1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Plasmid-Encoded Iron Uptake Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    189.64 Kb
  • PDF
    522.57 Kb
  • HTML
    198.00 Kb
  • Authors: Manuela Di Lorenzo1, Michiel Stork2
  • Editors: Marcelo Tolmasky3, Juan Carlos Alonso4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, 6708 PB Wageningen, The Netherlands; 2: Institute for Translational Vaccinology, Process Development, 3720 AL Bilthoven, The Netherlands; 3: California State University, Fullerton, CA; 4: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0030-2014
  • Received 30 September 2014 Accepted 01 October 2014 Published 05 December 2014
  • Manuela Di Lorenzo, m.dilorenzo@nioo.knaw.nl
image of Plasmid-Encoded Iron Uptake Systems
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Plasmid-Encoded Iron Uptake Systems, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/2/6/PLAS-0030-2014-1.gif /docserver/preview/fulltext/microbiolspec/2/6/PLAS-0030-2014-2.gif
  • Abstract:

    Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.

  • Citation: Di Lorenzo M, Stork M. 2014. Plasmid-Encoded Iron Uptake Systems. Microbiol Spectrum 2(6):PLAS-0030-2014. doi:10.1128/microbiolspec.PLAS-0030-2014.

Key Concept Ranking

DNA Synthesis
0.45866442
Periplasmic Space
0.43487874
Conjugative Plasmids
0.40430766
0.45866442

References

1. Galaris D, Pantopoulos K. 2008. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23. [PubMed][CrossRef]
2. Crosa JH, Mey AR, Payne SM. 2004. Iron Transport in Bacteria. ASM Press, Washington, DC.
3. Weinberg ED. 1993. The development of awareness of iron-withholding defense. Perspect Biol Med 36:215–221. [PubMed]
4. Skaar EP. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949. doi:10.1371/journal.ppat.1000949. [PubMed][CrossRef]
5. Porcheron G, Garenaux A, Proulx J, Sabri M, Dozois CM. 2013. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front Cell Infect Microbiol 3:90. [PubMed][CrossRef]
6. Noinaj N, Buchanan SK, Cornelissen CN. 2012. The transferrin-iron import system from pathogenic Neisseria species. Mol Microbiol 86:246–257. [PubMed][CrossRef]
7. Noinaj N, Cornelissen CN, Buchanan SK. 2013. Structural insight into the lactoferrin receptors from pathogenic Neisseria. J Struct Biol 184:83–92. [PubMed][CrossRef]
8. Runyen-Janecky LJ. 2013. Role and regulation of heme iron acquisition in Gram-negative pathogens. Front Cell Infect Microbiol 3:55. [PubMed][CrossRef]
9. Raymond KN, Dertz EA. 2004. Biochemical and physical properties of siderophores, p 3–17. In Crosa JH, Mey AR, Payne SM (ed), Iron Transport in Bacteria. ASM Press, Washington, DC.
10. Crosa JH, Walsh CT. 2002. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66:223–249. [CrossRef]
11. Crosa JH. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol Rev 53:517–530. [PubMed]
12. Ratledge C, Dover LG. 2000. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941. [PubMed][CrossRef]
13. Chakraborty R, Storey E, van der Helm D. 2007. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. Biometals 20:263–274. [PubMed][CrossRef]
14. Kuehl CJ, Crosa JH. 2010. The TonB energy transduction systems in Vibrio species. Future Microbiol 5:1403–1412. [PubMed][CrossRef]
15. Kustusch RJ, Kuehl CJ, Crosa JH. 2012. The ttpC gene is contained in two of three TonB systems in the human pathogen Vibrio vulnificus, but only one is active in iron transport and virulence. J Bacteriol 194:3250–3259. [PubMed][CrossRef]
16. Stork M, Otto BR, Crosa JH. 2007. A novel protein, TtpC, is a required component of the TonB2 complex for specific iron transport in the pathogens Vibrio anguillarum and Vibrio cholerae. J Bacteriol 189:1803–1815. [PubMed][CrossRef]
17. Postle K, Larsen RA. 2007. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 20:453–465. [PubMed][CrossRef]
18. Krewulak KD, Peacock RS, Vogel HJ. 2004. Perisplasmic binding proteins involved in bacterial iron uptake, p 113–129. In Crosa JH, Mey AR, Payne SM (ed), Iron Transport in Bacteria. ASM Press, Washington, DC.
