1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    215.60 Kb
  • HTML
    216.44 Kb
  • PDF
    839.35 Kb
  • Authors: Stefan Schwarz1, Jianzhong Shen2, Sarah Wendlandt3, Andrea T. Feßler4, Yang Wang5, Kristina Kadlec6, Cong-Ming Wu7
  • Editors: Marcelo Tolmasky8, Juan Carlos Alonso9
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; 2: Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China; 3: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; 4: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; 5: Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China; 6: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; 7: Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany; 8: California State University, Fullerton, CA; 9: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
  • Received 25 March 2014 Accepted 27 March 2014 Published 14 November 2014
  • Stefan Schwarz, stefan.schwarz@fli.bund.de
image of Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other <span class="jp-italic">Firmicutes</span>
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other , Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/PLAS-0020-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/6/PLAS-0020-2014-2.gif
  • Abstract:

    In staphylococci and other , resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other .

  • Citation: Schwarz S, Shen J, Wendlandt S, Feßler A, Wang Y, Kadlec K, Wu C. 2014. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other . Microbiol Spectrum 2(6):PLAS-0020-2014. doi:10.1128/microbiolspec.PLAS-0020-2014.

Key Concept Ranking

Mobile Genetic Elements
0.55970716
Major Facilitator Superfamily
0.4955313
0.55970716

