1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Genomic and Metagenomic Approaches for Predicting Pathogen Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • HTML
    67.49 Kb
  • XML
    57.58 Kb
  • PDF
    175.50 Kb
  • Authors: Veronica Casas1, Stanley Maloy2
  • Editors: Ronald M. Atlas3, Stanley Maloy4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Center for Microbial Sciences, San Diego State University, San Diego, CA 92182; 2: Center for Microbial Sciences, San Diego State University, San Diego, CA 92182; 3: University of Louisville, Louisville, KY; 4: San Diego State University, San Diego, CA
  • Source: microbiolspec January 2014 vol. 2 no. 1 doi:10.1128/microbiolspec.OH-0019-2013
  • Received 03 April 2013 Accepted 08 April 2013 Published 31 January 2014
  • Veronica Casas, casas.v@gmail.com
image of Genomic and Metagenomic Approaches for Predicting Pathogen Evolution
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Genomic and Metagenomic Approaches for Predicting Pathogen Evolution, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/1/OH-0019-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/1/OH-0019-2013-2.gif
  • Abstract:

    Global climate change can alter the distribution of microbial pathogens and vectors that transmit infectious diseases, exposing humans to newly emerging or reemerging diseases. Early detection of potential pathogens and vectors in the environment can facilitate upstream interventions that limit the spread of infectious disease. Metagenomics is the analysis of DNA sequences from a population of microorganisms in a particular environment, followed by the computational reconstruction of the data to determine what organisms are present and predict their role in the environment. Defining the microbial populations associated with humans, animals, and their environment provides insight into the structure of microbial communities in any particular niche, including the abundance, diversity, and composition of the microbes and viruses present. It can also reveal the distribution of virulence genes within that niche. These data can be used to identify reservoirs of pathogens in an environment and predict environments with a high probability for evolution of new pathogens or outbreaks caused by known pathogens, thereby facilitating approaches to prevent infections of animals or humans before serious outbreaks of infectious disease.

  • Citation: Casas V, Maloy S. 2014. Genomic and Metagenomic Approaches for Predicting Pathogen Evolution. Microbiol Spectrum 2(1):OH-0019-2013. doi:10.1128/microbiolspec.OH-0019-2013.

Key Concept Ranking

Sin nombre virus
0.5269177
Infectious Diseases
0.48284534
Bacterial Pathogenesis
0.44098595
Staphylococcal Enterotoxin A
0.42298147
0.5269177

