1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Historical Events That Spawned the Field of Plasmid Biology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • PDF
    328.32 Kb
  • XML
    83.61 Kb
  • HTML
    98.00 Kb
  • Author: Clarence I. Kado1
  • Editors: Marcelo Tolmasky2, Juan Carlos Alonso3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Plant Pathology, University of California Davis, Davis, CA 95616; 2: California State University, Fullerton, CA; 3: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0019-2013
  • Received 24 December 2013 Accepted 29 May 2014 Published 10 October 2014
  • Clarence I. Kado, cikado@ucdavis.edu
image of Historical Events That Spawned the Field of Plasmid Biology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Historical Events That Spawned the Field of Plasmid Biology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/5/PLAS-0019-2013-1.gif /docserver/preview/fulltext/microbiolspec/2/5/PLAS-0019-2013-2.gif
  • Abstract:

    This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).

  • Citation: Kado C. 2014. Historical Events That Spawned the Field of Plasmid Biology. Microbiol Spectrum 2(5):PLAS-0019-2013. doi:10.1128/microbiolspec.PLAS-0019-2013.

Key Concept Ranking

Chromosomal DNA
0.45367867
Type IV Secretion Systems
0.42913526
0.45367867

References

1. Mitsuhashi S, Kameda M, Harada K, Suzuki M. 1969. Formation of recombinants between non-transmissible drug-resistance determinants and transfer factors. J Bacteriol 97:1520–1521. [PubMed]
2. Nakaya R, Nakamura A, Murata Y. 1960. Resistance transfer agents in Shigella. Biochem Biophys Res Commun 3:654–659. [PubMed][CrossRef]
3. Mitsuhashi S. 1977. Epidemiology of R factors, p 25–43. In Mitsuhashi S (ed), R Factor, Drug Resistance Plasmid. University Park Press, Baltimore, MD.
4. Hayes W. 1952. Recombination in Bact. coli K12: unidirectional transfer of genetic material. Nature (London) 169:118–119. [PubMed][CrossRef]
5. Hayes W. 1953. Observations on a transmissible agent determining sexual differentiation in Bact. coli. J Gen Microbiol 8:72–88. [PubMed][CrossRef]
6. Lederberg J, Tatum EL. 1946. Novel genotypes in mixed cultures of biochemical mutants of bacteria. Cold Spring Harbor Symp Quant Biol 11:113–114. [CrossRef]
7. Lederberg J, Tatum EL. 1946. Gene recombination in Escherichia coli. Nature (London) 158:558. [PubMed][CrossRef]
8. Lederberg J, Cavalli LL, Lederberg EM. 1952. Sex compatibility in Escherichia coli. Genetics 37:720–730. [PubMed]
9. Jacob F, Wollman EL. 1958. Les épisomes, elements génétiques ajoutés. C R Hebd. Seances Acad Sci 247:154–156. [PubMed]
10. Lederberg J. 1952. Cell genetics and hereditary symbiosis. Physiol Rev 32:403–430. [PubMed]
11. Lederberg J. 1998. Plasmid (1952–1997). Plasmid 39:1–9. [PubMed][CrossRef]
12. Bukhari AI, Shapiro JA, Adhya SL (ed). 1977. DNA Insertion Elements, Plasmids, and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
13. Zhou Y, Call DR, Broschat SL. 2012. Genetic relationships among 527 Gram-negative bacterial plasmids. Plasmid 68:133–141. [PubMed][CrossRef]
14. Novick RP. 1987. Plasmid incompatibility. Microbiol Rev 51:381–395. [PubMed]
15. Kado CI, Helinski DR. 2007. Proceedings of the international symposium on plasmid biology. Plasmid 57:182–243. [CrossRef]
16. Radloff R, Bauer W, Vinograd J. 1967. A dye-buoyant-density method for the detection and isolation of closed circular duplex DNA: the closed circular DNA in HeLa cells. Proc Natl Acad Sci USA 57:1514–1521. [PubMed][CrossRef]
17. Marmur J, Rownd R, Falkow S, Baron LS, Schildkraut C, Doty P. 1961. The nature of intergeneric episomal infection. Proc Natl Acad Sci USA 47:972–979. [PubMed][CrossRef]
18. Fiers W, Sinsheimer RL. 1962. The structure of the DNA of bacteriophage ɸX174 III. Ultracentrifugal evidence for a ring structure. J Mol Biol 5:424–434. [PubMed][CrossRef]
19. Kleinschmidt AK, Burton A, Sinsheimer RL. 1963. Electron microscopy of the replicative form of the DNA of the bacteriophage phi-X174. Science 142:961. [PubMed][CrossRef]
20. Espejo RT, Canelo ES, Sinsheimer RL. 1969. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci USA 63:1164–1168. [PubMed][CrossRef]
21. Bramhill D, Kornberg A. 1988. Duplex opening by dnaA protein at novel sequences in initiation of replication at the origin of the E. coli chromosome. Cell 52:743–755. [PubMed][CrossRef]
