerae during Peruvian epidemic. J Gen Appl Microbiol 44:2733. [PubMed]
56. McIntyre RC, Tira T, Flood T, Blake PA. 1979. Modes of transmission of cholera in a newly infected population on an atoll: implications for control measures. Lancet 1:311314. [PubMed]
57. Maggi P, Carbonara S, Fico C, Santantonio T, Romanelli C, Sforza E, Pastore G. 1997. Epidemiological, clinical and therapeutic evaluation of the Italian cholera epidemic in 1994. Eur J Epidemiol 13:9597. [PubMed]
58. Klontz KC, Tauxe RV, Cook WL, Riley WH, Wachsmuth IK. 1987. Cholera after the consumption of raw oysters. A case report. Ann Intern Med 107:846848. [PubMed]
59. Twedt RM, Madden JM, Hunt JM, Francis DW, Peeler JT, Duran AP, Hebert WO, McCay SG, Roderick CN, Spite GT, Wazenski TJ. 1981. Characterization of Vibrio cholerae isolated from oysters. Appl Environ Microbiol 41:14751478. [PubMed]
60. Piergentili P, Castellani-Pastoris M, Fellini RD, Farisano G, Bonello C, Rigoli E, Zampieri A. 1984. Transmission of non O group 1 Vibrio cholerae by raw oyster consumption. Int J Epidemiol 13:340343. [PubMed]
61. Jutla AS, Akanda AS, Griffiths JK, Colwell RR, Islam S. 2011. Warming oceans, phytoplankton, and river discharge: implications for cholera outbreaks. Am J Trop Med Hyg 85:303308. [PubMed][CrossRef]
62. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, Colwell RR. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97:14381443. [PubMed]
63. Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:17021707. [PubMed][CrossRef]
64. Faruque SM, Islam MJ, Ahmad QS, Faruque AS, Sack DA, Nair GB, Mekalanos JJ. 2005. Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:61196124. [PubMed][CrossRef]
65. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:19101914. [PubMed]
66. Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95:31343139. [PubMed]
67. Rajanna C, Wang J, Zhang D, Xu Z, Ali A, Hou YM, Karaolis DK. 2003. The vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J Bacteriol 185:68936901. [PubMed]
68. Waldor MK, Tschpe H, Mekalanos JJ. 1996. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:41574165. [PubMed]
69. Jermyn WS, Boyd EF. 2002. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148:36813693. [PubMed]
70. Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci USA 99:15561561. [PubMed][CrossRef]
71. Almagro-Moreno S, Boyd EF. 2009. Sialic acid catabolism confers a competitive advantage to pathogenic Vibrio cholerae in the mouse intestine. Infect Immun 77:38073816. [PubMed][CrossRef]
72. Almagro-Moreno S, Boyd EF. 2009. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evol Biol 9:118. [PubMed][CrossRef]
73. Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358370. [PubMed][CrossRef]
74. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A. 2002. Host-induced epidemic spread of the cholera bacterium. Nature 417:642645. [PubMed][CrossRef]
75. Almagro-Moreno S, Napolitano MG, Boyd EF. 2010. Excision dynamics of Vibrio pathogenicity island-2 from Vibrio cholerae: role of a recombination directionality factor VefA. BMC Microbiol 10:306. [PubMed][CrossRef]
76. Murphy RA, Boyd EF. 2008. Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J Bacteriol 190:636647. [PubMed][CrossRef]
77. Chakraborty S, Mukhopadhyay AK, Bhadra RK, Ghosh AN, Mitra R, Shimada T, Yamasaki S, Faruque SM, Takeda Y, Colwell RR, Nair GB. 2000. Virulence genes in environmental strains of Vibrio cholerae. Appl Environ Microbiol 66:40224028. [PubMed]
78. Rivera IN, Chun J, Huq A, Sack RB, Colwell RR. 2001. Genotypes associated with virulence in environmental isolates of Vibrio cholerae. Appl Environ Microbiol 67:24212429. [PubMed][CrossRef]
79. Mukhopadhyay AK, Chakraborty S, Takeda Y, Nair GB, Berg DE. 2001. Characterization of VPI pathogenicity island and CTX prophage in environmental strains of Vibrio cholerae. J Bacteriol 183:47374746. [PubMed][CrossRef]
80. Gennari M, Ghidini V, Carburlotto G, Lleo MM. 2012. Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563573. [PubMed][CrossRef]
81. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. 2005. Chitin induces natural competence in Vibrio cholerae. Science 310:18241827. [PubMed][CrossRef]
82. Yu C, Lee AM, Bassler BL, Roseman S. 1991. Chitin utilization by marine bacteria. A physiological function for bacterial adhesion to immobilized carbohydrates. J Biol Chem 266:2426024267. [PubMed]
83. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. 2004. The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci USA 101:25242529. [PubMed]