References

1. Centers for Disease Control and Prevention. 2010. Emerging Infectious Diseases journal background and goals. Centers for Disease Control and Prevention, Atlanta, GA. http://wwwnc.cdc.gov/eid/pages/background-goals.htm (last accessed April 2, 2013).
2. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669.
3. Cione JJ, Uhlhorn EW. 2003. Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon Weather Rev 131:1783–1796.
4. Rohwer F, Youle M, Vosten D. 2010. Coral Reefs in the Microbial Seas. Plaid Press, Basalt, CO.
5. Casas V, Sobrepeña G, Rodriguez-Mueller B, Ahtye J, Maloy SR. 2011. Bacteriophage-encoded shiga toxin gene in atypical bacterial host. Gut Pathog 3:10. doi:10.1186/1757-4749-3-10. [PubMed][CrossRef]
6. Casas V, Magbanua J, Sobrepeña G, Kelley ST, Maloy SR. 2010. Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol 2010:754368. doi:10.1155/2010/754368. [PubMed][CrossRef]
7. Casas V, Miyake J, Balsley H, Roark J, Telles S, Leeds S, Zurita I, Breitbart M, Azam F, Bartlett D, Rohwer F. 2006. Widespread occurrence of phage-encoded exotoxin genes in terrestrial and aquatic environments in Southern California. FEMS Microbiol Lett 261:141–149. [PubMed][CrossRef]
8. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD. 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162. [PubMed][CrossRef]
9. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, Porter JW, Smith GW, Vasta GR. 1999. Emerging marine diseases—climate links and anthropogenic factors. Science 285:1505–1510. [PubMed]
10. Dearing MD, Dizney L. 2010. Ecology of hantavirus in a changing world. Ann N Y Acad Sci 1195:99–112. [PubMed][CrossRef]
11. Le Guenno B. 1997. Haemorrhagic fevers and ecological perturbations. Arch Virol Suppl 13:191–199. [PubMed]
12. Weil AA, Ivers LC, Harris JB. 2012. Cholera: lessons from Haiti and beyond. Curr Infect Dis Rep 14:1–8. [PubMed][CrossRef]
13. Jutla AS, Akanda AS, Islam S. 2010. Tracking cholera in coastal regions using satellite observations. J Am Water Resour Assoc 46:651–662. [PubMed][CrossRef]
14. Khasnis AA, Nettleman MD. 2005. Global warming and infectious disease. Arch Med Res 36:689–696. [PubMed][CrossRef]
15. Shuman EK. 2010. Global climate change and infectious diseases. N Engl J Med 362:1061–1063. [PubMed][CrossRef]
16. Neerinckx S, Bertherat E, Leirs H. 2010. Human plague occurrences in Africa: an overview from 1877 to 2008. Trans R Soc Trop Med Hyg 104:97–103. [PubMed][CrossRef]
17. Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–552. [PubMed][CrossRef]
18. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249. [PubMed]
19. Casas V, Rohwer F. 2007. Phage metagenomics. Methods Enzymol 421:259–268. [PubMed][CrossRef]
20. Gilbert JA, Dupont CL. 2011. Microbial metagenomics: beyond the genome. Annu Rev Mar Sci 3:347–371. [PubMed]
21. Conlan S, Kong HH, Segre JA. 2012. Species-level analysis of DNA sequence data from the NIH Human Microbiome Project. PLoS One 7:e47075. doi:10.1371/journal.pone.0047075. [PubMed][CrossRef]
22. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C. 2012. The Human Microbiome Project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377. doi:10.1371/journal.pbio.1001377. [PubMed][CrossRef]
23. Ursell LK, Metcalf JL, Parfrey LW, Knight R. 2012. Defining the human microbiome. Nutr Rev 70(Suppl 1):S38–S44. [PubMed][CrossRef]
24. Wylie KM, Truty RM, Sharpton TJ, Mihindukulasuriya KA, Zhou Y, Gao H, Sodergren E, Weinstock GM, Pollard KS. 2012. Novel bacterial taxa in the human microbiome. PLoS One 7:e35294. doi:10.1371/journal.pone.0035294. [PubMed][CrossRef]
25. Wooley JC, Godzik A, Friedberg I. 2010. A primer on metagenomics. PLoS Comput Biol 6:e1000667. doi:10.1371/journal.pcbi.1000667. [PubMed][CrossRef]
26. Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F. 2002. Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci USA 99:14250–14255. [PubMed][CrossRef]
27. Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F. 2004. Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci 271:565–574. [PubMed][CrossRef]
28. Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F. 2003. Metagenomic analyses of an uncultured viral community from human feces. J Bacteriol 85:6220–6223. [PubMed]
29. Cann AJ, Fandrich SE, Heaphy S. 2005. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus Genes 30:151–156. [PubMed][CrossRef]