19. Andrews SC, Robinson AK, Rodriguez-Quinones F. 2003. Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. [PubMed][CrossRef]
20. Bagg A, Neilands JB. 1987. Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry 26:5471–5477. [PubMed][CrossRef]
21. Hantke K. 1981. Regulation of ferric iron transport in Escherichia coli K12: isolation of a constitutive mutant. Mol Gen Genet 182:288–292. [PubMed][CrossRef]
22. Troxell B, Hassan HM. 2013. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria. Front Cell Infect Microbiol 3:59. [PubMed]
23. Chen Q, Wertheimer AM, Tolmasky ME, Crosa JH. 1996. The AngR protein and the siderophore anguibactin positively regulate the expression of iron-transport genes in Vibrio anguillarum. Mol Microbiol 22:127–134. [PubMed][CrossRef]
24. Mahren S, Braun V. 2003. The FecI extracytoplasmic-function sigma factor of Escherichia coli interacts with the beta′ subunit of RNA polymerase. J Bacteriol 185:1796–1802. [CrossRef]
25. Crosa JH, Actis LA, Mitoma Y, Perez-Casal J, Tolmasky ME, Valvano MA. 1985. Plasmid-mediated iron sequestering systems in pathogenic strains of Vibrio anguillarum and Escherichia coli. Basic Life Sci 30:759–774. [PubMed]
26. Walter MA, Bindereif A, Neilands JB, Crosa JH. 1984. Lack of homology between the iron transport regions of two virulence-linked bacterial plasmids. Infect Immun 43:765–767. [PubMed]
27. Waters VL, Crosa JH. 1991. Colicin V virulence plasmids. Microbiol Rev 55:437–450. [PubMed]
28. Johnson TJ, Johnson SJ, Nolan LK. 2006. Complete DNA sequence of a ColBM plasmid from avian pathogenic Escherichia coli suggests that it evolved from closely related ColV virulence plasmids. J Bacteriol 188:5975–5983. [PubMed][CrossRef]
29. Johnson TJ, Nolan LK. 2009. Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73:750–774. [PubMed][CrossRef]
30. Johnson TJ, Siek KE, Johnson SJ, Nolan LK. 2006. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J Bacteriol 188:745–758. [PubMed][CrossRef]
31. Mellata M, Touchman JW, Curtiss R. 2009. Full sequence and comparative analysis of the plasmid pAPEC-1 of avian pathogenic E. coli χ7122 (O78:K80:H9). PLoS One 4:e4232. doi:10.1371/journal.pone.0004232. [PubMed][CrossRef]
32. Perez-Casal JF, Crosa JH. 1987. Novel incompatibility and partition loci for the REPI replication region of plasmid ColV-K30. J Bacteriol 169:5078–5086. [PubMed]
33. Perez-Casal JF, Gammie AE, Crosa JH. 1989. Nucleotide sequence analysis and expression of the minimum REPI replication region and incompatibility determinants of pColV-K30. J Bacteriol 171:2195–2201. [PubMed]
34. Gammie AE, Crosa JH. 1991. Roles of DNA adenine methylation in controlling replication of the REPI replicon of plasmid pColV-K30. Mol Microbiol 5:495–503. [PubMed][CrossRef]
35. Gammie AE, Crosa JH. 1991. Co-operative autoregulation of a replication protein gene. Mol Microbiol 5:3015–3023. [PubMed][CrossRef]
36. Gammie AE, Tolmasky ME, Crosa JH. 1993. Functional characterization of a replication initiator protein. J Bacteriol 175:3563–3569. [PubMed]
37. Waters VL, Crosa JH. 1986. DNA environment of the aerobactin iron uptake system genes in prototypic ColV plasmids. J Bacteriol 167:647–654. [PubMed]
38. Colonna B, Nicoletti M, Visca P, Casalino M, Valenti P, Maimone F. 1985. Composite IS1 elements encoding hydroxamate-mediated iron uptake in FIme plasmids from epidemic Salmonella spp. J Bacteriol 162:307–316. [PubMed]
39. Fernandez-Beros ME, Kissel V, Lior H, Cabello FC. 1990. Virulence-related genes in ColV plasmids of Escherichia coli isolated from human blood and intestines. J Clin Microbiol 28:742–746. [PubMed]
40. Rodriguez-Siek KE, Giddings CW, Doetkott C, Johnson TJ, Nolan LK. 2005. Characterizing the APEC pathotype. Vet Res 36:241–256. [PubMed][CrossRef]
41. Fricke WF, McDermott PF, Mammel MK, Zhao S, Johnson TJ, Rasko DA, Fedorka-Cray PJ, Pedroso A, Whichard JM, Leclerc JE, White DG, Cebula TA, Ravel J. 2009. Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry. Appl Environ Microbiol 75:5963–5971. [PubMed][CrossRef]
42. Johnson TJ, Thorsness JL, Anderson CP, Lynne AM, Foley SL, Han J, Fricke WF, McDermott PF, White DG, Khatri M, Stell AL, Flores C, Singer RS. 2010. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS One 5:e15524. doi:10.1371/journal.pone.0015524. [CrossRef]
43. Gratia A. 1925. Sur un remarquable exemple d'antagisme entre deux souches de collibacille. Crit Rev Soc Biol 93:1041–1042.
44. MacFarren AC, Clowes RC. 1967. A comparative study of two F-like colicin factors, ColV2 and ColV3, in Escherichia coli K-12. J Bacteriol 94:365–377. [PubMed]
45. Nagel De Zwaig R. 1966. Association between colicinogenic and fertility factors. Genetics 55:381–390. [PubMed]
46. Gilson L, Mahanty HK, Kolter R. 1987. Four plasmid genes are required for colicin V synthesis, export, and immunity. J Bacteriol 169:2466–2470. [PubMed]
47. Gordon DM, O'Brien CL. 2006. Bacteriocin diversity and the frequency of multiple bacteriocin production in Escherichia coli. Microbiology 152:3239–3244. [PubMed][CrossRef]
48. Yang CC, Konisky J. 1984. Colicin V-treated Escherichia coli does not generate membrane potential. J Bacteriol 158:757–759. [PubMed]
49. Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D. 2007. Colicin biology. Microbiol Mol Biol Rev 71:158–229. [PubMed][CrossRef]
50. Jeziorowski A, Gordon DM. 2007. Evolution of microcin V and colicin Ia plasmids in Escherichia coli. J Bacteriol 189:7045–7052. [PubMed][CrossRef]
51. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Medigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S. 2009. The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E. coli plasmids and is associated with high-level bacteremia in a neonatal rat meningitis model. Infect Immun 77:2272–2284. [PubMed][CrossRef]
52. Chehade H, Braun V. 1988. Iron-regulated synthesis and uptake of colicin V. FEMS Microbiol Lett 52:177–182. [CrossRef]
53. Christenson JK, Gordon DM. 2009. Evolution of colicin BM plasmids: the loss of the colicin B activity gene. Microbiology 155:1645–1655. [PubMed][CrossRef]
54. El Ghachi M, Bouhss A, Barreteau H, Touze T, Auger G, Blanot D, Mengin-Lecreulx D. 2006. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem 281:22761–22772. [PubMed][CrossRef]
