1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Conjugation in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    149.72 Kb
  • PDF
    730.45 Kb
  • HTML
    166.52 Kb
  • Authors: Nikolaus Goessweiner-Mohr1, Karsten Arends2, Walter Keller3, Elisabeth Grohmann4
  • Editors: Marcelo E. Tolmasky6, Juan Carlos Alonso7
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; 2: Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany; 3: Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; 4: Faculty of Biology, Microbiology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; 5: Division of Infectious Diseases, University Medical Centre Freiburg, 79106 Freiburg, Germany; 6: California State University, Fullerton, CA; 7: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
  • Received 14 November 2013 Accepted 16 December 2013 Published 15 August 2014
  • Elisabeth Grohmann, elisabeth.grohmann@uniklinik-freiburg.de
image of Conjugation in Gram-Positive Bacteria
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Conjugation in Gram-Positive Bacteria, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/4/PLAS-0004-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/4/PLAS-0004-2013-2.gif
  • Abstract:

    Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the -envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer ) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.

  • Citation: Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2014. Conjugation in Gram-Positive Bacteria. Microbiol Spectrum 2(4):PLAS-0004-2013. doi:10.1128/microbiolspec.PLAS-0004-2013.

Key Concept Ranking

Type IV Secretion System Proteins
0.42125395
0.42125395

References

1. Babic A, Berkmen MB, Lee CA, Grossman AD. 2011. Efficient gene transfer in bacterial cell chains. mBio 2:e00027-11. doi:10.1128/mBio.00027-11. [PubMed][CrossRef]
2. Frost LS, Leplae R, Summers AO, Toussaint A. 2005. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732. [PubMed][CrossRef]
3. Ochman H, Lawrence JG, Groisman EA. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304. [PubMed][CrossRef]
4. Thomas CM, Nielsen KM. 2005. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. [PubMed][CrossRef]
5. Wozniak RAF, Waldor MK. 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563. [PubMed][CrossRef]
6. Burrus V, Pavlovic G, Decaris B, Guédon G. 2002. Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610. [PubMed][CrossRef]
7. Burrus V, Waldor MK. 2004. Shaping bacterial genomes with integrative and conjugative elements. Res Microbiol 155:376–386. [PubMed][CrossRef]
8. Roberts AP, Mullany P. 2009. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 17:251–258. [PubMed][CrossRef]
9. de la Cruz F, Frost LS, Meyer RJ, Zechner EL. 2010. Conjugative DNA metabolism in Gram-negative bacteria. FEMS Microbiol Rev 34:18–40. [PubMed][CrossRef]
10. Fernández-López R, Garcillán-Barcia MP, Revilla C, Lázaro M, Vielva L, de la Cruz F. 2006. Dynamics of the IncW genetic backbone imply general trends in conjugative plasmid evolution. FEMS Microbiol Rev 30:942–966. [PubMed][CrossRef]
11. Grohmann E, Muth G, Espinosa M. 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol Mol Biol Rev 67:277–301. [PubMed][CrossRef]
12. Schröder G, Lanka E. 2005. The mating pair formation system of conjugative plasmids—a versatile secretion machinery for transfer of proteins and DNA. Plasmid 54:1–25. [PubMed][CrossRef]
13. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. 2010. Mobility of Plasmids. Microbiol Mol Biol Rev 74:434–452. [PubMed][CrossRef]
14. Grohmann E, Guzmán L, Espinosa M. 1999. Mobilisation of the streptococcal plasmid pMV158: interactions of MobM protein with its cognate oriT DNA region. Mol Gen Genet 261:707–715. [PubMed][CrossRef]
15. Guzman LM, Espinosa M. 1997. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. J Mol Biol 266:688–702. [PubMed][CrossRef]
16. Zechner EL, Lang S, Schildbach JF. 2012. Assembly and mechanisms of bacterial type IV secretion machines. Philos Trans R Soc Lond B Biol Sci 367:1073–1087. [PubMed][CrossRef]
17. Bhatty M, Laverde Gomez JA, Christie PJ. 2013. The expanding bacterial type IV secretion lexicon. Res Microbiol 164:620–639. [PubMed][CrossRef]
18. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G. 2009. Structure of the outer membrane complex of a type IV secretion system. Nature 462:1011–1015. [PubMed][CrossRef]
19. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G. 2009. Structure of a type IV secretion system core complex. Science 323:266–268. [PubMed][CrossRef]