22. Gerdes K, Møller-Jensen J, Bugge Jensen R. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37:455–466. [PubMed][CrossRef]
23. Nordström K, Austin SJ. 1989. Mechanisms that contribute to the stable segregation of plasmids. Annu Rev Genet 23:37–69. [PubMed][CrossRef]
24. Meacock PA, Cohen SN. 1980. Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritance. Cell 20:529–542 [PubMed][CrossRef]
25. Ogura T, Hiraga S. 1983. Partition mechanism of F plasmid: two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32:351–360. [PubMed][CrossRef]
26. Ah-Seng Y, Lopez F, Pasta F, Lane D, Bouet J-Y. 2009. Dual role of DNA in regulating ATP hydrolysis by the SopA partition protein. J Biol Chem 284:30067–30075. [PubMed][CrossRef]
27. Mori H, Kondo A, Ohshima A, Ogura T, Hiraga S. 1986. Structure and function of F plasmid genes essential for partitioning. J Mol Biol 192:1–15. [PubMed][CrossRef]
28. Hayakawa Y, Murotsu T, Matsubara K. 1985. Mini-F protein that binds to a unique region for partition of mini-F plasmid DNA. J Bacteriol 163:349–354. [PubMed]
29. Abeles AL, Snyder KM, Chattoraj DK. 1984. P1 plasmid replication: replicon structure. J Mol Biol 173:307–324. [PubMed][CrossRef]
30. Summers DK, Sherratt DJ. 1984. Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell 36:1097–1103 [PubMed][CrossRef]
31. Jaffé A, Ogura T, Hiraga S. 1985. Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol 163:841–849. [PubMed]
32. Lederberg J, Tatum EL. 1953. Sex in bacteria: genetic studies, 1945–1952. Science 118:169–175. [PubMed][CrossRef]
33. Harden V, Meynell E. 1972. Inhibition of gene transfer by antiserum and identification of serotypes of sex pili. J Bacteriol 109:1067–1074. [PubMed]
34. Tomoeda M, Inuzuka M, Date T. 1975. Bacterial sex pili. Prog Biophys Mol Biol 30:23–56. [PubMed][CrossRef]
35. Brinton CC, Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram negative bacteria. Trans NY Acad Sci 27:1003–1054. [PubMed][CrossRef]
36. Curtiss R. 1969. Bacterial conjugation. Annu Rev Microbiol 23:69–136. [PubMed][CrossRef]
37. Marvin DA, Hohn B. 1969. Filamentous bacterial viruses. Bacteriol Rev 33:172–209. [PubMed]
38. Achtman M, Morelli G, Schwuchow S. 1978. Cell-cell interactions in conjugating Escherichia coli: role of F pili and fate of mating aggregates. J Bacteriol 135:1053–1061. [PubMed]
39. Achtman M, Kennedy N, Skurray R. 1977. Cell-cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc Natl Acad Sci USA 74:5104–5108. [PubMed][CrossRef]
40. Durrenberger MB, Villiger W, Bachi T.1991. Conjugational junctions: morphology of specific contacts in conjugating Escherichia coli bacteria. J Struct Biol 107:146–156. [PubMed][CrossRef]
41. Harrington LC, Rogerson AC. 1990. The F pilus of Escherichia coli appears to support stable DNA transfer in the absence of wall-to-wall contact between cells. J Bacteriol 172:7263–7264. [PubMed]
42. Ou JT, Anderson TF. 1970. Role of pili in bacterial conjugation. J Bacteriol 102:648–654. [PubMed]
43. Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M. 2008. Direct visualization of horizontal gene transfer. Science 319:1533–1536. [PubMed][CrossRef]
44. Frost LS, Ippen-Ihler K, Skurray RA. 1994. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 58:162–210. [PubMed]
45. Frost LS, Finlay BB, Opgenorth A, Paranchych W, Lee JS. 1985. Characterization and sequence analysis of pilin from F-like plasmids. J Bacteriol 164:1238–1247. [PubMed]
46. Kado CI. 1994. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis. Mol Microbiol 12:17–22. [PubMed][CrossRef]
47. Shirasu K, Kado CI. 1993. The virB operon of the Agrobacterium tumefaciens virulence regulon has sequence similarities to B, C and D open reading frames downstream of the pertussis toxin-operon and to the DNA transfer-operons of broad-host-range conjugative plasmids. Nucleic Acids Res 21:353–354. [CrossRef]
48. Cascales E, Christie PJ. 2003. The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1:137–149. [PubMed][CrossRef]
49. Lawley TD, Klimke WA, Gubbin MJ, Frost LS. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol Lett 224:1–15. [PubMed][CrossRef]
50. Jones AL, Lai EM, Shirasu K, Kado CI. 1996. VirB2 is a processed pilin-like protein encoded by the Agrobacterium Ti plasmid. J Bacteriol 178:5706–5711. [PubMed]
51. Lai EM, Kado CI. 1998. Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. J Bacteriol 180:2711–2717. [PubMed]