55. Braun V, Patzer SI, Hantke K. 2002. Ton-dependent colicins and microcins: modular design and evolution. Biochimie 84:365–380. [PubMed][CrossRef]
56. Quackenbush RL, Falkow S. 1979. Relationship between colicin V activity and virulence in Escherichia coli. Infect Immun 24:562–564. [PubMed]
57. Williams PH, Warner PJ. 1980. ColV plasmid-mediated, colicin V-independent iron uptake system of invasive strains of Escherichia coli. Infect Immun 29:411–416. [PubMed]
58. Williams PH. 1979. Novel iron uptake system specified by ColV plasmids: an important component in the virulence of invasive strains of Escherichia coli. Infect Immun 26:925–932. [PubMed]
59. Gibson F, Magrath DI. 1969. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta 192:175–184. [PubMed][CrossRef]
60. McDougall S, Neilands JB. 1984. Plasmid- and chromosome-coded aerobactin synthesis in enteric bacteria: insertion sequences flank operon in plasmid-mediated systems. J Bacteriol 159:300–305. [PubMed]
61. Waters VL, Crosa JH. 1988. Divergence of the aerobactin iron uptake systems encoded by plasmids pColV-K30 in Escherichia coli K-12 and pSMN1 in Aerobacter aerogenes 62-1. J Bacteriol 170:5153–5160. [PubMed]
62. Colonna B, Ranucci L, Fradiani PA, Casalino M, Calconi A, Nicoletti M. 1992. Organization of aerobactin, hemolysin, and antibacterial resistance genes in lactose-negative Escherichia coli strains of serotype O4 isolated from children with diarrhea. Infect Immun 60:5224–5231. [PubMed]
63. Riley PA, Threlfall EJ, Cheasty T, Wooldridge KG, Williams PH, Phillips I. 1993. Occurrence of FIme plasmids in multiple antimicrobial-resistant Escherichia coli isolated from urinary tract infection. Epidemiol Infect 110:459–468. [PubMed][CrossRef]
64. Franco AA, Hu L, Grim CJ, Gopinath G, Sathyamoorthy V, Jarvis KG, Lee C, Sadowski J, Kim J, Kothary MH, McCardell BA, Tall BD. 2011. Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol 77:3255–3267. [PubMed][CrossRef]
65. Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ, McClelland M, Tall BD, Franco AA. 2012. Identification and characterization of Cronobacter iron acquisition systems. Appl Environ Microbiol 78:6035–6050. [PubMed][CrossRef]
66. Szczepanowski R, Braun S, Riedel V, Schneiker S, Krahn I, Puhler A, Schluter A. 2005. The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151:1095–1111. [PubMed][CrossRef]
67. de Lorenzo V, Herrero M, Neilands JB. 1988. IS1-mediated mobility of the aerobactin system of pColV-K30 in Escherichia coli. Mol Gen Genet 213:487–490. [PubMed][CrossRef]
68. Perez-Casal JF, Crosa JH. 1984. Aerobactin iron uptake sequences in plasmid ColV-K30 are flanked by inverted IS1-like elements and replication regions. J Bacteriol 160:256–265. [PubMed]
69. Valvano MA, Crosa JH. 1988. Molecular cloning, expression, and regulation in Escherichia coli K-12 of a chromosome-mediated aerobactin iron transport system from a human invasive isolate of E. coli K1. J Bacteriol 170:5529–5538. [PubMed]
70. Lawlor KM, Payne SM. 1984. Aerobactin genes in Shigella spp. J Bacteriol 160:266–272. [PubMed]
71. Purdy GE, Payne SM. 2001. The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. J Bacteriol 183:4176–4182. [PubMed][CrossRef]
72. Valvano MA, Crosa JH. 1984. Aerobactin iron transport genes commonly encoded by certain ColV plasmids occur in the chromosome of a human invasive strain of Escherichia coli K1. Infect Immun 46:159–167. [PubMed]
73. Vokes SA, Reeves SA, Torres AG, Payne SM. 1999. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33:63–73. [PubMed][CrossRef]
74. Marolda CL, Valvano MA, Lawlor KM, Payne SM, Crosa JH. 1987. Flanking and internal regions of chromosomal genes mediating aerobactin iron uptake systems in enteroinvasive Escherichia coli and Shigella flexneri. J Gen Microbiol 133:2269–2278. [PubMed]
75. Nassif X, Sansonetti PJ. 1986. Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin. Infect Immun 54:603–608. [PubMed]
76. Carbonetti NH, Williams PH. 1984. A cluster of five genes specifying the aerobactin iron uptake system of plasmid ColV-K30. Infect Immun 46:7–12. [PubMed]
77. de Lorenzo V, Bindereif A, Paw BH, Neilands JB. 1986. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12. J Bacteriol 165:570–578. [PubMed]
78. de Lorenzo V, Neilands JB. 1986. Characterization of iucA and iucC genes of the aerobactin system of plasmid ColV-K30 in Escherichia coli. J Bacteriol 167:350–355. [PubMed]
79. Wooldridge KG, Morrissey JA, Williams PH. 1992. Transport of ferric-aerobactin into the periplasm and cytoplasm of Escherichia coli K12: role of envelope-associated proteins and effect of endogenous siderophores. J Gen Microbiol 138:597–603. [PubMed][CrossRef]
80. Coulton JW, Mason P, Allatt DD. 1987. fhuC and fhuD genes for iron (III)-ferrichrome transport into Escherichia coli K-12. J Bacteriol 169:3844–3849. [PubMed]
81. Fecker L, Braun V. 1983. Cloning and expression of the fhu genes involved in iron(III)-hydroxamate uptake by Escherichia coli. J Bacteriol 156:1301–1314. [PubMed]
82. Koster W, Braun V. 1990. Iron (III) hydroxamate transport into Escherichia coli. Substrate binding to the periplasmic FhuD protein. J Biol Chem 265:21407–21410. [PubMed]
83. Braun V, Burkhardt R, Schneider R, Zimmermann L. 1982. Chromosomal genes for ColV plasmid-determined iron(III)-aerobactin transport in Escherichia coli. J Bacteriol 151:553–559. [PubMed]
84. Braun V, Burkhardt R. 1982. Regulation of the ColV plasmid-determined iron (III)-aerobactin transport system in Escherichia coli. J Bacteriol 152:223–231. [PubMed]
85. Escolar L, Perez-Martin J, de Lorenzo V. 2000. Evidence of an unusually long operator for the fur repressor in the aerobactin promoter of Escherichia coli. J Biol Chem 275:24709–24714. [PubMed][CrossRef]
86. Carbonetti NH, Boonchai S, Parry SH, Vaisanen-Rhen V, Korhonen TK, Williams PH. 1986. Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect Immun 51:966–968. [PubMed]
87. Johnson JR, Moseley SL, Roberts PL, Stamm WE. 1988. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 56:405–412. [PubMed]