20. Rivera-Calzada A, Fronzes R, Savva CG, Chandran V, Lian PW, Laeremans T, Pardon E, Steyaert J, Remaut H, Waksman G, Orlova EV. 2013. Structure of a bacterial type IV secretion core complex at subnanometer resolution. EMBO J 32:1195–1204. [PubMed][CrossRef]
21. Vincent CD, Friedman JR, Jeong KC, Buford EC, Miller JL, Vogel JP. 2006. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol Microbiol 62:1278–1291. [PubMed][CrossRef]
22. Waksman G, Fronzes R. 2010. Molecular architecture of bacterial type IV secretion systems. Trends Biochem Sci 35:691–698. [PubMed][CrossRef]
23. Wallden K, Williams R, Yan J, Lian PW, Wang L, Thalassinos K, Orlova EV, Waksman G. 2012. Structure of the VirB4 ATPase, alone and bound to the core complex of a type IV secretion system. Proc Natl Acad Sci USA 109:11348–11353. [PubMed][CrossRef]
24. Bordeleau E, Ghinet MG, Burrus V. 2012. Diversity of integrating conjugative elements in actinobacteria: coexistence of two mechanistically different DNA-translocation systems. Mob Genet Elements 2:119–124. [PubMed][CrossRef]
25. Sepulveda E, Vogelmann J, Muth G. 2011. A septal chromosome segregator protein evolved into a conjugative DNA-translocator protein. Mob Genet Elements 1:225–229. [PubMed][CrossRef]
26. Vogelmann J, Ammelburg M, Finger C, Guezguez J, Linke D, Flötenmeyer M, Stierhof Y-D, Wohlleben W, Muth G. 2011. Conjugal plasmid transfer in Streptomyces resembles bacterial chromosome segregation by FtsK/SpoIIIE. EMBO J 30:2246–2254. [PubMed][CrossRef]
27. Abajy MY, Kopec J, Schiwon K, Burzynski M, Doring M, Bohn C, Grohmann E. 2007. A type IV-secretion-like system is required for conjugative DNA transport of broad-host-range plasmid pIP501 in gram-positive bacteria. J Bacteriol 189:2487–2496. [PubMed][CrossRef]
28. Li J, Adams V, Bannam TL, Miyamoto K, Garcia JP, Uzal FA, Rood JI, McClane BA. 2013. Toxin plasmids of Clostridium perfringens. Microbiol Mol Biol Rev 77:208–233. [PubMed][CrossRef]
29. Steen JA, Bannam TL, Teng WL, Devenish RJ, Rood JI. 2009. The putative coupling protein TcpA interacts with other pCW3-encoded proteins to form an essential part of the conjugation complex. J Bacteriol 191:2926–2933. [PubMed][CrossRef]
30. Brolle D-F, Pape H, Hopwood DA, Kieser T. 1993. Analysis of the transfer region of the Streptomyces plasmid SCP2*. Mol Microbiol 10:157–170. [PubMed][CrossRef]
31. Tiffert Y, Gotz B, Reuther J, Wohlleben W, Muth G. 2007. Conjugative DNA transfer in Streptomyces: SpdB2 involved in the intramycelial spreading of plasmid pSVH1 is an oligomeric integral membrane protein that binds to dsDNA. Microbiology 153:2976–2983. [PubMed][CrossRef]
32. Brantl S, Behnke D, Alonso JC. 1990. Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAMβ1 and pSM 19035. Nucleic Acids Res 18:4783–4790. [PubMed][CrossRef]
33. Dunny GM. 2007. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling, gene transfer, complexity and evolution. Philos Trans R Soc Lond B Biol Sci 362:1185–1193. [PubMed][CrossRef]
34. Kozlowicz BK, Shi K, Gu Z-Y, Ohlendorf DH, Earhart CA, Dunny GM. 2006. Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Mol Microbiol 62:958–969. [PubMed][CrossRef]
35. Alvarez-Martinez CE, Christie PJ. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808. [PubMed][CrossRef]
36. Jacob A, Hobbs S. 1974. Conjugal transfer of plasmid-borne multiple antibiotic resistance in Streptococcus faecalis var. zymogenes. J Bacteriol 117:360–372. [PubMed]
37. Kurenbach B, Bohn C, Prabhu J, Abudukerim M, Szewzyk U, Grohmann E. 2003. Intergeneric transfer of the Enterococcus faecalis plasmid pIP501 to Escherichia coli and Streptomyces lividans and sequence analysis of its tra region. Plasmid 50:86–93. [PubMed][CrossRef]
38. Kopec J, Bergmann A, Fritz G, Grohmann E, Keller W. 2005. TraA and its N-terminal relaxase domain of the Gram-positive plasmid pIP501 show specific oriT binding and behave as dimers in solution. Biochem J 387:401–409. [PubMed][CrossRef]
39. Kurenbach B, Grothe D, Farias ME, Szewzyk U, Grohmann E. 2002. The tra region of the conjugative plasmid pIP501 is organized in an operon with the first gene encoding the relaxase. J Bacteriol 184:1801–1805. [PubMed][CrossRef]
40. Kurenbach B, Kopéc J, Mägdefrau M, Andreas K, Keller W, Bohn C, Abajy MY, Grohmann E. 2006. The TraA relaxase autoregulates the putative type IV secretion-like system encoded by the broad-host-range Streptococcus agalactiae plasmid pIP501. Microbiology 152:637–645. [PubMed][CrossRef]