References

1. Lyon BR, Skurray R. 1987. Antimicrobial resistance of Staphylococcus aureus: Genetic basis. Microbiol Rev 51:88–134. [PubMed]
2. Novick RP. 1989. Staphylococcal plasmids and their replication. Annu Rev Microbiol 43:537–565. [PubMed][CrossRef]
3. Werckenthin C, Cardoso M, Martel JL, Schwarz S. 2001. Antimicrobial resistance in staphylococci from animals with particular reference to bovine Staphylococcus aureus, porcine Staphylococcus hyicus, and canine Staphylococcus intermedius. Vet Res 32:341–362. [PubMed][CrossRef]
4. Taylor DE, Gibreel A, Lawley TD, Tracz DM. 2004. Antibiotic resistance plasmids, p 473–491. In Phillips G, Funnell B (ed), Plasmid Biology. ASM Press, Washington DC. [CrossRef]
5. Clewell DB, Francia MV. 2004. Conjugation in Gram-positive bacteria, p 227–256. In Phillips G, Funnell G (ed). Plasmid Biology. ASM Press, Washington DC. [CrossRef]
6. Aarestrup FM, Schwarz S. 2006. Antimicrobial resistance in staphylococci and streptococci of animal origin, p 187–212. In Aarestrup FK (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC.
7. Jensen SO, Lyon BR. 2009. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol 4:565–582. [PubMed][CrossRef]
8. Wendlandt S, Feβler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K. 2013. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int J Med Microbiol 303:338–349. [PubMed][CrossRef]
9. Schwarz S, Feβler AT, Hauschild T, Kehrenberg C, Kadlec K. 2011. Plasmid-mediated resistance to protein biosynthesis inhibitors in staphylococci. Ann NY Acad Sci 1241:82–103. [PubMed][CrossRef]
10. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830. [PubMed]
11. Roberts MC. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24. [PubMed][CrossRef]
12. Zhu W, Murray PR, Huskins WC, Jernigan JA, McDonald LC, Clark NC, Anderson KF, McDougal LK, Hageman JC, Olsen-Rasmussen M, Frace M, Alangaden GJ, Chenoweth C, Zervos MJ, Robinson-Dunn B, Schreckenberger PC, Reller LB, Rudrik JT, Patel JB. 2010. Dissemination of an Enterococcus Inc18-Like vanA plasmid associated with vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54:4314–4320. [PubMed][CrossRef]
13. Lozano C, Aspiroz C, Sáenz Y, Ruiz-García M, Royo-García G, Gómez-Sanz E, Ruiz-Larrea F, Zarazaga M, Torres C. 2012. Genetic environment and location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus and other staphylococci of animal and human origin. J Antimicrob Chemother 67:2804–2808. [PubMed][CrossRef]
14. Wendlandt S, Lozano C, Kadlec K, Gómez-Sanz E, Zarazaga M, Torres C, Schwarz S. 2013. The enterococcal ABC transporter gene lsa(E) confers combined resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-susceptible and methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 68:473–475. [PubMed][CrossRef]
15. Wendlandt S, Li B, Lozano C, Ma Z, Torres C, Schwarz S. 2013. Identification of the novel spectinomycin resistance gene spw in methicillin-resistant and methicillin-susceptible Staphylococcus aureus of human and animal origin. J Antimicrob Chemother 68:1679–1680. [PubMed][CrossRef]
16. Kadlec K, Feβler AT, Couto N, Pomba CF, Schwarz S. 2012. Unusual small plasmids carrying the novel resistance genes dfrK or apmA isolated from methicillin-resistant or -susceptible staphylococci. J Antimicrob Chemother 67:2342–2345. [PubMed][CrossRef]
17. Li J, Li B, Wendlandt S, Schwarz S, Wang Y, Wu C, Ma Z, Shen J. 2014. Identification of a novel vga(E) gene variant that confers resistance to pleuromutilins, lincosamides and streptogramin A antibiotics in staphylococci of porcine origin. J Antimicrob Chemother 69:919–923. [PubMed][CrossRef]
18. Shen J, Wang Y, Schwarz S. 2013. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 68:1697–1706. [PubMed][CrossRef]
19. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260. [PubMed][CrossRef]
20. Schwarz S, Roberts MC, Werckenthin C, Pang Y, Lange C. 1998. Tetracycline resistance in Staphylococcus spp. from domestic animals. Vet Microbiol 63:217–227. [PubMed][CrossRef]
21. Mojumdar M, Khan SA. 1988. Characterization of the tetracycline resistance gene of plasmid pT181 of Staphylococcus aureus. J Bacteriol 170:5522–5528. [PubMed]
22. Guay GG, Khan SA, Rothstein DM. 1993. The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. Plasmid 30:163–166. [PubMed][CrossRef]
23. Khan SA, Novick RP. 1983. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259. [PubMed][CrossRef]
24. Gennaro ML, Kornblum J, Novick RP. 1987. A site-specific recombination function in Staphylococcus aureus plasmids. J Bacteriol 169:2601–2610. [PubMed]
25. Greene RT, Schwarz S. 1992. Small antibiotic resistance plasmids in Staphylococcus intermedius. Zentralbl Bakteriol 276:380–389. [PubMed][CrossRef]
26. Schwarz S, Blobel H. 1990. Isolation and restriction endonuclease analysis of a tetracycline resistance plasmid from Staphylococcus hyicus. Vet Microbiol 24:113–122. [PubMed][CrossRef]
27. Schwarz S, Cardoso M, Grölz-Krug S, Blobel H. 1990. Common antibiotic resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis from human and canine infections. Zentralbl Bakteriol 273:369–377. [PubMed][CrossRef]
28. Hauschild T, Kehrenberg C, Schwarz S. 2003. Tetracycline resistance in staphylococci from free-living rodents and insectivores. J Vet Med B Infect Dis Vet Public Health 50:443–446. [PubMed][CrossRef]
29. Hauschild T, Lüthje P, Schwarz S. 2005. Staphylococcal tetracycline-MLSB resistance plasmid pSTE2 is the product of an RSA-mediated in vivo recombination. J Antimicrob Chemother 56:399–402. [PubMed][CrossRef]
30. Schwarz S, Cardoso M, Wegener HC. 1992. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrob Agents Chemother 36:580–588. [PubMed][CrossRef]
31. Schwarz S, Noble WC. 1994. Tetracycline resistance genes in staphylococci from the skin of pigs. J Appl Bacteriol 76:320–326. [CrossRef]
32. Schwarz S, Gregory PD, Werckenthin C, Curnock S, Dyke KG. 1996. A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. J Med Microbiol 45:57–63. [PubMed][CrossRef]
33. Kadlec K, Feβler AT, Hauschild T, Schwarz S. 2012. Novel and uncommon antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 18:745–755. [PubMed][CrossRef]
34. Kadlec K, Schwarz S. 2009. Identification of a novel ABC transporter gene, vga(C), located on a multiresistance plasmid from a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 53:3589–3591. [PubMed][CrossRef]