88. Lafont JP, Dho M, D'Hauteville HM, Bree A, Sansonetti PJ. 1987. Presence and expression of aerobactin genes in virulent avian strains of Escherichia coli. Infect Immun 55:193–197. [PubMed]
89. Tivendale KA, Allen JL, Ginns CA, Crabb BS, Browning GF. 2004. Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic Escherichia coli. Infect Immun 72:6554–6560. [PubMed][CrossRef]
90. Dozois CM, Daigle F, Curtiss R, 3rd. 2003. Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci USA 100:247–252. [PubMed][CrossRef]
91. Gao Q, Wang X, Xu H, Xu Y, Ling J, Zhang D, Gao S, Liu X. 2012. Roles of iron acquisition systems in virulence of extraintestinal pathogenic Escherichia coli: salmochelin and aerobactin contribute more to virulence than heme in a chicken infection model. BMC Microbiol 12:143. [PubMed][CrossRef]
92. Ling J, Pan H, Gao Q, Xiong L, Zhou Y, Zhang D, Gao S, Liu X. 2013. Aerobactin synthesis genes iucA and iucC contribute to the pathogenicity of avian pathogenic Escherichia coli O2 strain E058. PLoS One 8:e57794. doi:10.1371/journal.pone.0057794. [PubMed][CrossRef]
93. Lemaitre C, Bidet P, Bingen E, Bonacorsi S. 2012. Transcriptional analysis of the Escherichia coli ColV-Ia plasmid pS88 during growth in human serum and urine. BMC Microbiol 12:115. [PubMed][CrossRef]
94. Lemaitre C, Mahjoub-Messai F, Dupont D, Caro V, Diancourt L, Bingen E, Bidet P, Bonacorsi S. 2013. A conserved virulence plasmidic region contributes to the virulence of the multiresistant Escherichia coli meningitis strain S286 belonging to phylogenetic group C. PLoS One 8:e74423. doi:10.1371/journal.pone.0074423. [CrossRef]
95. Baumler AJ, Norris TL, Lasco T, Voight W, Reissbrodt R, Rabsch W, Heffron F. 1998. IroN, a novel outer membrane siderophore receptor characteristic of Salmonella enterica. J Bacteriol 180:1446–1453. [PubMed]
96. Baumler AJ, Tsolis RM, van der Velden AW, Stojiljkovic I, Anic S, Heffron F. 1996. Identification of a new iron regulated locus of Salmonella typhi. Gene 183:207–213. [PubMed][CrossRef]
97. Brzuszkiewicz E, Bruggemann H, Liesegang H, Emmerth M, Olschlager T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emody L, Gottschalk G, Hacker J, Dobrindt U. 2006. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci USA 103:12879–12884. [PubMed][CrossRef]
98. Dobrindt U, Blum-Oehler G, Nagy G, Schneider G, Johann A, Gottschalk G, Hacker J. 2002. Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536. Infect Immun 70:6365–6372. [PubMed][CrossRef]
99. Lin H, Fischbach MA, Liu DR, Walsh CT. 2005. In vitro characterization of salmochelin and enterobactin trilactone hydrolases IroD, IroE, and Fes. J Am Chem Soc 127:11075–11084. [PubMed][CrossRef]
100. Liu Q, Ma Y, Wu H, Shao M, Liu H, Zhang Y. 2004. Cloning, identification and expression of an entE homologue angE from Vibrio anguillarum serotype O1. Arch Microbiol 181:287–293. [PubMed][CrossRef]
101. Chen YT, Chang HY, Lai YC, Pan CC, Tsai SF, Peng HL. 2004. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198. [PubMed][CrossRef]
102. Sorsa LJ, Dufke S, Heesemann J, Schubert S. 2003. Characterization of an iroBCDEN gene cluster on a transmissible plasmid of uropathogenic Escherichia coli: evidence for horizontal transfer of a chromosomal virulence factor. Infect Immun 71:3285–3293. [PubMed][CrossRef]
103. Bister B, Bischoff D, Nicholson GJ, Valdebenito M, Schneider K, Winkelmann G, Hantke K, Sussmuth RD. 2004. The structure of salmochelins: C-glucosylated enterobactins of Salmonella enterica. Biometals 17:471–481. [PubMed][CrossRef]
104. Fischbach MA, Lin H, Liu DR, Walsh CT. 2005. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Proc Natl Acad Sci USA 102:571–576. [PubMed][CrossRef]
105. Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ, Liu DR, Raymond KN, Wanner BL, Strong RK, Walsh CT, Aderem A, Smith KD. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci USA 103:16502–16507. [PubMed][CrossRef]
106. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043. [PubMed][CrossRef]
107. Hantke K, Nicholson G, Rabsch W, Winkelmann G. 2003. Salmochelins, siderophores of Salmonella enterica and uropathogenic Escherichia coli strains, are recognized by the outer membrane receptor IroN. Proc Natl Acad Sci USA 100:3677–3682. [PubMed][CrossRef]
108. Rabsch W, Voigt W, Reissbrodt R, Tsolis RM, Baumler AJ. 1999. Salmonella typhimurium IroN and FepA proteins mediate uptake of enterobactin but differ in their specificity for other siderophores. J Bacteriol 181:3610–3612. [PubMed]
109. Feldmann F, Sorsa LJ, Hildinger K, Schubert S. 2007. The salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 75:3183–3187. [PubMed][CrossRef]
110. Caza M, Lepine F, Milot S, Dozois CM. 2008. Specific roles of the iroBCDEN genes in virulence of an avian pathogenic Escherichia coli O78 strain and in production of salmochelins. Infect Immun 76:3539–3549. [PubMed][CrossRef]
111. Crouch ML, Castor M, Karlinsey JE, Kalhorn T, Fang FC. 2008. Biosynthesis and IroC-dependent export of the siderophore salmochelin are essential for virulence of Salmonella enterica serovar Typhimurium. Mol Microbiol 67:971–983. [PubMed][CrossRef]
112. Zhu M, Valdebenito M, Winkelmann G, Hantke K. 2005. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology 151:2363–2372. [PubMed][CrossRef]
113. Muller SI, Valdebenito M, Hantke K. 2009. Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 22:691–695. [PubMed][CrossRef]
114. Skyberg JA, Johnson TJ, Nolan LK. 2008. Mutational and transcriptional analyses of an avian pathogenic Escherichia coli ColV plasmid. BMC Microbiol 8:24. [PubMed][CrossRef]
115. Lemaitre C, Bidet P, Benoist JF, Schlemmer D, Sobral E, d'Humieres C, Bonacorsi S. 2014. The ssbL gene harbored by the ColV plasmid of an Escherichia coli neonatal meningitis strain is an auxiliary virulence factor boosting the production of siderophores through the shikimate pathway. J Bacteriol 196:1343–1349. [PubMed][CrossRef]
116. Sabri M, Leveille S, Dozois CM. 2006. A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. Microbiology 152:745–758. [PubMed][CrossRef]