41. Chen Y, Staddon JH, Dunny GM. 2007. Specificity determinants of conjugative DNA processing in the Enterococcus faecalis plasmid pCF10 and the Lactococcus lactis plasmid pRS01. Mol Microbiol 63:1549–1564. [PubMed][CrossRef]
42. Parker C, Meyer RJ. 2007. The R1162 relaxase/primase contains two, type IV transport signals that require the small plasmid protein MobB. Mol Microbiol 66:252–261. [PubMed][CrossRef]
43. Ragonese H, Haisch D, Villareal E, Choi J-H, Matson SW. 2007. The F plasmid-encoded TraM protein stimulates relaxosome-mediated cleavage at oriT through an interaction with TraI. Mol Microbiol 63:1173–1184. [PubMed][CrossRef]
44. Dang TA, Zhou XR, Graf B, Christie PJ. 1999. Dimerization of the Agrobacterium tumefaciens VirB4 ATPase and the effect of ATP-binding cassette mutations on the assembly and function of the T-DNA transporter. Mol Microbiol 32:1239–1253. [PubMed][CrossRef]
45. Durand E, Waksman G, Receveur-Brechot V. 2011. Structural insights into the membrane-extracted dimeric form of the ATPase TraB from the Escherichia coli pKM101 conjugation system. BMC Struct Biol 11:4. doi:10.1186/1472-6807-11-4. [PubMed][CrossRef]
46. Li F, Alvarez-Martinez C, Chen Y, Choi K-J, Yeo H-J, Christie PJ. 2012. Enterococcus faecalis PrgJ, a VirB4-like ATPase, mediates pCF10 conjugative transfer through substrate binding. J Bacteriol 194:4041–4051. [PubMed][CrossRef]
47. Pena A, Matilla I, Martin-Benito J, Valpuesta JM, Carrascosa JL, de La Cruz F, Cabezon E, Arechaga I. 2012. The hexameric structure of a conjugative VirB4 protein ATPase provides new insights for a functional and phylogenetic relationship with DNA translocases. J Biol Chem 287:39925–39932. [PubMed][CrossRef]
48. Gomis-Rüth FX, Moncalían G, de la Cruz F, Coll M. 2001. Conjugative plasmid protein TrwB, an integral membrane type IV secretion system coupling protein. J Biol Chem 277:7556–7566. [PubMed][CrossRef]
49. Gomis-Rüth FX, Solà M, de la Cruz F, Coll M. 2004. Coupling factors in macromolecular type-IV secretion machineries. Curr Pharm Des 10:1551–1565. [PubMed][CrossRef]
50. Haft RJF, Gachelet EG, Nguyen T, Toussaint L, Chivian D, Traxler B. 2007. In vivo oligomerization of the F conjugative coupling protein TraD. J Bacteriol 189:6626–6634. [PubMed][CrossRef]
51. Vecino AJ, de La Arada I, Segura RL, Goñi FM, de la Cruz F, Arrondo JL, Alkorta I. 2011. Membrane insertion stabilizes the structure of TrwB, the R388 conjugative plasmid coupling protein. Biochim Biophys Acta Biomembr 1808:1032–1039. [PubMed][CrossRef]
52. Arends K, Celik E-K, Probst I, Goessweiner-Mohr N, Fercher C, Grumet L, Soellue C, Abajy MY, Sakinc T, Broszat M, Schiwon K, Koraimann G, Keller W, Grohmann E. 2013. TraG encoded by the pIP501 type IV secretion system is a two domain peptidoglycan degrading enzyme essential for conjugative transfer. J Bacteriol 195:4436–4444. [PubMed][CrossRef]
53. Tusnady, G. E., and I. Simon. 2001. The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850. [PubMed][CrossRef]
54. Goessweiner-Mohr N, Grumet L, Arends K, Pavkov-Keller T, Gruber CC, Gruber K, Birner-Gruenberger R, Kropec-Huebner A, Huebner J, Grohmann E, Keller W. 2013. The 2.5 A structure of the Enterococcus conjugation protein TraM resembles VirB8 type IV secretion proteins. J Biol Chem 288:2018–2028. [PubMed][CrossRef]
55. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC. 2006. Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc Natl Acad Sci USA 103:2582–2587. [PubMed][CrossRef]
56. Terradot L, Bayliss R, Oomen C, Leonard GA, Baron C, Waksman G. 2005. Structures of two core subunits of the bacterial type IV secretion system, VirB8 from Brucella suis and ComB10 from Helicobacter pylori. Proc Natl Acad Sci USA 102:4596–4601. [PubMed][CrossRef]
57. Porter CJ, Bantwal R, Bannam TL, Rosado CJ, Pearce MC, Adams V, Lyras D, Whisstock JC, Rood JI. 2012. The conjugation protein TcpC from Clostridium perfringens is structurally related to the type IV secretion system protein VirB8 from Gram-negative bacteria. Mol Microbiol 83:275–288. [PubMed][CrossRef]
58. Jakubowski SJ, Cascales E, Krishnamoorthy V, Christie PJ. 2005. Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. J Bacteriol 187:3486–3495. [PubMed][CrossRef]
59. Judd PK, Kumar RB, Das A. 2005. Spatial location and requirements for the assembly of the Agrobacterium tumefaciens type IV secretion apparatus. Proc Natl Acad Sci USA 102:11498–11503. [PubMed][CrossRef]
60. Judd PK, Mahli D, Das A. 2005. Molecular characterization of the Agrobacterium tumefaciens DNA transfer protein VirB6. Microbiology 151:3483–3492. [PubMed][CrossRef]