35. Kadlec K, Schwarz S. 2010. Identification of a plasmid-borne resistance gene cluster comprising the resistance genes erm(T), dfrK, and tet(L) in a porcine methicillin-resistant Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:915–918. [PubMed][CrossRef]
36. Kadlec K, Schwarz S. 2009. Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet(L). Antimicrob Agents Chemother 53:776–778. [PubMed][CrossRef]
37. Weiss S, Kadlec K, Feβler AT, Schwarz S. 2014. Complete sequence of a multiresistance plasmid from a methicillin-resistant Staphylococcus epidermidis ST5 isolated in a small animal clinic. J Antimicrob Chemother 69:847–849. [PubMed][CrossRef]
38. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev 28:519–542. [PubMed][CrossRef]
39. Brenner DG, Shaw WV. 1985. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. EMBO J 4:561–568. [PubMed]
40. Projan SJ, Kornblum J, Moghazeh SL, Edelman I, Gennaro ML, Novick RP. 1985. Comparative sequence and functional analysis of pT181 and pC221, cognate plasmid replicons from Staphylococcus aureus. Mol Gen Genet 3:452–464. [PubMed][CrossRef]
41. Smith MC, Thomas CD. 2004. An accessory protein is required for relaxosome formation by small staphylococcal plasmids. J Bacteriol 186:3363–3373. [PubMed][CrossRef]
42. Horinouchi S, Weisblum B. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825. [PubMed]
43. Schwarz S, Cardoso M, Blobel M. 1989. Plasmid-mediated chloramphenicol resistance in Staphylococcus hyicus. J Gen Microbiol 135:3329–3336. [PubMed]
44. Schwarz S, Cardoso M, Blobel H. 1990. Detection of a novel chloramphenicol resistance plasmid from “equine” Staphylococcus sciuri. J Vet Med B Infect Dis Vet Public Health 37:674–679. [PubMed][CrossRef]
45. Schwarz S, Spies U, Cardoso M. 1991. Cloning and sequence analysis of a plasmid-encoded chloramphenicol acetyltransferase gene from Staphylococcus intermedius. J Gen Microbiol 137:977–981. [PubMed][CrossRef]
46. Cardoso M, Schwarz S. 1992. Chloramphenicol resistance plasmids in Staphylococcus aureus isolated from bovine subclinical mastitis. Vet Microbiol 30:223–232. [PubMed][CrossRef]
47. Schwarz S, Werckenthin C, Pinter L, Kent LE, Noble WC. 1995. Chloramphenicol resistance in Staphylococcus intermedius from a single veterinary centre: evidence for plasmid and chromosomal location of the resistance genes. Vet Microbiol 43:151–159. [CrossRef]
48. Schwarz S. 1994. Emerging chloramphenicol resistance in Staphylococcus lentus from mink following chloramphenicol treatment: characterisation of the resistance genes. Vet Microbiol 41:51–61. [PubMed][CrossRef]
49. Schwarz S, Cardoso M. 1991. Molecular cloning, purification, and properties of a plasmid-encoded chloramphenicol acetyltransferase from Staphylococcus haemolyticus. Antimicrob Agents Chemother 35:1277–1283. [PubMed][CrossRef]
50. Schwarz S, Cardoso M. 1991. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrob Agents Chemother 35:1551–1556. [PubMed][CrossRef]
51. Hauschild T, Stepanović S, Vuković D, Dakić I, Schwarz S. 2009. Occurrence of chloramphenicol resistance and corresponding resistance genes in members of the Staphylococcus sciuri group. Int J Antimicrob Agents 33:383–384. [PubMed][CrossRef]
52. Kehrenberg C, Schwarz S. 2004. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob Agents Chemother 48:615–618. [CrossRef]
53. Kehrenberg C, Schwarz S. 2005. Florfenicol-chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob Agents Chemother 49:813–815. [PubMed][CrossRef]
54. Kehrenberg C, Schwarz S. 2006. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother 50:1156–1163. [PubMed][CrossRef]
55. Wang Y, Zhang W, Wang J, Wu C, Shen Z, Fu X, Yan Y, Zhang Q, Schwarz S, Shen J. 2012. Distribution of the multidrug resistance gene cfr in Staphylococcus species isolates from swine farms in China. Antimicrob Agents Chemother 56:1485–1490. [PubMed][CrossRef]
56. He T, Wang Y, Schwarz S, Zhao Q, Shen J, Wu C. 2014. Genetic environment of the multi-resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int J Med Microbiol 304:257–261. [PubMed][CrossRef]
57. Kehrenberg C, Aarestrup FM, Schwarz S. 2007. IS21-558 insertion sequences are involved in the mobility of the multiresistance gene cfr. Antimicrob Agents Chemother 51:483–487. [PubMed][CrossRef]
58. Shore AC, Brennan OM, Ehricht R, Monecke S, Schwarz S, Slickers P, Coleman DC. 2010. Identification and characterization of the multidrug resistance gene cfr in a Panton-Valentine leukocidin-positive sequence type 8 methicillin-resistant Staphylococcus aureus IVa (USA300) isolate. Antimicrob Agents Chemother 54:4978–4984. [PubMed][CrossRef]
59. Gómez-Sanz E, Kadlec K, Feβler AT, Zarazaga M, Torres C, Schwarz S. 2013. A novel FexA variant from a canine Staphylococcus pseudintermedius isolate that does not confer florfenicol resistance. Antimicrob Agents Chemother 57:5763–5766. [PubMed][CrossRef]
60. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol Microbiol 57:1064–1073. [PubMed][CrossRef]
61. Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. 2006. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505. [PubMed][CrossRef]
62. Schwarz S, Werckenthin C, Kehrenberg C. 2000. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother 44:2530–2533. [PubMed][CrossRef]
63. Kehrenberg C, Ojo KK, Schwarz S. 2004. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. J Antimicrob Chemother 54:936–939. [PubMed][CrossRef]
64. Wang XM, Zhang WJ, Schwarz S, Yu SY, Liu H, Si W, Zhang RM, Liu S. 2012. Methicillin-resistant Staphylococcus aureus ST9 from a case of bovine mastitis carries the genes cfr and erm(A) on a small plasmid. J Antimicrob Chemother 67:1287–1289. [PubMed][CrossRef]
65. Lampson BC, Parisi JT. 1986. Nucleotide sequence of the constitutive macrolide-lincosamide-streptogramin B resistance plasmid pNE131 from Staphylococcus epidermidis and homologies with Staphylococcus aureus plasmids pE194 and pSN2. J Bacteriol 167:888–892. [PubMed]
66. Catchpole I, Thomas C, Davies A, Dyke KG. 1988. The nucleotide sequence of Staphylococcus aureus plasmid pT48 conferring inducible macrolide-lincosamide-streptogramin B resistance and comparison with similar plasmids expressing constitutive resistance. J Gen Microbiol 134:697–709. [PubMed]
67. Horinouchi S, Weisblum B. 1982. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J Bacteriol 150:804–814. [PubMed]