30. Culley AI, Lang AS, Suttle CA. 2006. Metagenomic analysis of coastal RNA virus communities. Science 312:1795–1798. [PubMed][CrossRef]
31. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 4:e3. doi:10.1371/journal.pbio.0040003. [PubMed][CrossRef]
32. Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, Tammadoni S, Nosrat B, Conrad D, Rohwer F. 2009. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals. PLoS One 4:e7370. doi:10.1371/journal.pone.0007370. [PubMed][CrossRef]
33. Edwards RA, Rohwer F. 2005. Viral metagenomics. Nat Rev Microbiol 3:504–510. [PubMed][CrossRef]
34. Deng Q, Barbieri JT. 2008. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu Rev Microbiol 62:271–288. [PubMed][CrossRef]
35. Dayhoff MO, Schwartz RM, Orcutt BC. 1978. A model of evolutionary change in proteins, p 345–352. In Dayhoff MO (ed), Atlas of Protein Sequence and Structure, vol. 5. National Biomedical Research Foundation, Washington, DC.
36. Murphy JR. 1996. Chapter 32, Corynebacterium diphtheriae. In Baron S (ed), Medical Microbiology, 4th ed. University of Texas Medical Branch at Galveston, Galveston, TX. Available from http://www.ncbi.nlm.nih.gov/books/NBK7971/.
37. Pakalniskiene J, Falkenhorst G, Lisby M, Madsen SB, Olsen KE, Nielsen EM, Mygh A, Boel J, Mølbak K. 2009. A foodborne outbreak of enterotoxigenic E. coli and Salmonella anatum infection after a high-school dinner in Denmark, November 2006. Epidemiol Infect 137:396–401. [PubMed][CrossRef]
38. Sekse C, Muniesa M, Wasteson Y. 2008. Conserved Stx2 phages from Escherichia coli O103:H25 isolated from patients suffering from hemolytic uremic syndrome. Foodborne Pathog Dis 5:801–810.
39. Vojdani JD, Beuchat LR, Tauxe RV. 2008. Juice-associated outbreaks of human illness in the United States, 1995 through 2005. J Food Prot 71:356–364. [PubMed]
40. Franz E, van Bruggen AH. 2008. Ecology of E. coli O157:H7 and Salmonella enterica in the primary vegetable production chain. Crit Rev Microbiol 34:143–161. [PubMed][CrossRef]
41. Charatan F. 2006. FDA warns US consumers not to eat spinach after E. coli outbreak. BMJ 333:673.
42. Lynch M, Painter J, Woodruff R, Braden C, Centers for Disease Control and Prevention. 2006. Surveillance for foodborne-disease outbreaks—United States, 1998–2002. MMWR Surveill Summ 55:1–42. [PubMed]
43. Centers for Disease Control and Prevention (CDC). 2006. Ongoing multistate outbreak of Escherichia coli serotype O157:H7 infections associated with consumption of fresh spinach—United States, September 2006. MMWR Morb Mortal Wkly Rep 55:1045–1046. [PubMed]
44. Devasia RA, Jones TF, Ward J, Stafford L, Hardin H, Bopp C, Beatty M, Mintz E, Schaffner W. 2006. Endemically acquired foodborne outbreak of enterotoxin-producing Escherichia coli serotype O169:H41. Am J Med 119:168.e7–168.e10. [PubMed][CrossRef]
45. Scheutz F, Nielsen EM, Frimodt-Møller J, Boisen N, Morabito S, Tozzoli R, Nataro JP, Caprioli A. 2011. Characteristics of the enteroaggregative Shiga toxin/verotoxin-producing Escherichia coli O104:H4 strain causing the outbreak of haemolytic uraemic syndrome in Germany, May to June 2011. Euro Surveill 16:pii=19889. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19889. [PubMed]
46. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A, Prior K, Szczepanowski R, Ji Y, Zhang W, McLaughlin SF, Henkhaus JK, Leopold B, Bielaszewska M, Prager R, Brzoska PM, Moore RL, Guenther S, Rothberg JM, Karch H. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One 6:e22751. doi:10.1371/journal.pone.0022751. [PubMed][CrossRef]
47. Brzuszkiewicz E, Thürmer A, Schuldes J, Leimbach A, Liesegang H, Meyer FD, Boelter J, Petersen H, Gottschalk G, Daniel R. 2011. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC). Arch Microbiol 193:883–891. [PubMed][CrossRef]
48. Freeman BJ. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J Bacteriol 61:675–688. [PubMed]
49. Groman NB. 1953. The relation of bacteriophage to the change of Corynebacterium diphtheriae from avirulence to virulence. Science 117:297–299. [PubMed]
50. Lenski RE, Levin BR. 1985. Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communties. Am Nat 125:585–602.
51. Waldor MK, Mekalanos JJ. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914. [PubMed]
52. Davis BM, Moyer KE, Boyd EF, Waldor MK. 2000. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol 182:6992–6998. [PubMed]
53. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. [PubMed][CrossRef]