61. Judd PK, Kumar RB, Das A. 2005. The type IV secretion apparatus protein VirB6 of Agrobacterium tumefaciens localizes to a cell pole. Mol Microbiol 55:115–124. [PubMed][CrossRef]
62. Villamil Giraldo AM, Sivanesan D, Carle A, Paschos A, Smith MA, Plesa M, Coulton J, Baron C. 2012. Type IV secretion system core component VirB8 from Brucella binds to the globular domain of VirB5 and to a periplasmic domain of VirB6. Biochemistry 51:3881–3890. [PubMed][CrossRef]
63. Wallden K, Rivera-Calzada A, Waksman G. 2010. Microreview: type IV secretion systems: versatility and diversity in function. Cell Microbiol 12:1203–1212. [PubMed][CrossRef]
64. Navarre WW, Schneewind O. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:74–229. [PubMed]
65. Dawson P, Clancy KW, Melvin JA, McCafferty DG. 2010. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers 94:385–396. [PubMed][CrossRef]
66. Hendrickx AP, Willems RJ, Bonten MJ, van Schaik W. 2009. LPxTG surface proteins of enterococci. Trends Microbiol 17:423–430. [PubMed][CrossRef]
67. Krishnan V, Narayana SV. 2011. Crystallography of gram-positive bacterial adhesins. Adv Exp Med Biol 715:175–195. [PubMed][CrossRef]
68. Clewell DB. 2007. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 58:205–227. [PubMed][CrossRef]
69. Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C, de La Cruz F. 2004. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 28:79–100. [PubMed][CrossRef]
70. Francia MV, Clewell DB. 2002. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol Microbiol 45:375–395. [PubMed][CrossRef]
71. Francia MV, Clewell DB, de La Cruz F, Moncalian G. 2013. Catalytic domain of plasmid pAD1 relaxase TraX defines a group of relaxases related to restriction endonucleases. Proc Natl Acad Sci USA 110:13606–13611. [PubMed][CrossRef]
72. Chen Y, Zhang X, Manias D, Yeo H-J, Dunny GM, Christie PJ. 2008. Enterococcus faecalis PcfC, a spatially localized substrate receptor for type IV secretion of the pCF10 transfer intermediate. J Bacteriol 190:3632–3645. [PubMed][CrossRef]
73. Staddon JH, Bryan EM, Manias DA, Chen Y, Dunny GM. 2006. Genetic characterization of the conjugative DNA processing system of enterococcal plasmid pCF10. Plasmid 56:102–111. [PubMed][CrossRef]
74. Hirt H, Manias DA, Bryan EM, Klein JR, Marklund JK, Staddon JH, Paustian ML, Kapur V, Dunny GM. 2005. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10: complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction. J Bacteriol 187:1044–1054. [PubMed][CrossRef]
75. Olmsted SB, Kao S-M, van Putte LJ, Gallo JC, Dunny GM. 1991. Role of the pheromone-inducible surface protein AsclO in mating aggregate formation and conjugal transfer of the Enterococcus faecalis plasmid pCF10. J Bacteriol 173:7665–7672. [PubMed]
76. Waters CM, Dunny GM. 2001. Analysis of functional domains of the Enterococcus faecalis pheromone-induced surface protein aggregation substance. J Bacteriol 183:5659–5667. [PubMed][CrossRef]
77. Waters CM, Wells CL, Dunny GM. 2003. The aggregation domain of aggregation substance, not the RGD motifs, is critical for efficient internalization by HT-29 enterocytes. Infect Immun 71:5682–5689. [PubMed][CrossRef]
78. Olmsted SB, Erlandsen SL, Dunny GM, Wells CL. 1993. High-resolution visualization by field emission scanning electron microscopy of Enterococcus faecalis surface proteins encoded by the pheromone-inducible conjugative plasmid pCF10. J Bacteriol 175:6229–6237. [PubMed]
79. Vollmer W, Seligman SJ. 2010. Architecture of peptidoglycan: more data and more models. Trends Microbiol 18:59–66. [PubMed][CrossRef]
80. Hoppner C. 2005. The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151:3469–3482. [PubMed][CrossRef]
81. Hoppner C, Liu Z, Domke N, Binns AN, Baron C. 2004. VirB1 orthologs from Brucella suis and pKM101 complement defects of the lytic transglycosylase required for efficient type IV secretion from Agrobacterium tumefaciens. J Bacteriol 186:1415–1422. [CrossRef]
82. Cascales E, Christie PJ. 2004. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170–1173. [PubMed][CrossRef]
83. Jakubowski SJ, Krishnamoorthy V, Cascales E, Christie PJ. 2004. Agrobacterium tumefaciens VirB6 domains direct the ordered export of a DNA substrate through a type IV secretion system. J Mol Biol 341:961–977. [PubMed][CrossRef]
84. Anthony KG, Klimke WA, Manchak J, Frost LS. 1999. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 181:5149–5159. [PubMed]