68. Lodder G, Schwarz S, Gregory P, Dyke KG. 1996. Tandem duplication in ermC translational attenuator of the macrolide-lincosamide-streptogramin B resistance plasmid pSES6 from Staphylococcus equorum. Antimicrob Agents Chemother 40:215–217. [PubMed]
69. Hauschild T, Lüthje P, Schwarz S. 2006. Characterization of a novel type of MLSB resistance plasmid from Staphylococcus saprophyticus carrying a constitutively expressed erm(C) gene. Vet Microbiol 115:258–263. [PubMed][CrossRef]
70. Wendlandt S, Kadlec K, Feβler AT, van Duijkeren E, Schwarz S. 2014. Two different erm(C)-carrying plasmids in the same methicillin-resistant Staphylococcus aureus CC398 isolate from a broiler farm. Vet Microbiol 171:382–387. [PubMed][CrossRef]
71. Gómez-Sanz E, Kadlec K, Feβler AT, Zarazaga M, Torres C, Schwarz S. 2013. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob Agents Chemother 57:3275–3282. [PubMed][CrossRef]
72. Gómez-Sanz E, Kadlec K, Feβler AT, Billerbeck C, Zarazaga M, Schwarz S, Torres C. 2013. Analysis of a novel erm(T)- and cadDX-carrying plasmid from methicillin-susceptible Staphylococcus aureus ST398-t571 of human origin. J Antimicrob Chemother 68:471–473. [PubMed][CrossRef]
73. Gómez-Sanz E, Zarazaga M, Kadlec K, Schwarz S, Torres C. 2013. Chromosomal integration of the novel plasmid pUR3912 from methicillin-susceptible Staphylococcus aureus ST398 of human origin. Clin Microbiol Infect 19:E519–E522. [PubMed]
74. Feβler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. 2010. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother 65:619–625. [PubMed][CrossRef]
75. Feβler AT, Kadlec K, Hassel M, Hauschild T, Eidam C, Ehricht R, Monecke S, Schwarz S. 2011. Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl Environ Microbiol 77:7151–7157. [PubMed][CrossRef]
76. Townsend DE, Bolton S, Ashdown N, Annear DI, Grubb WB. 1986. Conjugative staphylococcal plasmids carrying hitch-hiking transposons similar to Tn554: intra- and interspecies dissemination of erythromycin resistance. Aust J Exp Biol Med Sci 64:367–379. [PubMed][CrossRef]
77. Werckenthin C, Schwarz S, Dyke KG. 1996. Macrolide-lincosamide-streptogramin B resistance in Staphylococcus lentus results from the integration of part of a transposon into a small plasmid. Antimicrob Agents Chemother 40:2224–2225. [PubMed]
78. Feβler AT, Kadlec K, Schwarz S. 2011. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob Agents Chemother 55:373–375. [PubMed][CrossRef]
79. Schwarz S, Kehrenberg C, Ojo KK. 2002. Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob Agents Chemother 46:3621–3623. [PubMed][CrossRef]
80. Matsuoka M, Inoue M, Endo Y, Nakajima Y. 2003. Characteristic expression of three genes, msr(A), mph(C) and erm(Y), that confer resistance to macrolide antibiotics on Staphylococcus aureus. FEMS Microbiol Lett 220:287–293. [PubMed][CrossRef]
81. Lüthje P, Schwarz S. 2006. Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular reference to macrolide-lincosamide resistance phenotypes and genotypes. J Antimicrob Chemother 57:966–969. [PubMed][CrossRef]
82. Gatermann SG, Koschinski T, Friedrich S. 2007. Distribution and expression of macrolide resistance genes in coagulase-negative staphylococci. Clin Microbiol Infect 13:777–781. [PubMed][CrossRef]
83. Lozano C, Rezusta A, Gómez P, Gómez-Sanz E, Báez N, Martin-Saco G, Zarazaga M, Torres C. 2012. High prevalence of spa types associated with the clonal lineage CC398 among tetracycline-resistant methicillin-resistant Staphylococcus aureus strains in a Spanish hospital. J Antimicrob Chemother 67:330–334. [PubMed][CrossRef]
84. Kennedy AD, Porcella SF, Martens C, Whitney AR, Braughton KR, Chen L, Craig CT, Tenover FC, Kreiswirth BN, Musser JM, DeLeo FR. 2010. Complete nucleotide sequence analysis of plasmids in strains of Staphylococcus aureus clone USA300 reveals a high level of identity among isolates with closely related core genome sequences. J Clin Microbiol 48:4504–4511. [PubMed][CrossRef]
85. Loeza-Lara PD, Soto-Huipe M, Baizabal-Aguirre VM, Ochoa-Zarzosa A, Valdez-Alarcón JJ, Cano-Camacho H, López-Meza JE. 2004. pBMSa1, a plasmid from a dairy cow isolate of Staphylococcus aureus, encodes a lincomycin resistance determinant and replicates by the rolling-circle mechanism. Plasmid 52:48–56. [PubMed][CrossRef]
86. Lüthje P, von Köckritz-Blickwede M, Schwarz S. 2007. Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A). J Antimicrob Chemother 59:600–606. [PubMed][CrossRef]
87. Li B, Wendlandt S, Yao J, Liu Y, Zhang Q, Shi Z, Wei J, Shao D, Schwarz S, Wang S, Ma Z. 2013. Detection and new genetic environment of the pleuromutilin-lincosamide-streptogramin A resistance gene lsa(E) in methicillin-resistant Staphylococcus aureus of swine origin. J Antimicrob Chemother 68:1251–1255. [PubMed][CrossRef]
88. Wendlandt S, Li B, Ma Z, Schwarz S. 2013. Complete sequence of the multi-resistance plasmid pV7037 from a porcine methicillin-resistant Staphylococcus aureus. Vet Microbiol 166:650–654. [PubMed][CrossRef]
89. Allignet J, Liassine N, El Solh N. 1998. Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob Agents Chemother 42:1794–1798. [PubMed]
90. Allignet J, El Solh N. 1999. Comparative analysis of staphylococcal plasmids carrying three streptogramin-resistance genes: vat-vgb-vga. Plasmid 42:134–138. [PubMed][CrossRef]
91. Allignet J, El Solh N. 1995. Diversity among the Gram-positive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob Agents Chemother 39:2027–2036. [PubMed][CrossRef]
92. Allignet J, Loncle V, El Sohl N. 1992. Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A-like antibiotics. Gene 117:45–51. [PubMed][CrossRef]
93. Haroche J, Allignet J, El Solh N. 2002. Tn5406, a new staphylococcal transposon conferring resistance to streptogramin A and related compounds including dalfopristin. Antimicrob Agents Chemother 46:2337–2343. [PubMed][CrossRef]
94. Aubert S, Dyke KG, El Solh N. 1998. Analysis of two Staphylococcus epidermidis plasmids coding for resistance to streptogramin A. Plasmid 40:238–242. [PubMed][CrossRef]
95. Kadlec K, Pomba CF, Couto N, Schwarz S. 2010. Small plasmids carrying vga(A) or vga(C) genes mediate resistance to lincosamides, pleuromutilins and streptogramin A antibiotics in methicillin-resistant Staphylococcus aureus ST398 from swine. J Antimicrob Chemother 65:2692–2693. [PubMed][CrossRef]