117. Tivendale KA, Allen JL, Browning GF. 2009. Plasmid-borne virulence-associated genes have a conserved organization in virulent strains of avian pathogenic Escherichia coli. J Clin Microbiol 47:2513–2519. [PubMed][CrossRef]
118. Zhou D, Hardt WD, Galan JE. 1999. Salmonella typhimurium encodes a putative iron transport system within the centisome 63 pathogenicity island. Infect Immun 67:1974–1981. [PubMed]
119. Runyen-Janecky LJ, Reeves SA, Gonzales EG, Payne SM. 2003. Contribution of the Shigella flexneri Sit, Iuc, and Feo iron acquisition systems to iron acquisition in vitro and in cultured cells. Infect Immun 71:1919–1928. [PubMed][CrossRef]
120. Janakiraman A, Slauch JM. 2000. The putative iron transport system SitABCD encoded on SPI1 is required for full virulence of Salmonella typhimurium. Mol Microbiol 35:1146–1155. [PubMed][CrossRef]
121. Boyer E, Bergevin I, Malo D, Gros P, Cellier MF. 2002. Acquisition of Mn(II) in addition to Fe(II) is required for full virulence of Salmonella enterica serovar Typhimurium. Infect Immun 70:6032–6042. [PubMed][CrossRef]
122. Runyen-Janecky L, Dazenski E, Hawkins S, and Warner L. 2006. Role and regulation of the Shigella flexneri Sit and MntH systems. Infect Immun 74:4666–4672. [PubMed][CrossRef]
123. Sabri M, Caza M, Proulx J, Lymberopoulos MH, Bree A, Moulin-Schouleur M, Curtiss R, 3rd, Dozois CM. 2008. Contribution of the SitABCD, MntH, and FeoB metal transporters to the virulence of avian pathogenic Escherichia coli O78 strain chi7122. Infect Immun 76:601–611. [PubMed][CrossRef]
124. Ewers C, Li G, Wilking H, Kiessling S, Alt K, Antao EM, Laturnus C, Diehl I, Glodde S, Homeier T, Bohnke U, Steinruck H, Philipp HC, Wieler LH. 2007. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol 297:163–176. [PubMed][CrossRef]
125. Mellata M, Ameiss K, Mo H, Curtiss R, 3rd. 2010. Characterization of the contribution to virulence of three large plasmids of avian pathogenic Escherichia coli chi7122 (O78:K80:H9). Infect Immun 78:1528–1541. [PubMed][CrossRef]
126. Mellata M, Maddux JT, Nam T, Thomson N, Hauser H, Stevens MP, Mukhopadhyay S, Sarker S, Crabbe A, Nickerson CA, Santander J, Curtiss R, 3rd. 2012. New insights into the bacterial fitness-associated mechanisms revealed by the characterization of large plasmids of an avian pathogenic E. coli. PLoS One 7:e29481. doi:10.1371/journal.pone.0029481. [CrossRef]
127. Yi H, Xi Y, Liu J, Wang J, Wu J, Xu T, Chen W, Chen B, Lin M, Wang H, Zhou M, Li J, Xu Z, Jin S, Bao Q. 2010. Sequence analysis of pKF3-70 in Klebsiella pneumoniae: probable origin from R100-like plasmid of Escherichia coli. PLoS One 5:e8601. doi:10.1371/journal.pone.0008601. [PubMed][CrossRef]
128. Provence DL, Curtiss R, 3rd. 1994. Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun 62:1369–1380. [PubMed]
129. Leo JC, Grin I, Linke D. 2012. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 367:1088–1101. [PubMed][CrossRef]
130. Stathopoulos C, Provence DL, Curtiss R, 3rd. 1999. Characterization of the avian pathogenic Escherichia coli hemagglutinin Tsh, a member of the immunoglobulin A protease-type family of autotransporters. Infect Immun 67:772–781. [PubMed]
131. Otto BR, van Dooren SJ, Nuijens JH, Luirink J, Oudega B. 1998. Characterization of a hemoglobin protease secreted by the pathogenic Escherichia coli strain EB1. J Exp Med 188:1091–1103. [PubMed][CrossRef]
132. Dozois CM, Dho-Moulin M, Bree A, Fairbrother JM, Desautels C, Curtiss R, 3rd. 2000. Relationship between the Tsh autotransporter and pathogenicity of avian Escherichia coli and localization and analysis of the Tsh genetic region. Infect Immun 68:4145–4154. [PubMed][CrossRef]
133. Kaczmarek A, Budzynska A, Gospodarek E. 2012. Prevalence of genes encoding virulence factors among Escherichia coli with K1 antigen and non-K1 E. coli strains. J Med Microbiol 61:1360–1365. [PubMed][CrossRef]
134. Beutin L. 1991. The different hemolysins of Escherichia coli. Med Microbiol Immunol 180:167–182. [PubMed][CrossRef]
135. Morales C, Lee MD, Hofacre C, Maurer JJ. 2004. Detection of a novel virulence gene and a Salmonella virulence homologue among Escherichia coli isolated from broiler chickens. Foodborne Pathog Dis 1:160–165. [PubMed][CrossRef]
136. Reingold J, Starr N, Maurer J, Lee MD. 1999. Identification of a new Escherichia coli She haemolysin homolog in avian E. coli. Vet Microbiol 66:125–134. [PubMed][CrossRef]
137. Welch RA. 1991. Pore-forming cytolysins of gram-negative bacteria. Mol Microbiol 5:521–528. [PubMed][CrossRef]
138. Burgos Y, Beutin L. 2010. Common origin of plasmid encoded alpha-hemolysin genes in Escherichia coli. BMC Microbiol 10:193. [PubMed][CrossRef]
139. Muller D, Hughes C, Goebel W. 1983. Relationship between plasmid and chromosomal hemolysin determinants of Escherichia coli. J Bacteriol 153:846–851. [PubMed]
140. Schmidt H, Beutin L, Karch H. 1995. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63:1055–1061. [PubMed]
141. Schmidt H, Kernbach C, Karch H. 1996. Analysis of the EHEC hly operon and its location in the physical map of the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142:907–914. [PubMed][CrossRef]
142. Brunder W, Karch H, Schmidt H. 2006. Complete sequence of the large virulence plasmid pSFO157 of the sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H- strain 3072/96. Int J Med Microbiol 296:467–474. [PubMed][CrossRef]
143. Burland V, Shao Y, Perna NT, Plunkett G, Sofia HJ, Blattner FR. 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res 26:4196–4204. [PubMed][CrossRef]
144. Cavalieri SJ, Bohach GA, Snyder IS. 1984. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 48:326–343. [PubMed]
145. de la Cruz F, Muller D, Ortiz JM, Goebel W. 1980. Hemolysis determinant common to Escherichia coli hemolytic plasmids of different incompatibility groups. J Bacteriol 143:825–833. [PubMed]
146. Burgos YK, Pries K, Pestana de Castro AF, Beutin L. 2009. Characterization of the alpha-haemolysin determinant from the human enteropathogenic Escherichia coli O26 plasmid pEO5. FEMS Microbiol Lett 292:194–202. [PubMed][CrossRef]
147. Bakás L, Maté S, Vazquez R, Herlax V. 2012. E. coli alpha hemolysin and properties. In Ekinci PD (ed), Biochemistry. InTech ship, Rijeka, Croatia.