85. Audette GF, Manchak J, Beatty P, Klimke WA, Frost LS. 2007. Entry exclusion in F-like plasmids requires intact TraG in the donor that recognizes its cognate TraS in the recipient. Microbiology 153:442–451. [PubMed][CrossRef]
86. Firth N, Skurray R. 1992. Characterization of the F plasmid bifunctional conjugation gene, traG. Mol Gen Genet 232:145–153. [PubMed][CrossRef]
87. Manning PA, Morelli G, Achtman M. 1981. TraG protein of the F sex factor of Escherichia coli K-12 and its role in conjugation. Proc Natl Acad Sci USA 78:7487–7491. [PubMed][CrossRef]
88. Thoma L, Muth G. 2012. Conjugative DNA transfer in Streptomyces. FEMS Microbiol Lett 337:81–88. [PubMed][CrossRef]
89. Wang J, Pettis GS. 2010. The tra locus of streptomycete plasmid pIJ101 mediates efficient transfer of a circular but not a linear version of the same replicon. Microbiology 156:2723–2733. [PubMed][CrossRef]
90. Possoz C, Ribard C, Gagnat J, Pernodet J-L, Guérineau M. 2001. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 42:159–166. [PubMed][CrossRef]
91. Hopwood DA, Kieser T. 1993. Conjugative plasmids of Streptomyces, p 293–311. In Clewell DB (ed), Bacterial Conjugation. Plenum Press, New York. [CrossRef]
92. Kosono S, Kataoka M, Seki T, Yoshida T. 1996. The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol Microbiol 19:397–405. [PubMed][CrossRef]
93. Pettis GS, Cohen SN. 1996. Plasmid transfer and expression of the transfer (tra) gene product of plasmid pIJ101 are temporally regulated during the Streptomyces lividans life cycle. Mol Microbiol 19:1127–1135. [PubMed][CrossRef]
94. Reuther J, Gekeler C, Tiffert Y, Wohlleben W, Muth G. 2006. Unique conjugation mechanism in mycelial Streptomycetes: a DNA-binding ATPase translocates unprocessed plasmid DNA at the hyphal tip. Mol Microbiol 61:436–446. [PubMed][CrossRef]
95. Franco B, Gonzalez-Ceron G, Servin-Gonzalez L. 2003. Direct repeat sequences are essential for function of the cis-acting locus of transfer (clt) of Streptomyces phaeochromogenes plasmid pJV1. Plasmid 50:242–247. [PubMed][CrossRef]
96. Kataoka M, Kiyose YM, Michisuji Y, Horiguchi T, Seki T, Yoshida T. 1994. Complete nucleotide sequence of the Streptomyces nigrifaciens plasmid, pSN22: genetic organization and correlation with genetic properties. Plasmid 32:55–69. [PubMed][CrossRef]
97. Kieser T, Hopwood DA, Wright HM, Thompson C. 1982. pIJ101, a multi-copy broad host-range Streptomyces plasmid: functional analysis and development of DNA cloning vectors. Mol Gen Genet 185:223–228. [PubMed][CrossRef]
98. Reuther J, Wohlleben W, Muth G. 2006. Modular architecture of the conjugative plasmid pSVH1 from Streptomyces venezuelae. Plasmid 55:201–209. [PubMed][CrossRef]
99. Servin-Gonzalez L, Sampieri A, Cabello J, Galvan L, Juarez V, Castro C. 1995. Sequence and functional analysis of the Streptomyces phaeochromogenes plasmid pJV1 reveals a modular organization of Streptomyces plasmids that replicate by rolling circle. Microbiology 141:2499–2510. [PubMed][CrossRef]
100. Xu M-X, Zhu Y-M, Shen M-J, Jiang W-H, Zhao G-P, Qin Z-J. 2006. Characterization of the essential gene components for conjugal transfer of Streptomyces lividans linear plasmid SLP2. Prog Biochem Biophys 33:986–993.
101. Chen CW. 1996. Complications and implications of linear bacterial chromosomes. Trends Genet 12:192–196. [PubMed][CrossRef]
102. Bentley SD, Brown S, Murphy LD, Harris DE, Quail MA, Parkhill J, Barrell BG, McCormick JR, Santamaria RI, Losick R, Yamasaki M, Kinashi H, Chen CW, Chandra G, Jakimowicz D, Kieser HM, Kieser T, Chater KF. 2004. SCP1, a 356,023 bp linear plasmid adapted to the ecology and developmental biology of its host, Streptomyces coelicolor A3(2). Mol Microbiol 51:1615–1628. [PubMed][CrossRef]
103. Huang C-H, Chen C-Y, Tsai H-H, Chen C, Lin Y-S, Chen CW. 2003. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 47:1563–1576. [PubMed][CrossRef]
104. Bey S-J, Tsou M-F, Huang C-H, Yang C-C, Chen CW. 2000. The homologous terminal sequence of the Streptomyces lividans chromosome and SLP2 plasmid. Microbiology 146:911–922. [PubMed]
105. Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322. [PubMed][CrossRef]
106. Hogan D, Kolter R. 2002. Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 5:472–477. [PubMed][CrossRef]
107. Parsek MR, Greenberg E. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33. [PubMed][CrossRef]
108. Schuster M, Sexton DJ, Diggle SP, Greenberg EP. 2012. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol 67:43–63. [PubMed][CrossRef]
109. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. 2012. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195. [PubMed][CrossRef]