96. Gentry DR, McCloskey L, Gwynn MN, Rittenhouse SF, Scangarella N, Shawar R, Holmes DJ. 2008. Genetic characterization of Vga ABC proteins conferring reduced susceptibility of Staphylococcus aureus to pleuromutilins. Antimicrob Agents Chemother 52:4507–4509. [PubMed][CrossRef]
97. Lozano C, Aspiroz C, Rezusta A, Gómez-Sanz E, Simon C, Gómez P, Ortega C, Revillo MJ, Zarazaga M, Torres C. 2012. Identification of novel vga(A)-carrying plasmids and a Tn5406-like transposon in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis of human and animal origin. Int J Antimicrob Agents 40:306–312. [PubMed][CrossRef]
98. Mendes RE, Smith TC, Deshpande L, Diekema DJ, Sader HS, Jones RN. 2011. Plasmid-borne vga(A)-encoding gene in methicillin-resistant Staphylococcus aureus ST398 recovered from swine and a swine farmer in the United States. Diagn Microbiol Infect Dis 71:177–180. [PubMed][CrossRef]
99. Haroche J, Allignet J, Buchrieser C, El Solh N. 2000. Characterization of a variant of vga(A) conferring resistance to streptogramin A and related compounds. Antimicrob Agents Chemother 44:2271–2275. [PubMed][CrossRef]
100. Chesneau O, Ligeret H, Hosan-Aghaie N, Morvan A, Dassa E. 2005. Molecular analysis of resistance to streptogramin A compounds conferred by the Vga proteins of staphylococci. Antimicrob Agents Chemother 49:973–980. [PubMed][CrossRef]
101. Novotna G, Janata J. 2006. A new evolutionary variant of the streptogramin A resistance protein, Vga(A)LC, from Staphylococcus haemolyticus with shifted substrate specificity towards lincosamides. Antimicrob Agents Chemother 50:4070–4076. [PubMed][CrossRef]
102. Allignet J, El Solh N. 1997. Characterization of a new staphylococcal gene, vgaB, encoding a putative ABC transporter conferring resistance to streptogramin A and related compounds. Gene 202:133–138. [PubMed][CrossRef]
103. Schwendener S, Perreten V. 2011. New transposon Tn6133 in methicillin-resistant Staphylococcus aureus ST398 contains vga(E), a novel streptogramin A, pleuromutilin, and lincosamide resistance gene. Antimicrob Agents Chemother 55:4900–4904. [PubMed][CrossRef]
104. Hauschild T, Feβler AT, Kadlec K, Billerbeck C, Schwarz S. 2012. Detection of the novel vga(E) gene in methicillin-resistant Staphylococcus aureus CC398 isolates from cattle and poultry. J Antimicrob Chemother 67:503–504. [PubMed][CrossRef]
105. Shaw KJ, Rather PN, Hare SR, Miller GH. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163. [PubMed]
106. Mingeot-Leclercq MP, Glupczynski Y, Tulkens PM. 1999. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727–737. [PubMed]
107. Ramirez MS, Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Update 13:151–171. [PubMed][CrossRef]
108. McKenzie T, Hoshino T, Tanaka T, Sueoka N. 1987. Correction. A revision of the nucleotide sequence and functional map of pUB110. Plasmid 17:83–85. [PubMed][CrossRef]
109. McKenzie T, Hoshino T, Tanaka T, Sueoka N. 1986. The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid 15:93–103. [PubMed][CrossRef]
110. Projan SJ, Moghazeh S, Novick RP. 1988. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. Nucleic Acids Res 16:2179–2187. [PubMed][CrossRef]
111. Schwarz S, Blobel H. 1990. A new streptomycin-resistance plasmid from Staphylococcus hyicus and its structural relationship to other staphylococcal resistance plasmids. J Med Microbiol 32:201–205. [PubMed][CrossRef]
112. Schwarz S, Noble WC. 1994. Structure and putative origin of a plasmid from Staphylococcus hyicus that mediates chloramphenicol and streptomycin resistance. Lett Appl Microbiol 18:281–284. [PubMed][CrossRef]
113. Schwarz S, Grölz-Krug S. 1991. A chloramphenicol-streptomycin-resistance plasmid from a clinical strain of Staphylococcus sciuri and its structural relationships to other staphylococcal resistance plasmids. FEMS Microbiol Lett 66:319–322. [PubMed][CrossRef]
114. Jensen SO, Apisiridej S, Kwong SM, Yang YH, Skurray RA, Firth N. 2010. Analysis of the prototypical Staphylococcus aureus multiresistance plasmid pSK1. Plasmid 64:135–142. [PubMed][CrossRef]
115. Rouch DA, Byrne ME, Kong YC, Skurray RA. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J Gen Microbiol 133:3039–3052. [PubMed]
116. Byrne ME, Rouch DA, Skurray RA. 1989. Nucleotide sequence analysis of IS256 from the Staphylococcus aureus gentamicin-tobramycin-kanamycin-resistance transposon Tn4001. Gene 81:361–367. [PubMed][CrossRef]
117. Ferretti JJ, Gilmore K, Courvalin P. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638. [PubMed]
118. Caryl JA, O'Neill AJ. 2009. Complete nucleotide sequence of pGO1, the prototype conjugative plasmid from the staphylococci. Plasmid 62:35–38. [PubMed][CrossRef]
119. Lange CC, Werckenthin C, Schwarz S. 2003. Molecular analysis of the plasmid-borne aacA/aphD resistance gene region of coagulase-negative staphylococci from chickens. J Antimicrob Chemother 51:1397–1401. [PubMed][CrossRef]
120. Skurray RA, Rouch DA, Lyon BR, Gillespie MT, Tennent JM, Byrne ME, Messerotti LJ, May JW. 1988. Multiresistant Staphylococcus aureus: genetics and evolution of epidemic Australian strains. J Antimicrob Chemother 21(Suppl C):19–39. [PubMed][CrossRef]
121. Derbise A, Dyke KG, El Solh N. 1996. Characterization of a Staphylococcus aureus transposon, Tn5405, located within Tn5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 35:174–188. [PubMed][CrossRef]
122. Gill SR, Fouts DE, Archer GL, Mongodin EF, Deboy RT, Ravel J, Paulsen IT, Kolonay JF, Brinkac L, Beanan M, Dodson RJ, Daugherty SC, Madupu R, Angiuoli SV, Durkin AS, Haft DH, Vamathevan J, Khouri H, Utterback T, Lee C, Dimitrov G, Jiang L, Qin H, Weidman J, Tran K, Kang K, Hance IR, Nelson KE, Fraser CM. 2005. Insights on evolution of virulence and resistance from the complete genome analysis of an early methicillin-resistant Staphylococcus aureus strain and a biofilm-producing methicillin-resistant Staphylococcus epidermidis strain. J Bacteriol 187:2426–2438. [PubMed][CrossRef]
123. Jamrozy D, Coldham N, Butaye P, Fielder M. 2014. Identification of a novel plasmid-associated spectinomycin adenyltransferase gene spd in methicillin-resistant Staphylococcus aureus ST398 isolated from animal and human sources. J Antimicrob Chemother 69:1193–1196. [PubMed][CrossRef]
124. Wendlandt S, Feβler AT, Kadlec K, van Duijkeren E, Schwarz S. 2014. Identification of the novel spectinomycin resistance gene spd in a different plasmid background among methicillin-resistant Staphylococcus aureus CC398 and methicillin-susceptible S. aureus ST433. J Antimicrob Chemother 69:2000–2008. [PubMed][CrossRef]