84. Nalin DR, Daya V, Reid A, Levine MM, Cisneros L. 1979. Adsorption and growth of Vibrio cholerae on chitin. Infect Immun 25:768770. [PubMed]
85. Watnick PI, Fullner KJ, Kolter R. 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181:36063609. [PubMed]
86. Kirn TJ, Jude BA, Taylor RK. 2005. A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863866. [PubMed][CrossRef]
87. Tamayo R, Patimalla B, Camilli A. 2010. Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun 78:35603569. [PubMed][CrossRef]
88. Huq A, Huq SA, Grimes DJ, OBrien M, Chu KH, Capuzzo JM, Colwell RR. 1986. Colonization of the gut of the blue crab (Callinectes sapidus) by Vibrio cholerae. Appl Environ Microbiol 52:586588. [PubMed]
89. Eyles MJ, Davey GR. 1988. Vibrio cholerae and enteric bacteria in oyster-producing areas of two urban estuaries in Australia. Int J Food Microbiol 6:207218. [PubMed]
90. Tamplin ML, Fisher WS. 1989. Occurrence and characteristics of agglutination of Vibrio cholerae by serum from the eastern oyster, Crassostrea virginica. Appl Environ Microbiol 55:28822887. [PubMed]
91. Hood MA, Ness GE, Rodrick GE. 1981. Isolation of Vibrio cholerae serotype O1 from the eastern oyster, Crassostrea virginica. Appl Environ Microbiol 41:559560. [PubMed]
92. DePaola A, Kaysner CA, McPhearson RM. 1987. Elevated temperature method for recovery of Vibrio cholerae from oysters (Crassostrea gigas). Appl Environ Microbiol 53:11811182. [PubMed]
93. Saravanan V, Sanath Kumar H, Karunasagar I, Karunasagar I. 2007. Putative virulence genes of Vibrio cholerae from seafoods and the coastal environment of Southwest India. Int J Food Microbiol 119:329333. [CrossRef]
94. Schuster BM, Tyzik AL, Donner RA, Striplin MJ, Almagro-Moreno S, Jones SH, Cooper VS, Whistler CA. 2011. Ecology and genetic structure of a northern temperate Vibrio cholerae population related to toxigenic isolates. Appl Environ Microbiol 77:75687575. [PubMed][CrossRef]
95. Baker-Austin C, Trinanes JA, Taylor NG, Hartnell R, Siitonen A, Martinez-Urtaza J. 2013. Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Climate Change 3:7377.
96. Senderovich Y, Gershtein Y, Halewa E, Halpern M. 2008. Vibrio cholerae and Aeromonas: do they share a mutual host? ISME J 2:276283. [CrossRef]
97. Halpern M, Broza YB, Mittler S, Arakawa E, Broza M. 2004. Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol 47:341349. [PubMed][CrossRef]
98. Halpern M, Landsberg O, Raats D, Rosenberg E. 2007. Culturable and VBNC Vibrio cholerae: interactions with chironomid egg masses and their bacterial population. Microb Ecol 53:285293. [PubMed]
99. Halpern M, Gancz H, Broza M, Kashi Y. 2003. Vibrio cholerae hemagglutinin/protease degrades chironomid egg masses. Appl Environ Microbiol 69:42004204. [PubMed]
100. Purdy AE, Watnick PI. 2011. Spatially selective colonization of the arthropod intestine through activation of Vibrio cholerae biofilm formation. Proc Natl Acad Sci USA 108:1973719742. [PubMed][CrossRef]
101. Acosta CJ, Galindo CM, Kimario J, Senkoro K, Urassa H, Casals C, Corachn M, Eseko N, Tanner M, Mshinda H, Lwilla F, Vila J, Alonso PL. 2001. Cholera outbreak in southern Tanzania: risk factors and patterns of transmission. Emerg Infect Dis 7(3 Suppl):583587. [PubMed][CrossRef]
102. Green AJ, Snchez MI. 2006. Passive internal dispersal of insect larvae by migratory birds. Biol Lett 2:5557. [PubMed][CrossRef]
103. Rabbani GH, Greenough WB. 1999. Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res 17:19. [PubMed]
104. Lee JV, Bashford DJ, Donovan TJ, Furniss AL, West PA. 1982. The incidence of Vibrio cholerae in water, animals and birds in Kent, England. J Appl Bacteriol 52:281291. [PubMed]
105. Ogg JE, Ryder RA, Smith HL. 1989. Isolation of Vibrio cholerae from aquatic birds in Colorado and Utah. Appl Environ Microbiol 55:9599. [PubMed]
106. Abd H, Weintraub A, Sandstrm G. 2005. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae. Environ Microbiol 7:10031008. [PubMed][CrossRef]
107. Sandstrm G, Saeed A, Abd H. 2010. Acanthamoeba polyphaga is a possible host for Vibrio cholerae in aquatic environments. Exp Parasitol 126:6568. [PubMed][CrossRef]
108. Newsome AL, Scott TM, Benson RF, Fields BS. 1998. Isolation of an amoeba naturally harboring a distinctive Legionella species. Appl Environ Microbiol 64:16881693. [PubMed]
109. Islam MS, Goldar MM, Morshed MG, Khan MN, Islam MR, Sack RB. 2002. Involvement of the hap gene (mucinase) in the survival of Vibrio cholerae O1 in association with the blue-green alga, Anabaena sp. Can J Microbiol 48:793800. [PubMed]