110. D'Alvise PW, Sjøholm OR, Yankelevich T, Jin Y, Wuertz S, Smets BF. 2010. TOL plasmid carriage enhances biofilm formation and increases extracellular DNA content in Pseudomonas putida KT2440. FEMS Microbiol Lett 312:84–92. [PubMed][CrossRef]
111. May T, Okabe S. 2008. Escherichia coli harboring a natural IncF conjugative F plasmid develops complex mature biofilms by stimulating synthesis of colanic acid and curli. J Bacteriol 190:7479–7490. [PubMed][CrossRef]
112. Hausner M, Wuertz S. 1999. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713. [PubMed]
113. Ghigo J-M. 2001. Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–445. [PubMed][CrossRef]
114. Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. 2005. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 3:700–710. [PubMed][CrossRef]
115. Cook L, Chatterjee A, Barnes A, Yarwood J, Hu W-S, Dunny G. 2011. Biofilm growth alters regulation of conjugation by a bacterial pheromone. Mol Microbiol 81:1499–1510. [PubMed][CrossRef]
116. Sedgley CM, Lee EH, Martin MJ, Flannagan SE. 2008. Antibiotic resistance gene transfer between Streptococcus gordonii and Enterococcus faecalis in root canals of teeth ex vivo. J Endod 34:570–574. [PubMed][CrossRef]
117. Merkey BV, Lardon LA, Seoane JM, Kreft J-U, Smets BF. 2011. Growth dependence of conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environ Microbiol 13:2435–2452. [PubMed][CrossRef]
118. Krol JE, Nguyen HD, Rogers LM, Beyenal H, Krone SM, Top EM. 2011. Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77:5079–5088. [PubMed][CrossRef]
119. Haug MC, Tanner SA, Lacroix C, Meile L, Stevens MJ. 2010. Construction and characterization of Enterococcus faecalis CG110/gfp/pRE25*, a tool for monitoring horizontal gene transfer in complex microbial ecosystems. FEMS Microbiol Lett 313:111–119. [PubMed][CrossRef]
120. Teuber M, Schwarz F, Perreten V. 2003. Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Int J Food Microbiol 88:325–329. [PubMed][CrossRef]
121. Reisner A, Wolinski H, Zechner EL. 2012. In situ monitoring of IncF plasmid transfer on semi-solid agar surfaces reveals a limited invasion of plasmids in recipient colonies. Plasmid 67:155–161. [PubMed][CrossRef]
122. Christensen B, Sternberg C, Andersen J, Eberl L, Moller S, Givskov M, Molin S. 1998. Establishment of new genetic traits in a microbial biofilm community. Appl Environ Microbiol 64:2247–2255. [PubMed]
123. Fox RE, Zhong X, Krone SM, Top EM. 2008. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J 2:1024–1039. [PubMed][CrossRef]
124. Krone SM, Lu R, Fox R, Suzuki H, Top EM. 2007. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology 153:2803–2816. [PubMed][CrossRef]
125. Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF. 2011. An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol Ecol 75:17–27. [PubMed][CrossRef]
126. Dahlberg C, Bergström M, Hermansson M. 1998. In situ detection of high levels of horizontal plasmid transfer in marine bacterial communities. Appl Environ Microbiol 64:2670–2675. [PubMed]
127. Normander B, Christensen BB, Molin S, Kroer N. 1998. Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl Environ Microbiol 64:1902–1909. [PubMed]
128. Nancharaiah YV, Wattiau P, Wuertz S, Bathe S, Mohan SV, Wilderer PA, Hausner M. 2003. Dual labeling of Pseudomonas putida with fluorescent proteins for in situ monitoring of conjugal transfer of the TOL Plasmid. Appl Environ Microbiol 69:4846–4852. [PubMed][CrossRef]
129. Arends K, Schiwon K, Sakinc T, Hubner J, Grohmann E. 2012. Green fluorescent protein-labeled monitoring tool to quantify conjugative plasmid transfer between gram-positive and gram-negative bacteria. Appl Environ Microbiol 78:895–899. [PubMed][CrossRef]
130. Zhang W, Rong C, Chen C, Gao GF, Schlievert PM. 2012. Type-IVC secretion system: a novel subclass of type IV secretion system (T4SS) common existing in gram-positive genus Streptococcus. PLoS One 7:e46390. doi:10.1371/journal.pone.0046390. [PubMed][CrossRef]
131. Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202. [PubMed][CrossRef]
132. Laverde Gomez JA, Bhatty M, Christie PJ. 2014. Prgk, a multidomain peptidoglycan hydrolase, is essential for conjugative transfer of the pheromone-responsive plasmid pCF10. J Bacteriol 196:527-539. [PubMed][CrossRef]
microbiolspec.PLAS-0004-2013.citations
cm/2/4
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0004-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0004-2013
2014-08-15
2017-06-28