148. Lebek G, Gruenig HM. 1985. Relation between the hemolytic property and iron metabolism in Escherichia coli. Infect Immun 50:682–686. [PubMed]
149. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11:142–201. [PubMed]
150. Nagy G, Dobrindt U, Kupfer M, Emody L, Karch H, Hacker J. 2001. Expression of hemin receptor molecule ChuA is influenced by RfaH in uropathogenic Escherichia coli strain 536. Infect Immun 69:1924–1928. [PubMed][CrossRef]
151. Han J, Lynne AM, David DE, Tang H, Xu J, Nayak R, Kaldhone P, Logue CM, Foley SL. 2012. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS One 7:e51160. doi:10.1371/journal.pone.0051160. [PubMed][CrossRef]
152. Fricke WF, Wright MS, Lindell AH, Harkins DM, Baker-Austin C, Ravel J, Stepanauskas R. 2008. Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5. J Bacteriol 190:6779–6794. [PubMed][CrossRef]
153. Naka H, Crosa JH. 2011. Genetic determinants of virulence in the marine fish pathogen Vibrio anguillarum. Fish Pathol 46:1–10. [PubMed][CrossRef]
154. Crosa JH, Schiewe MH, Falkow S. 1977. Evidence for plasmid contribution to the virulence of fish pathogen Vibrio anguillarum. Infect Immun 18:509–513. [PubMed]
155. Crosa JH, Hodges LL, Schiewe MH. 1980. Curing of a plasmid is correlated with an attenuation of virulence in the marine fish pathogen Vibrio anguillarum. Infect Immun 27:897–902. [PubMed]
156. Crosa JH. 1984. The relationship of plasmid-mediated iron transport and bacterial virulence. Annu Rev Microbiol 38:69–89. [PubMed][CrossRef]
157. Crosa JH. 1980. A plasmid associated with virulence in the marine fish pathogen Vibrio anguillarum specifies an iron-sequestering system. Nature 284:566–568. [PubMed][CrossRef]
158. Wolf MK, Crosa JH. 1986. Evidence for the role of a siderophore in promoting Vibrio anguillarum infections. J Gen Microbiol 132:2949–2952. [PubMed]
159. Mitoma Y, Aoki T, Crosa JH. 1984. Phylogenetic relationships among Vibrio anguillarum plasmids. Plasmid 12:143–148. [PubMed][CrossRef]
160. Tolmasky ME, Actis LA, Toranzo AE, Barja JL, Crosa JH. 1985. Plasmids mediating iron uptake in Vibrio anguillarum strains isolated from turbot in Spain. J Gen Microbiol 131:1989–1997. [PubMed]
161. Di Lorenzo M, Stork M, Tolmasky ME, Actis LA, Farrell D, Welch TJ, Crosa LM, Wertheimer AM, Chen Q, Salinas P, Waldbeser L, Crosa JH. 2003. Complete sequence of virulence plasmid pJM1 from the marine fish pathogen Vibrio anguillarum strain 775. J Bacteriol 185:5822–5830. [PubMed][CrossRef]
162. Olsen JE, Larsen JL. 1990. Restriction fragment length polymorphism of the Vibrio anguillarum serovar O1 virulence plasmid. Appl Environ Microbiol 56:3130–3132. [PubMed]
163. Li G, Mo Z, Li J, Xiao P, Hao B. 2013. Complete genome sequence of Vibrio anguillarum M3, a serotype O1 strain isolated from Japanese flounder in China. Genome Announc 1:e00769-13. doi:10.1128/genomeA.00769-13. [PubMed][CrossRef]
164. Wu H, Ma Y, Zhang Y, Zhang H. 2004. Complete sequence of virulence plasmid pEIB1 from the marine fish pathogen Vibrio anguillarum strain MVM425 and location of its replication region. J Appl Microbiol 97:1021–1028. [PubMed][CrossRef]
165. Chen Q. 1995. Molecular Microbiology and Immunology, Ph.D. thesis. Oregon Health and Science University, Portland, OR.