52. Lai EM, Eisenbrandt R, Kalkum M, Lanka E, Kado CI. 2002. Biogenesis of T pili in Agrobacterium tumefaciens requires precise VirB2 propilin cleavage and cyclization. J Bacteriol 184:327–330. [PubMed][CrossRef]
53. Shirasu K, Kado CI. 1993. Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS Microbiol Lett 111:287–294. [PubMed][CrossRef]
54. Lai EM, Kado CI. 2000. The T-pilus of Agrobacterium tumefaciens. Trends Microbiol 8:361–369. [PubMed][CrossRef]
55. Zupan JR, Ward D, Zambryski P. 1998. Assembly of the VirB transport complex for DNA transfer from Agrobacterium tumefaciens to plant cells. Curr Opin Microbiol 1:649–655. [PubMed][CrossRef]
56. Kado CI. 2009. Horizontal gene transfer: sustaining pathogenicity and optimizing host-pathogen interactions. Mol Plant Pathol 10:143–150. [PubMed][CrossRef]
57. Novick RP. 1969. Extrachromosomal inheritance in bacteria. Bacteriol Rev 33:210–235. [PubMed]
58. Phillips G, Funnel B. 2004. Plasmid Biology. ASM Press, Washington, DC.
59. Kado CI. 1998. Origin and evolution of plasmids. Antonie van Leeuwenhoek 73:117–126. [PubMed][CrossRef]
60. Williams PA, Murray K. 1974. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423. [PubMed]
61. Burlage RS, Hooper SW, Sayler GS. 1989. The TOL (pWW0) catabolic plasmid. Appl Environ Microbiol 55:1323–1328. [PubMed]
62. Staudenbauer WL. 1978. Structure and replication of the colicin E1 plasmid. Curr Top Microbiol Immunol 83:93–156. [PubMed][CrossRef]
63. Van Tiel-Menkvled GJ, Rezee A, De Graaf FK. 1979. Production and excretion of cloacin DF13 by Escherichia coli harboring plasmid CloDF13. J Bacteriol 140:415–423. [PubMed]
64. De Kwaadsteniet M, ten Doeschate K, Dicks LMT. 2007. Characterization of the structural gene encoding Nisin F, a new lantibiotic produced by a Lactococcus lactis subsp. lactis isolate from freshwater catfish (Claria gariepinus). Appl Environ Microbiol 74:547–549. [PubMed][CrossRef]
65. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Molec Biol Rev 73:750–774. [PubMed][CrossRef]
66. Sansonetti PJ, Kopecko DJ, Formal SB. 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35:852–860. [PubMed]
67. McCarthy AJ, Lindsay JA. 2012. The distribution of plasmids that carry virulence and resistance genes in Staphylococcus aureus is lineage associated. BMC Microbiol 12:104. doi:10.1186/1471-2180-12-104. [PubMed][CrossRef]
68. Kado CI. 2010. Plant Bacteriology. APS Press, St. Paul, MN.
69. Lobban P, Kaiser AD. 1973. Enzymatic end-to-end joining of DNA molecules. J Mol Biol 79:453–471. [PubMed][CrossRef]
70. Rodriguez RL, Denhardt DT (ed). 1988. Vectors: A Survey of Molecular Cloning Vectors and Their Use. Butterworths, London.
71. Kaufman RJ. 2000. Overview of vector design for mammalian gene expression. Mol Biotechnol 16:151–160. [PubMed][CrossRef]
72. Lee LY, Gelvin SB. 2008. T-DNA binary vectors and systems. Plant Physiol 146:325–332. [PubMed][CrossRef]
73. Tolmachov OE. 2011. Building mosaics of therapeutic plasmid gene vectors. Curr Gene Ther 11:466–478. [PubMed][CrossRef]
74. Masai H, Kaziro Y, Arai K. 1983. Definition of oriR, the minimum DNA segment essential for initiation of R1 plasmid replication in vitro. Proc Natl Acad Sci USA 80:6814–6818. [PubMed][CrossRef]
75. Rosen J, Ryder T, Inokuchi H, Ohtsubo H, Ohtsubo E. 1980. Genes and sites involved in replication and incompatibility of an R100 plasmid derivative based on nucleotide sequence analysis. Mol Gen Genet 179:527–537. [PubMed][CrossRef]
76. Song H, Phillips SE, Parsons MR, Maas R. 1996. Crystallization and preliminary crystallographic analysis of RepA1, a replication control protein of the RepFIC replicon of enterotoxin plasmid EntP307. Proteins 25:137–138. [PubMed][CrossRef]
77. Churchward G, Linder P, Caro L. 1983. The nucleotide sequence of replication and maintenance functions encoded by plasmid pSC101. Nucleic Acids Res 11:5645–5659. [PubMed][CrossRef]
78. Vocke C, Bastia D. 1983. DNA-protein interaction at the origin of DNA replication of the plasmid pSC101. Cell 35:495–502. [PubMed][CrossRef]
79. Scherzinger E, Haring V, Lurz R, Otto S. 1991. Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res 19:1203–1211. [PubMed][CrossRef]
80. Komori H, Matsunaga F, Higuchi Y, Ishiai M, Wada C, Miki K. 1999. Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. EMBO J 18:4597–4607. [PubMed][CrossRef]
81. Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. 2006. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 188:5501–5509. [PubMed][CrossRef]
82. Germino J, Bastia D. 1983. Interaction of the plasmid R6K-encoded replication initiator protein with its binding sites on DNA. Cell 34:125–134. [PubMed][CrossRef]
83. Vuicic M, Topisirovic L. 1993. Molecular analysis of the rolling-circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl Environ Microbiol 59:274–280. [PubMed]
84. De la Campa AG, del Solar GH, Espinosa M.1990. Initiation of replication of plasmid pLS1: the initiator protein RepB acts on two distant DNA regions. J Mol Biol 213:247–262. [PubMed][CrossRef]
85. Koepsel RR, Murray RW, Rosenblum WD, Khan SA. 1985. Purification of pT181-encoded RepC protein required for the initiation of plasmid replication. J Biol Chem 260:8571–8577. [PubMed]
86. Thomas CD, Baison DF, Shaw WV. 1990. In vitro studies of the initiation of staphyloccal plasmid replication. Specificity of RepD for its origin (oriD) and characterization of the Rep-ori tyrosyl ester intermediate. J Biol Chem 265:5519–5530. [PubMed]
87. Balbás P, Soberón X, Merino E, Zurita M, Lomeli H, Valle F, Flores N, Bolivar F. 1986. Plasmid vector pBR322 and its special-purpose derivatives: a review. Gene 50:3–40. [PubMed][CrossRef]
88. Messing J. 1983. New M13 vectors for cloning, p 20–78. In Wu R, Grossman L, Moldave K (ed), Methods in Enzymology, Academic Press, Orlando, FL. [PubMed]
89. Norrander J, Kempe T, Messing J. 1983. Construction of improved M13 vectors using oligo-deoxynucleotide-directed mutagenesis. Gene 16:101–106. [PubMed][CrossRef]
90. Vieira J, Messing J. 1982. The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268. [PubMed][CrossRef]
91. Stewart GSAB, Lubinsky-Mink S, Jackson CG, Cassel A, Kuhn J. 1986. pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15:172–181. [PubMed][CrossRef]
92. Peeters BPH, Schoenmakers JGG, Konings RNH. 1986. Plasmid pKUN9, a versatile vector for the selective packaging of both DNA strands into single-stranded DNA-containing phage-like particles. Gene 41:39–46. [PubMed][CrossRef]
93. Zyprian E, Kado CI. 1990. Agrobacterium-mediated plant transformation by novel mini-T vectors in conjunction with a high-copy vir region helper plasmid. Plant Mol Biol 15:245–256. [PubMed][CrossRef]
94. Shaw JJ, Kado CI. 1986. Development of a Vibrio bioluminescence gene-set to monitor phytopathogenic bacteria during the ongoing disease process in a non-disruptive manner. Nat Biotechnol 4:560–564. [CrossRef]
95. Gay P, LeCoq D, Steinmetz M, Berkelman T, Kado CI. 1985. Positive selection procedure for entrapment of insertion sequence elements in Gram-negative bacteria. J Bacteriol 164:918–921. [PubMed]
96. Okumura K, Chlumsky L, Baldwin TO, Kado CI. 1992. Enhanced stable expression of a Vibrio luciferase under the control of the Ω-3 translational enhancer in transgenic plants. World J Microbiol Biotechnol 8:638–644. [PubMed][CrossRef]
97. Selbitschka W, Niemann S, Pühler A. 1993. Construction of gene replacement vectors for Gram- bacteria using a genetically modified sacRB gene as a positive selection marker. Appl Microbiol Biotechnol 38:615–618. [CrossRef]
98. Kamoun S, Tola E, Kamdar H, Kado CI. 1992. Rapid generation of directed and unmarked deletions in Xanthomonas. Mol Microbiol 6:809–816. [PubMed][CrossRef]
99. Kumar G. 1992. Two cat expression vectors for cloning and generation of 3′- and 5′-deletion mutants. Gene 110:101–103. [CrossRef]
100. Crouzet J, Lévy-Schil S, Cauchois L, Cameron B. 1992. Construction of a broad-host-range non-mobilizable stable vector carrying RP4 par-region. Gene 110:105–108. [PubMed][CrossRef]
101. Quandt J, Hynes MF. 1993. Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127:15–21. [PubMed][CrossRef]
102. Kurata H, Furusaki S, Kado CI. 1998. Light-enhanced target gene expression in tobacco BY-2 by the combination of overexpressed phytochrome and rbcS3A promoter. Biotechnol Lett 20:463–468. [CrossRef]
103. Godiska R, Dhodda V, Gilbert V, Ravin N, Mead D. 2007. Proceedings of the International Symposium on Plasmid Biology. Plasmid 57:182–243. [CrossRef]
104. Prentki P, Krisch HM. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313. [PubMed][CrossRef]
microbiolspec.PLAS-0019-2013.citations
cm/2/5
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0019-2013
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0019-2013
2014-10-10
2017-12-14