Abstract:

Conjugative transfer is the most important means of spreading antibiotic resistance and virulence factors among bacteria. The key vehicles of this horizontal gene transfer are a group of mobile genetic elements, termed conjugative plasmids. Conjugative plasmids contain as minimum instrumentation an origin of transfer (), DNA-processing factors (a relaxase and accessory proteins), as well as proteins that constitute the -envelope transport channel, the so-called mating pair formation (Mpf) proteins. All these protein factors are encoded by one or more transfer ) operons that together form the DNA transport machinery, the Gram-positive type IV secretion system. However, multicellular Gram-positive bacteria belonging to the streptomycetes appear to have evolved another mechanism for conjugative plasmid spread reminiscent of the machinery involved in bacterial cell division and sporulation, which transports double-stranded DNA from donor to recipient cells. Here, we focus on the protein key players involved in the plasmid spread through the two different modes and present a new secondary structure homology-based classification system for type IV secretion protein families. Moreover, we discuss the relevance of conjugative plasmid transfer in the environment and summarize novel techniques to visualize and quantify conjugative transfer in situ.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/4/PLAS-0004-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0004-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Genetic organization of the pIP501 operon. Proteins with sequence similarities with the corresponding Ti-plasmid VirB/D4, pCF10, and pCW3 T4SS proteins are in blue; the potential two-protein-coupling protein (consisting of TraI and TraJ) is indicated with brackets; relations based on structure (TraM C-terminal domain, VirB8-like [ 54 ]) and domain prediction (TraL, VirB6-like) based similarities are in yellow; the gene encoding the putative relaxase is in green. The respective protein families are indicated. P, operon promoter. The genes of the pIP501 region are drawn to scale. Put., putative. doi:10.1128/microbiolspec.PLAS-0004-2013.f1.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Model of the pIP501 DNA transfer pathway. First, is bound by the relaxase TraA. After being nicked, the single-stranded plasmid is recruited to the putative transfer channel (modified from reference 17) via the putative two-protein coupling protein TraJ. Decreased shading of PG symbolizes TraG-mediated local opening of PG. The localization and orientation of the T4SS proteins is based on predictions and localization studies ( 52 , 54 ). The N terminus of the T4SS proteins is marked (N). Arrows indicate protein-protein interactions determined by yeast-two-hybrid studies and validated by pull-down assays ( 27 ), as well as interactions found by using the Thermofluor method (Goessweiner-Mohr et al., unpublished data). The thickness of the arrows marks the strength of the detected interactions. The putative function of key members of the pIP501 operon in the DNA secretion process is indicated. PG, peptidoglycan; CM, cytoplasmic membrane; CP, cytoplasm. doi:10.1128/microbiolspec.PLAS-0004-2013.f2.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Comparison of the domain arrangement and classification of putative lytic transglycosylases from G+ and G– putative T4SSs. TraG (pIP501), TcpG (pCW3), VirB1 (Ti-plasmid), and PrgK (pCF10) were chosen as representatives of their respective classes. The potential SLT and CHAP(-like) domains were assigned according to secondary structure predictions with PSIPred ( 131 ). TMHs were annotated with HMMTOP ( 53 ). doi:10.1128/microbiolspec.PLAS-0004-2013.f3.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4a