166. Naka H, Chen Q, Mitoma Y, Nakamura Y, McIntosh-Tolle D, Gammie AE, Tolmasky ME, Crosa JH. 2012. Two replication regions in the pJM1 virulence plasmid of the marine pathogen Vibrio anguillarum. Plasmid 67:95–101. [PubMed][CrossRef]
167. Singer JT, Choe W, Schmidt KA, Makula RA. 1992. Virulence plasmid pJM1 prevents the conjugal entry of plasmid DNA into the marine fish pathogen Vibrio anguillarum 775. J Gen Microbiol 138:2485–2490. [PubMed][CrossRef]
168. Larsen JL, Olsen JE. 1991. Occurrence of plasmids in Danish isolates of Vibrio anguillarum serovars O1 and O2 and association of plasmids with phenotypic characteristics. Appl Environ Microbiol 57:2158–2163. [PubMed]
169. Actis LA, Fish W, Crosa JH, Kellerman K, Ellenberger SR, Hauser FM, Sanders-Loehr J. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J Bacteriol 167:57–65. [PubMed]
170. Tolmasky ME, Actis LA, Crosa JH. 1988. Genetic analysis of the iron uptake region of the Vibrio anguillarum plasmid pJM1: molecular cloning of genetic determinants encoding a novel trans activator of siderophore biosynthesis. J Bacteriol 170:1913–1919. [PubMed]
171. Tolmasky ME, Crosa JH. 1984. Molecular cloning and expression of genetic determinants for the iron uptake system mediated by the Vibrio anguillarum plasmid pJM1. J Bacteriol 160:860–866. [PubMed]
172. Walter MA, Potter SA, Crosa JH. 1983. Iron uptake system medicated by Vibrio anguillarum plasmid pJM1. J Bacteriol 156:880–887. [PubMed]
173. Walsh CT, Marshall CG. 2004. Siderophore biosynthesis in bacteria, p 18–37. In Crosa JH, Mey AR, Payne SM (ed), Iron Transport in Bacteria. ASM Press, Washington, DC.
174. Chen Q, Actis LA, Tolmasky ME, Crosa JH. 1994. Chromosome-mediated 2,3-dihydroxybenzoic acid is a precursor in the biosynthesis of the plasmid-mediated siderophore anguibactin in Vibrio anguillarum. J Bacteriol 176:4226–4234. [PubMed]
175. Alice AF, Lopez CS, Crosa JH. 2005. Plasmid- and chromosome-encoded redundant and specific functions are involved in biosynthesis of the siderophore anguibactin in Vibrio anguillarum 775: a case of chance and necessity? J Bacteriol 187:2209–2214. [PubMed][CrossRef]
176. Welch TJ, Chai S, Crosa JH. 2000. The overlapping angB and angG genes are encoded within the trans-acting factor region of the virulence plasmid in Vibrio anguillarum: essential role in siderophore biosynthesis. J Bacteriol 182:6762–6773. [PubMed][CrossRef]
177. Barancin CE, Smoot JC, Findlay RH, Actis LA. 1998. Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum. Plasmid 39:235–244. [PubMed][CrossRef]
178. Tolmasky ME, Actis LA, Crosa JH. 1995. A histidine decarboxylase gene encoded by the Vibrio anguillarum plasmid pJM1 is essential for virulence: histamine is a precursor in the biosynthesis of anguibactin. Mol Microbiol 15:87–95. [PubMed][CrossRef]
179. Di Lorenzo M, Stork M, Crosa JH. 2011. Genetic and biochemical analyses of chromosome and plasmid gene homologues encoding ICL and ArCP domains in Vibrio anguillarum strain 775. Biometals 24:629–643. [PubMed][CrossRef]
180. Liu Q, Ma Y, Zhou L, Zhang Y. 2005. Gene cloning, expression and functional characterization of a phosphopantetheinyl transferase from Vibrio anguillarum serotype O1. Arch Microbiol 183:37–44. [PubMed][CrossRef]
181. Di Lorenzo M, Poppelaars S, Stork M, Nagasawa M, Tolmasky ME, Crosa JH. 2004. A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum. J Bacteriol 186:7327–7336. [PubMed][CrossRef]
182. Di Lorenzo M, Stork M, Naka H, Tolmasky ME, Crosa JH. 2008. Tandem heterocyclization domains in a nonribosomal peptide synthetase essential for siderophore biosynthesis in Vibrio anguillarum. Biometals 21:635–648. [PubMed][CrossRef]
183. Jalal M, Hossain D, van der Helm D, Sanders-Loehr J, Actis LA, Crosa JH. 1989. Structure of anguibactin, a unique plasmid-related bacterial siderophore from the fish pathogen Vibrio anguillarum. J Am Chem Soc 111:292–296. [CrossRef]
184. Actis LA, Tolmasky ME, Farrell DH, Crosa JH. 1988. Genetic and molecular characterization of essential components of the Vibrio anguillarum plasmid-mediated iron-transport system. J Biol Chem 263:2853–2860. [PubMed]
185. Actis LA, Potter SA, Crosa JH. 1985. Iron-regulated outer membrane protein OM2 of Vibrio anguillarum is encoded by virulence plasmid pJM1. J Bacteriol 161:736–742. [PubMed]
186. Crosa JH, Hodges LL. 1981. Outer membrane proteins induced under conditions of iron limitation in the marine fish pathogen Vibrio anguillarum 775. Infect Immun 31:223–227. [PubMed]
187. Lopez CS, Alice AF, Chakraborty R, Crosa JH. 2007. Identification of amino acid residues required for ferric-anguibactin transport in the outer-membrane receptor FatA of Vibrio anguillarum. Microbiology 153:570–584. [PubMed][CrossRef]
188. Stork M, Di Lorenzo M, Mourino S, Osorio CR, Lemos ML, Crosa JH. 2004. Two tonB systems function in iron transport in Vibrio anguillarum, but only one is essential for virulence. Infect Immun 72:7326–7329. [PubMed][CrossRef]
189. Actis LA, Tolmasky ME, Crosa LM, Crosa JH. 1995. Characterization and regulation of the expression of FatB, an iron transport protein encoded by the pJM1 virulence plasmid. Mol Microbiol 17:197–204. [PubMed][CrossRef]
190. Koster WL, Actis LA, Waldbeser LS, Tolmasky ME, Crosa JH. 1991. Molecular characterization of the iron transport system mediated by the pJM1 plasmid in Vibrio anguillarum 775. J Biol Chem 266:23829–23833. [PubMed]