125. Hodgson JE, Curnock SP, Dyke KG, Morris R, Sylvester DR, Gross MS. 1994. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob Agents Chemother 38:1205–1208. [PubMed][CrossRef]
126. Needham C, Rahman M, Dyke KG, Noble WC. 1994. An investigation of plasmids from Staphylococcus aureus that mediate resistance to mupirocin and tetracycline. Microbiology 140:2577–2583. [PubMed][CrossRef]
127. Yoo JI, Shin ES, Chung GT, Lee KM, Yoo JS, Lee YS. 2010. Restriction fragment length polymorphism (RFLP) patterns and sequence analysis of high-level mupirocin-resistant methicillin-resistant staphylococci. Int J Antimicrob Agents 35:50–55. [PubMed][CrossRef]
128. Pérez-Roth E, Kwong SM, Alcoba-Florez J, Firth N, Mendez-Alvarez S. 2010. Complete nucleotide sequence and comparative analysis of pPR9, a 41.7-kilobase conjugative staphylococcal multiresistance plasmid conferring high-level mupirocin resistance. Antimicrob Agents Chemother 54:2252–2257. [PubMed][CrossRef]
129. Matanovic K, Pérez-Roth E, Pintarić S, Šeol Martinec B. 2013. Molecular characterization of high-level mupirocin resistance in Staphylococcus pseudintermedius. J Clin Microbiol 51:1005–1007. [PubMed][CrossRef]
130. do Carmo Ferreira N, Schuenck RP, dos Santos KR, de Freire Bastos Mdo C, Giambiagi-deMarval M. 2011. Diversity of plasmids and transmission of high-level mupirocin mupA resistance gene in Staphylococcus haemolyticus. FEMS Immunol Med Microbiol 61:147–152. [PubMed][CrossRef]
131. McDougal LK, Fosheim GE, Nicholson A, Bulens SN, Limbago BM, Shearer JE, Summers AO, Patel JB. 2010. Emergence of resistance among USA300 methicillin-resistant Staphylococcus aureus isolates causing invasive disease in the United States. Antimicrob Agents Chemother 54:3804–3811. [PubMed][CrossRef]
132. O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. 2007. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737–1740. [PubMed][CrossRef]
133. O'Neill AJ, Chopra I. 2006. Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664–676. [PubMed][CrossRef]
134. O'Brien FG, Price C, Grubb WB, Gustafson JE. 2002. Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313–321. [PubMed][CrossRef]
135. Yazdankhah SP, Asli AW, Sørum H, Oppegaard H, Sunde M. 2006. Fusidic acid resistance, mediated by fusB, in bovine coagulase-negative staphylococci. J Antimicrob Chemother 58:1254–1256. [PubMed][CrossRef]
136. Young HK, Skurray RA, Amyes SG. 1987. Plasmid-mediated trimethoprim-resistance in Staphylococcus aureus. Characterization of the first Gram-positive plasmid dihydrofolate reductase (type S1). Biochem J 243:309–312. [PubMed]
137. Rouch DA, Messerotti LJ, Loo LS, Jackson CA, Skurray RA. 1989. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol 3:161–175. [PubMed][CrossRef]
138. Tennent JM, Young HK, Lyon BR, Amyes SG, Skurray RA. 1988. Trimethoprim resistance determinants encoding a dihydrofolate reductase in clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci. J Med Microbiol 26:67–73. [PubMed][CrossRef]
139. Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571. [PubMed][CrossRef]
140. Galetto DW, Johnston JL, Archer GL. 1987. Molecular epidemiology of trimethoprim resistance among coagulase-negative staphylococci. Antimicrob Agents Chemother 31:1683–1688. [PubMed][CrossRef]
141. Apisiridej S, Leelaporn A, Scaramuzzi CD, Skurray RA, Firth N. 1997. Molecular analysis of a mobilizable theta-mode trimethoprim resistance plasmid from coagulase-negative staphylococci. Plasmid 38:13–24. [PubMed][CrossRef]
142. Dale GE, Langen H, Page MG, Then RL, Stüber D. 1995. Cloning and characterization of a novel, plasmid-encoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrob Agents Chemother 39:1920–1924. [PubMed][CrossRef]
143. Gopegui ER, Juan C, Zamorano L, Pérez JL, Oliver A. 2012. Transferable multidrug resistance plasmid carrying cfr associated with tet(L), ant(4′)-Ia, and dfrK genes from a clinical methicillin-resistant Staphylococcus aureus ST125 strain. Antimicrob Agents Chemother 56:2139–2142. [PubMed][CrossRef]
144. Kadlec K, Schwarz S. 2010. Identification of the novel dfrK-carrying transposon Tn559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrob Agents Chemother 54:3475–3477. [PubMed][CrossRef]
145. Périchon B, Courvalin P. 2009. VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53:4580–4587. [PubMed][CrossRef]
146. Tenover FC, Weigel LM, Appelbaum PC, McDougal LK, Chaitram J, McAllister S, Clark N, Killgore G, O'Hara CM, Jevitt L, Patel JB, Bozdogan B. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275–280. [PubMed][CrossRef]
147. Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, Zhu W, Musser KA, Thompson J, Kohlerschmidt D, Dumas N, Limberger RJ, Patel JB. 2007. High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238. [PubMed][CrossRef]
148. Zhu W, Clark NC, McDougal LK, Hageman J, McDonald LC, Patel JB. 2008. Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother 52:452–457. [PubMed][CrossRef]
149. Zhu W, Clark N, Patel JB. 2013. pSK41-like plasmid is necessary for Inc18-like vanA plasmid transfer from Enterococcus faecalis to Staphylococcus aureus in vitro. Antimicrob Agents Chemother 57:212–219. [PubMed][CrossRef]
150. Rowland SJ, Dyke KG. 1989. Characterization of the staphylococcal beta-lactamase transposon Tn552. EMBO J 8:2761–2773. [PubMed]
151. Rowland SJ, Dyke KG. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol 4:961–975. [PubMed][CrossRef]
152. Shearer JE, Wireman J, Hostetler J, Forberger H, Borman J, Gill J, Sanchez S, Mankin A, Lamarre J, Lindsay JA, Bayles K, Nicholson A, O'Brien F, Jensen SO, Firth N, Skurray RA, Summers AO. 2011. Major families of multiresistant plasmids from geographically and epidemiologically diverse staphylococci. G3 (Bethesda) 1:581–591. [PubMed][CrossRef]
153. Novick RP, Roth C. 1968. Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol 95:1335–1342. [PubMed]
154. Weiss AA, Murphy SD, Silver S. 1977. Mercury and organomercurial resistances determined by plasmids in Staphylococcus aureus. J Bacteriol 132:197–208. [PubMed]
155. Gillespie MT, May JW, Skurray RA. 1986. Plasmid-encoded resistance to acriflavine and quaternary ammonium compounds in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 34:47–51. [CrossRef]