Click to view

FIGURE 4a

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated. doi:10.1128/microbiolspec.PLAS-0004-2013.f4.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4b

Click to view

FIGURE 4b

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated. doi:10.1128/microbiolspec.PLAS-0004-2013.f4.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4c

Click to view

FIGURE 4c

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated. doi:10.1128/microbiolspec.PLAS-0004-2013.f4.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4d

Click to view

FIGURE 4d

Secondary structure-based classification of lytic transglycosylases. A, class α, B, class β, C, class γ, D, class δ lytic transglycosylases. Secondary structure (PSIpred) and TM motif (HMMTOP) prediction for G– and G+ lytic transglycosylases from conjugative plasmids, transposons, ICEs, and GIs; alpha helices (blue), beta strands (red), and TM motifs (boxes) are highlighted; the putative N-terminal ends of the SLT and CHAP(-like) domains are indicated. doi:10.1128/microbiolspec.PLAS-0004-2013.f4.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Comparison of the domain arrangement and classification of VirB6-like proteins from G+ and G– putative T4SSs. TraL (pIP501), PrgH (pCF10), TcpH (pCW3), VirB6 (Ti-plasmid), TraD (pKM101), TraG (R1 plasmid), and TrbP (pBP136) were selected as representatives of their respective classes. Predicted TMHs (HMMTOP [ 53 ]) are represented as grey boxes. doi:10.1128/microbiolspec.PLAS-0004-2013.f5.

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Classification of TraG-like and other lytic transglycosylases

Source: microbiolspec August 2014 vol. 2 no. 4 doi:10.1128/microbiolspec.PLAS-0004-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error