Abstract:

This chapter revisits the historical development and outcome of studies focused on the transmissible, extrachromosomal genetic elements called plasmids. Early work on plasmids involved structural and genetic mapping of these molecules, followed by the development of an understanding of how plasmids replicate and segregate during cell division. The intriguing property of plasmid transmission between bacteria and between bacteria and higher cells has received considerable attention. The utilitarian aspects of plasmids are described, including examples of various plasmid vector systems. This chapter also discusses the functional attributes of plasmids needed for their persistence and survival in nature and in man-made environments. The term was first conceived at the Fallen Leaf Lake Conference on Promiscuous Plasmids, 1990, Lake Tahoe, California. The International Society for Plasmid Biology was established in 2004 (www.ISPB.org).

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/5/PLAS-0019-2013.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0019-2013&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Joshua Lederberg. doi:10.1128/microbiolspec.PLAS-0019-2013.f1

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0019-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Purified F pili bearing spherical RNA MS2 phages. Electron micrograph courtesy of Professor Manabu Inuzuka, Fukui Medical University, Fukui, Japan. Bar = 2000 Å. doi:10.1128/microbiolspec.PLAS-0019-2013.f2

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0019-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Plasmid initiator proteins

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0019-2013
Generic image for table

Click to view

TABLE 2

Examples of plasmid vector systems and their uses

Source: microbiolspec October 2014 vol. 2 no. 5 doi:10.1128/microbiolspec.PLAS-0019-2013

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error