54. Boyd EF, Davis BM, Hochhut B. 2001. Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol 9:137–144. [PubMed]
55. Muniesa M, Lucena F, Jofre J. 1999. Study of the potential relationship between the morphology of infectious somatic coliphages and their persistence in the environment. J Appl Microbiol 87:402–409. [PubMed]
56. Muniesa M, Lucena F, Jofre J. 1999. Comparative survival of free Shiga toxin 2-encoding phages and Escherichia coli strains outside the gut. Appl Environ Microbiol 65:5615–5618. [PubMed]
57. Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ. 2002. Sunlight inactivation of fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and saline waters. Appl Environ Microbiol 68:1122–1131. [PubMed]
58. Mocé-Llivina L, Muniesa M, Pimenta-Vale H, Lucena F, Jofre J. 2003. Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. Appl Environ Microbiol 69:1452–1456. [PubMed]
59. Tanji Y, Mizoguchi K, Yoichi M, Morita M, Kijima N, Kator H, Unno H. 2003. Seasonal change and fate of coliphages infected to Escherichia coli O157:H7 in a wastewater treatment plant. Water Res 37:1136–1142. [PubMed]
60. Dumke R, Schröter-Bobsin U, Jacobs E, Röske I. 2006. Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. Lett Appl Microbiol 42:48–53. [PubMed][CrossRef]
61. Masago Y, Katayama H, Watanabe T, Haramoto E, Hashimoto A, Omura T, Hirata T, Ohgaki S. 2006. Quantitative risk assessment of noroviruses in drinking water based on qualitative data in Japan. Environ Sci Technol 40:7428–7433. [PubMed]
62. McLaughlin MR, Rose JB. 2006. Application of Bacteroides fragilis phage as an alternative indicator of sewage pollution in Tampa Bay, Florida. Estuar Coast 29:246–256.
63. Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ,Working Group on Land Use Change and Disease Emergence. 2004. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112:1092–1098. [PubMed]
64. Schmidt KA, Ostfeld RS. 2001. Biodiversity and the dilution effect in disease ecology. Ecology 82:609–619.
65. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, Tan CT. 1999. Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 354:1257–1259. [PubMed][CrossRef]
66. Lam SK, Chua KB. 2002. Nipah virus encephalitis outbreak in Malaysia. Clin Infect Dis 34(Suppl 2):S48–S51. [PubMed][CrossRef]
67. Rose JB, Epstein PR, Lipp EK, Sherman BH, Bernard SM, Patz JA. 2001. Climate variability and change in the United States: potential impacts on water- and foodborne diseases caused by microbiologic agents. Environ Health Perspect 109:211–221. [PubMed]
68. Ford TE, Colwell RR, Rose JB, Morse SS, Rogers DJ, Yates TL. 2009. Using satellite images of environmental changes to predict infectious disease outbreaks. Emerg Infect Dis 15:1341–1346. [PubMed][CrossRef]
microbiolspec.OH-0019-2013.citations
cm/2/1
content/journal/microbiolspec/10.1128/microbiolspec.OH-0019-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.OH-0019-2013
2014-01-31
2017-09-24

Abstract:

Global climate change can alter the distribution of microbial pathogens and vectors that transmit infectious diseases, exposing humans to newly emerging or reemerging diseases. Early detection of potential pathogens and vectors in the environment can facilitate upstream interventions that limit the spread of infectious disease. Metagenomics is the analysis of DNA sequences from a population of microorganisms in a particular environment, followed by the computational reconstruction of the data to determine what organisms are present and predict their role in the environment. Defining the microbial populations associated with humans, animals, and their environment provides insight into the structure of microbial communities in any particular niche, including the abundance, diversity, and composition of the microbes and viruses present. It can also reveal the distribution of virulence genes within that niche. These data can be used to identify reservoirs of pathogens in an environment and predict environments with a high probability for evolution of new pathogens or outbreaks caused by known pathogens, thereby facilitating approaches to prevent infections of animals or humans before serious outbreaks of infectious disease.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/1/OH-0019-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.OH-0019-2013&mimeType=html&fmt=ahah

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error