156. Johnston LH, Dyke KG. 1969. Ethidium bromide resistance, a new marker on the staphylococcal penicillinase plasmid. J Bacteriol 100:1413–1414. [PubMed]
157. Emslie KR, Townsend DE, Bolton S, Grubb WB. 1985. Two distinct resistance determinants to nucleic acid binding compounds in Staphylococcus aureus? FEMS Microbiol Lett 27:61–64. [CrossRef]
158. Novick RP, Edelman I, Schwesinger MD, Gruss AD, Swanson EC, Pattee PA. 1979. Genetic translocation in Staphylococcus aureus. Proc Natl Acad Sci USA 76:400–404. [PubMed][CrossRef]
159. Gillespie MT, Skurray RA. 1986. Plasmids in multiresistant Staphylococcus aureus. Microbiol Sci 3:53–58. [PubMed]
160. Hisatsune J, Hirakawa H, Yamaguchi T, Fudaba Y, Oshima K, Hattori M, Kato F, Kayama S, Sugai M. 2013. Emergence of Staphylococcus aureus carrying multiple drug resistance genes on a plasmid encoding exfoliative toxin B. Antimicrob Agents Chemother 57:6131–6140. [PubMed][CrossRef]
161. Olsen JE, Christensen H, Aarestrup FM. 2006. Diversity and evolution of blaZ from Staphylococcus aureus and coagulase-negative staphylococci. J Antimicrob Chemother 57:450–460. [PubMed][CrossRef]
162. Novick RP, Projan SJ, Rosenblum W, Edelman I. 1984. Staphylococcal plasmid cointegrates are formed by host- and phage-mediated general rec systems that act on short regions of homology. Mol Gen Genet 195:374–377. [PubMed][CrossRef]
163. Palva A, Vigren G, Simonen M, Rintala H, Laamanen P. 1990. Nucleotide sequence of the tetracycline resistance gene of pBC16 from Bacillus cereus. Nucleic Acids Res 18:1635. [PubMed][CrossRef]
164. Shishido K, Tanaka Y. 1984. A restriction map of Bacillus subtilis tetracycline-resistance plasmid pNS1981. Plasmid 12:65–66. [PubMed][CrossRef]
165. Sakaguchi R, Shishido K, Hoshino T, Furukawa K. 1986. The nucleotide sequence of the tetracycline resistance gene of plasmid pNS1981 from Bacillus subtilis differs from pTHT15 from a thermophilic Bacillus by two base pairs. Plasmid 16:72–73. [PubMed][CrossRef]
166. Charpentier E, Gerbaud G, Courvalin P. 1999. Conjugative mobilization of the rolling-circle plasmid pIP823 from Listeria monocytogenes BM4293 among Gram-positive and Gram-negative bacteria. J Bacteriol 18:3368–3374. [PubMed]
167. Leach DRF. 1996. Genetic Recombination. Blackwell Science Ltd., Oxford, UK.
168. Werckenthin C, Schwarz S, Roberts MC. 1996. Integration of pT181-like tetracycline resistance plasmids into large staphylococcal plasmids involves IS257. Antimicrob Agents Chemother 40:2542–2544. [PubMed]
169. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. [PubMed][CrossRef]
170. Berg T, Firth N, Apisiridej S, Hettiaratchi A, Leelaporn A, Skurray RA. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J Bacteriol 180:4350–4359. [PubMed]
171. Hansen LH, Planellas MH, Long KS, Vester B. 2012. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob Agents Chemother 56:3563–3567. [PubMed][CrossRef]
172. Danielsen M. 2002. Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. Plasmid 48:98–103. [PubMed][CrossRef]
173. López M, Kadlec K, Schwarz S, Torres C. 2012. First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microb Drug Resist 18:13–18. [PubMed][CrossRef]
174. Dai L, Wu C, Wang M, Wang Y, Wang Y, Huang S, Xia LN, Li B, Shen J. 2010. First report of the multidrug resistance gene cfr and the phenicol resistance gene fexA in a Bacillus strain from swine feces. Antimicrob Agents Chemother 54:3953–3955. [PubMed][CrossRef]
175. Zhang WJ, Wu C, Wang Y, Shen Z, Dai L, Han J, Foley S, Shen J, Zhang Q. 2011. The new genetic environment of cfr on plasmid pBS-02 in a Bacillus strain. J Antimicrob Chemother 66:1174–1175. [PubMed][CrossRef]
176. Wang Y, Schwarz S, Shen Z, Zhang W, Qi J, Liu Y, He T, Shen J, Wu C. 2012. Co-location of the multiresistance gene cfr and the novel streptomycin resistance gene aadY on a small plasmid in a porcine Bacillus strain. J Antimicrob Chemother 67:1547–1549. [PubMed][CrossRef]
177. Liu Y, Wang Y, Wu C, Shen Z, Schwarz S, Du XD, Dai L, Zhang W, Zhang Q, Shen J. 2012. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother 56:1650–1654. [PubMed][CrossRef]
178. Liu Y, Wang Y, Schwarz S, Li Y, Shen Z, Zhang Q, Wu C, Shen J. 2013. Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment. Antimicrob Agents Chemother 57:42–48. [PubMed][CrossRef]
179. Diaz L, Kiratisin P, Mendes RE, Panesso D, Singh KV, Arias CA. 2012. Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrob Agents Chemother 56:3917–3922. [PubMed][CrossRef]
180. Wang Y, Wang Y, Schwarz S, Shen Z, Zhou N, Lin J, Wu C, Shen J. 2012. Detection of the staphylococcal multiresistance gene cfr in Macrococcus caseolyticus and Jeotgalicoccus pinnipedialis. J Antimicrob Chemother 67:1824–1827. [PubMed][CrossRef]
181. Wang Y, Li D, Song L, Liu Y, He T, Liu H, Wu C, Schwarz S, Shen J. 2013. First report of the multiresistance gene cfr in Streptococcus suis. Antimicrob Agents Chemother 57:4061–4063. [PubMed][CrossRef]
182. Wang Y, Wang Y, Wu C, Schwarz S, Shen Z, Zhang W, Zhang Q, Shen J. 2011. Detection of the staphylococcal multiresistance gene cfr in Proteus vulgaris of food animal origin. J Antimicrob Chemother 66:2521–2526. [PubMed][CrossRef]
183. Wang Y, He T, Schwarz S, Zhou D, Shen Z, Wu C, Wang Y, Ma L, Zhang Q, Shen J. 2012. Detection of the staphylococcal multiresistance gene cfr in Escherichia coli of domestic-animal origin. J Antimicrob Chemother 67:1094–1098. [PubMed][CrossRef]
184. Zhang WJ, Xu XR, Schwarz S, Wang XM, Dai L, Zheng HJ, Liu S. 2014. Characterization of the IncA/C plasmid pSCEC2 from Escherichia coli of swine origin that harbours the multiresistance gene cfr. J Antimicrob Chemother 69:385–389. [PubMed][CrossRef]
185. Polak J, Novick RP. 1982. Closely related plasmids from Staphylococcus aureus and soil bacilli. Plasmid 7:152–162. [PubMed][CrossRef]
186. Ehrlich SD. 1977. Replication and expression of plasmids from Staphylococcus aureus in Bacillus subtilis. Proc Natl Acad Sci USA 74:1680–1682. [PubMed][CrossRef]
187. Monod M, Denoya C, Dubnau D. 1986. Sequence and properties of pIM13, a macrolide-lincosamide-streptogramin B resistance plasmid from Bacillus subtilis. J Bacteriol 167:138–147. [PubMed]
microbiolspec.PLAS-0020-2014.citations
cm/2/6
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0020-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0020-2014
2014-11-14
2017-07-22