110. Epstein PR. 1993. Algal blooms in the spread and persistence of cholera. BioSystems 31:209221. [PubMed]
111. Finkelstein RA, Boesman-Filkenstein M, Chang Y, Hase CC. 1992. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun 60:472478. [PubMed]
112. Islam MS, Goldar MM, Morshed MG, Bahkt HB, Islam MS, Sack DA. 2006. Chemotaxis between Vibrio cholerae O1 and a blue-green alga, Anabaena sp. Epidemiol Infect 134:645648. [PubMed][CrossRef]
113. Nelson EJ, Harris JB, Morris JG, Calderwood SB, Camilli A. 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7:693702. [PubMed][CrossRef]
114. Jensen MA, Faruque SM, Mekalanos JJ, Levin BR. 2006. Modeling the role of bacteriophage in the control of cholera outbreaks. Proc Natl Acad Sci USA 103:46524657. [PubMed][CrossRef]
115. Valeru SP, Wai SN, Saeed A, Sandstrm G, Abd H. 2012. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii. BMC Res Notes 5:33. [PubMed][CrossRef]
116. Long RA, Rowley DC, Zamora E, Liu EJ, Bartlett DH, Azam F. 2005. Antagonistic interactions among marine bacteria impede the proliferation of Vibrio cholerae. Appl Environ Microbiol 71:85318536. [PubMed][CrossRef]
microbiolspec.OH-0003-2012.citations
cm/1/2
content/journal/microbiolspec/10.1128/microbiolspec.OH-0003-2012
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.OH-0003-2012
2013-12-20
2017-12-16

Abstract:

is widely known to be the etiological agent of the life-threatening diarrheal disease cholera. Cholera remains a major scourge in many developing countries, infecting hundreds of thousands every year. Remarkably, is a natural inhabitant of brackish riverine, estuarine, and coastal waters, and only a subset of strains are known to be pathogenic to humans. Recent studies have begun to uncover a very complex network of relationships between and other sea dwellers, and the mechanisms associated with the occurrence of seasonal epidemics in regions where cholera is endemic are beginning to be elucidated. Many of the factors required for the organism's survival and persistence in its natural environment have been revealed, as well as the ubiquitous presence of horizontal gene transfer in the emergence of pathogenic strains of . In this article, we will focus on the environmental stage of pathogenic and the interactions of the microorganism with other inhabitants of aquatic environments. We will discuss the impact that its environmental reservoirs have on disease transmission and the distinction between reservoirs of and the vectors that establish cholera as a zoonosis.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/1/2/OH-0003-2012.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.OH-0003-2012&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

V. cholerae life cycle and interactions.The life cycle of V. cholerae is complex and includes numerous physiological states and interactions with natural inhabitants of brackish riverine, estuarine, and coastal waters. V. cholerae can be directly isolated from the water (free-living culturable) or found in a VBNC state, as CVEC, or in the form of biofilms on diverse surfaces. It has been shown that the stools of patients with cholera still contain microcolonies of pathogenic V. cholerae. V. cholerae has several known natural predators, such as bacteriophages and protozoa. These predators are thought to play a crucial role in the dynamics of cholera epidemics by thriving on choleragenic V. cholerae when their numbers flourish. Also, some bacteria have antagonistic interactions with V. cholerae, preventing its growth on solid surfaces. Cholera can be acquired not only through the consumption of contaminated water containing choleragenic V. cholerae but also through the ingestion of foods contaminated with the bacterium. V. cholerae has been found associated with several sea and riverine dwellers such as algae, shellfish, chironomids and their egg masses, fish, waterfowl, amebae, and crustaceans, most critically copepods. The role of some of these environmental reservoirs of V. cholerae in cholera epidemics remains to be clarified. Nonetheless, several novel findings discussed in the text point to V. cholerae naturally requiring some of these hosts as vectors to cause cholera in humans, which establishes the disease as a zoonosis. doi:10.1128/microbiolspec.OH-0003-2012.f1

Source: microbiolspec December 2013 vol. 1 no. 2 doi:10.1128/microbiolspec.OH-0003-2012
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error