Abstract:

In staphylococci and other , resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other .

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/6/PLAS-0020-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0020-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1a

Click to view

FIGURE 1a

Schematic presentation of the maps of small plasmids below 6 kbp in size carrying one or two antimicrobial resistance gene(s): pT181 (database accession no. J01764), pBC16 (U32369), pNE131 (M12730), pE194 (NC_005908), pSES22 (AM159501), pLNU1 (AM184099), pIP1714 (AF015628), pCPS32 (FN806791), pCPS49 (FN806792), pSA-7 (KF540226), pKKS49 (HE611647), pKKS966 (FN677368), pC221 (X02166), pC223 (AY355285), pC194 (V01277), pUB110 (M37273), pS194 (X06627), and pDJ91S (KC895984). The arrows indicate the positions of the genes and their directions of transcription. Resistance genes are marked in red; genes involved in plasmid recombination, mobilization, and relaxation (/) in yellow; and plasmid replication genes () in blue. Genes that exhibit other functions are shown in white. A distance scale in kbp is shown below each map. (This figure has been modified and expanded from Fig. 1 in reference 9 [Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K, 82–103, 2011] with permission.) doi:10.1128/microbiolspec.PLAS-0020-2014.f1

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1b

Click to view

FIGURE 1b

Schematic presentation of the maps of small plasmids below 6 kbp in size carrying one or two antimicrobial resistance gene(s): pT181 (database accession no. J01764), pBC16 (U32369), pNE131 (M12730), pE194 (NC_005908), pSES22 (AM159501), pLNU1 (AM184099), pIP1714 (AF015628), pCPS32 (FN806791), pCPS49 (FN806792), pSA-7 (KF540226), pKKS49 (HE611647), pKKS966 (FN677368), pC221 (X02166), pC223 (AY355285), pC194 (V01277), pUB110 (M37273), pS194 (X06627), and pDJ91S (KC895984). The arrows indicate the positions of the genes and their directions of transcription. Resistance genes are marked in red; genes involved in plasmid recombination, mobilization, and relaxation (/) in yellow; and plasmid replication genes () in blue. Genes that exhibit other functions are shown in white. A distance scale in kbp is shown below each map. (This figure has been modified and expanded from Fig. 1 in reference 9 [Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K, 82–103, 2011] with permission.) doi:10.1128/microbiolspec.PLAS-0020-2014.f1

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Comparative analysis of the genetic environment of the gene in plasmids and chromosomal DNA from staphylococci. The arrows indicate the positions of the genes and their directions of transcription. Resistance genes (including the gene) are marked in red, / genes in yellow, genes in blue, and transposase genes in green. Genes that exhibit other functions are shown in white. Insertion sequences are displayed as black boxes, with their transposase genes as white arrows. The regions of >95% homology are shaded in gray. Different gray shadings were used to better illustrate the homologous regions. Δ indicates a truncated gene. A 1-kbp distance scale is displayed in the upper center. (This figure has been modified from Fig. 1a in reference 18 [Shen J, Wang Y, Schwarz S, 1697–1706, 2013] with permission.) doi:10.1128/microbiolspec.PLAS-0020-2014.f2

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Click to view

FIGURE 3

Schematic presentation of the organization of the 40,971-bp plasmid pV7037 from porcine MRSA ST9 as an example of a multiresistance plasmid composed of different segments previously identified on other plasmids or transposons from Gram-positive bacteria. The arrows indicate the positions of the genes and their directions of transcription. Resistance genes are marked in red, / genes in yellow, genes in blue, and transposase genes in green. Genes that exhibit other functions or no known functions are shown in white. Insertion sequences are displayed as black boxes, with their transposase genes as white arrows. Plasmids, transposons, and chromosomal fragments that share similarity with plasmid pV7037 are displayed below the map of pV7037 with the homologous region(s) indicated by gray shading. A distance scale in bp is given below the maps. A dotted line connects the different parts of pV7037. The Δ symbol indicates a truncated gene. (This figure has been modified from Fig. 1 in reference 88 [Wendlandt S, Li B, Ma Z, Schwarz S, 650–654, 2013], copyright 2013, with permission from Elsevier.) doi:10.1128/microbiolspec.PLAS-0020-2014.f3

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Click to view

FIGURE 4

Schematic presentation of the maps of plasmids pKKS627 (FN390948), pIP1714 (AF015628), pBC16 (U32369), pUB110 (M37273), pSES22 (CAJ43792), and pIP823 (U40997) and comparison of the sequences at the boundaries of --homologous and -nonhomologous regions. A distance scale in kilobases is shown below each map. Resistance genes [(L), , (B), (C), , , (C), and ] are marked in red, / genes in yellow, and genes in blue. The areas of extended sequence similarity between the six plasmids are gray-shaded. The 4-bp direct repeats GGGC are shown as black boxes; the flanking regions are aligned, and the small arrows indicate the imperfect inverted repeats. In the imperfect inverted repeats, matching bases are displayed in bold type. (This figure was reproduced from reference 9 [Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K, 82–103, 2011] with permission.) doi:10.1128/microbiolspec.PLAS-0020-2014.f4

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Click to view

FIGURE 5

Examples of IS- and IS-mediated recombination processes identified on plasmids pJ3358 (database accession no. U36910), pSK41 (NC_005024), pUR2940 (HF583292), pUSA03 (NC_007792), and pSTS20, pSTS21, and pSTS23 ( 168 ). The arrows indicate the positions of the genes and their directions of transcription. Resistance genes are marked in red, / genes in yellow, genes in blue, and genes that exhibit other functions or no known functions in white. Insertion sequences are displayed as black boxes, with their transposase genes as white arrows. The 8-bp sequences at the boundaries of the IS-flanked segments are shown in boxes. (This figure has been modified and expanded from Fig. 5b in reference 9 [Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K, 82–103, 2011] with permission.) doi:10.1128/microbiolspec.PLAS-0020-2014.f5

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table

Click to view

TABLE 1

Overview of plasmid-borne antimicrobial resistance genes in staphylococci (modified from Wendlandt S, Feßler AT, Monecke S, Ehricht R, Schwarz S, Kadlec K, 338–349, 2013 [ 8 ], copyright 2013, with permission from Elsevier)

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014
Generic image for table

Click to view

TABLE 2

Examples of larger staphylococcal plasmids that carry several antimicrobial resistance genes occasionally together with metal or biocide/disinfectant resistance genes (This table has been modified from Schwarz S, Feßler AT, Hauschild T, Kehrenberg C, Kadlec K, 82–103, 2011 [ 9 ], with permission)

Source: microbiolspec November 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0020-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error