191. Naka H, Lopez CS, Crosa JH. 2010. Role of the pJM1 plasmid-encoded transport proteins FatB, C and D in ferric anguibactin uptake in the fish pathogen Vibrio anguillarum. Environ Microbiol Rep 2:104–111. [PubMed][CrossRef]
192. Naka H, Liu M, Crosa JH. 2013. Two ABC transporter systems participate in siderophore transport in the marine pathogen Vibrio anguillarum 775 (pJM1). FEMS Microbiol Lett 341:79–86. [PubMed][CrossRef]
193. Balado M, Osorio CR, Lemos ML. 2006. A gene cluster involved in the biosynthesis of vanchrobactin, a chromosome-encoded siderophore produced by Vibrio anguillarum. Microbiology 152:3517–3528. [PubMed][CrossRef]
194. Iglesias E, Brandariz I, Jimenez C, Soengas RG. 2011. Iron(III) complexation by vanchrobactin, a siderophore of the bacterial fish pathogen Vibrio anguillarum. Metallomics 3:521–528. [PubMed][CrossRef]
195. Naka H, Lopez CS, Crosa JH. 2008. Reactivation of the vanchrobactin siderophore system of Vibrio anguillarum by removal of a chromosomal insertion sequence originated in plasmid pJM1 encoding the anguibactin siderophore system. Environ Microbiol 10:265–277. [PubMed]
196. Farrell DH, Mikesell P, Actis LA, Crosa JH. 1990. A regulatory gene, angR, of the iron uptake system of Vibrio anguillarum: similarity with phage P22 cro and regulation by iron. Gene 86:45–51. [PubMed][CrossRef]
197. Salinas PC, Crosa JH. 1995. Regulation of angR, a gene with regulatory and biosynthetic functions in the pJM1 plasmid-mediated iron uptake system of Vibrio anguillarum. Gene 160:17–23. [PubMed][CrossRef]
198. Salinas PC, Tolmasky ME, Crosa JH. 1989. Regulation of the iron uptake system in Vibrio anguillarum: evidence for a cooperative effect between two transcriptional activators. Proc Natl Acad Sci USA 86:3529–3533. [PubMed][CrossRef]
199. Wertheimer AM, Verweij W, Chen Q, Crosa LM, Nagasawa M, Tolmasky ME, Actis LA, Crosa JH. 1999. Characterization of the angR gene of Vibrio anguillarum: essential role in virulence. Infect Immun 67:6496–6509. [PubMed]
200. Tolmasky ME, Wertheimer AM, Actis LA, Crosa JH. 1994. Characterization of the Vibrio anguillarum fur gene: role in regulation of expression of the FatA outer membrane protein and catechols. J Bacteriol 176:213–220. [PubMed]
201. Wertheimer AM, Tolmasky ME, Actis LA, Crosa JH. 1994. Structural and functional analyses of mutant Fur proteins with impaired regulatory function. J Bacteriol 176:5116–5122. [PubMed]
202. Chai S, Welch TJ, Crosa JH. 1998. Characterization of the interaction between Fur and the iron transport promoter of the virulence plasmid in Vibrio anguillarum. J Biol Chem 273:33841–33847. [PubMed][CrossRef]
203. Chen Q, Crosa JH. 1996. Antisense RNA, Fur, iron, and the regulation of iron transport genes in Vibrio anguillarum. J Biol Chem 271:18885–18891. [PubMed][CrossRef]
204. Waldbeser LS, Chen Q, Crosa JH. 1995. Antisense RNA regulation of the fatB iron transport protein gene in Vibrio anguillarum. Mol Microbiol 17:747–756. [PubMed][CrossRef]
205. Salinas PC, Waldbeser LS, Crosa JH. 1993. Regulation of the expression of bacterial iron transport genes: possible role of an antisense RNA as a repressor. Gene 123:33–38. [PubMed][CrossRef]
206. Stork M, Di Lorenzo M, Welch TJ, Crosa JH. 2007. Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 189:3479–3488. [PubMed][CrossRef]
207. McIntosh-Tolle D, Stork M, Alice A, Crosa JH. 2012. Secondary structure of antisense RNAβ, an internal transcriptional terminator of the plasmid-encoded iron transport-biosynthesis operon of Vibrio anguillarum. Biometals 25:577–586. [PubMed][CrossRef]
208. Tolmasky ME, Actis LA, Crosa JH. 1993. A single amino acid change in AngR, a protein encoded by pJM1-like virulence plasmids, results in hyperproduction of anguibactin. Infect Immun 61:3228–3233. [PubMed]
209. Tolmasky ME, Salinas PC, Actis LA, Crosa JH. 1988. Increased production of the siderophore anguibactin mediated by pJM1-like plasmids in Vibrio anguillarum. Infect Immun 56:1608–1614. [PubMed]
210. Bay L, Larsen JL, Leisner JJ. 2007. Distribution of three genes involved in the pJM1 iron-sequestering system in various Vibrio anguillarum serogroups. Syst Appl Microbiol 30:85–92. [PubMed][CrossRef]
211. Naka H, Actis LA, Crosa JH. 2013. The anguibactin biosynthesis and transport genes are encoded in the chromosome of Vibrio harveyi: a possible evolutionary origin for the pJM1 plasmid-encoded system of Vibrio anguillarum? MicrobiolOgyopen 2:182–194. [PubMed][CrossRef]
212. Johnson TJ, Jordan D, Kariyawasam S, Stell AL, Bell NP, Wannemuehler YM, Alarcon CF, Li G, Tivendale KA, Logue CM, Nolan LK. 2010. Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931–1942. [PubMed][CrossRef]
213. Johnson TJ, Wannemuehler Y, Johnson SJ, Stell AL, Doetkott C, Johnson JR, Kim KS, Spanjaard L, Nolan LK. 2008. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl Environ Microbiol 74:7043–7050. [PubMed][CrossRef]
214. Tivendale KA, Noormohammadi AH, Allen JL, Browning GF. 2009. The conserved portion of the putative virulence region contributes to virulence of avian pathogenic Escherichia coli. Microbiology 155:450–460. [PubMed][CrossRef]
microbiolspec.PLAS-0030-2014.citations
cm/2/6
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0030-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0030-2014
2014-12-05
2017-12-15

Abstract:

Plasmids confer genetic information that benefits the bacterial cells containing them. In pathogenic bacteria, plasmids often harbor virulence determinants that enhance the pathogenicity of the bacterium. The ability to acquire iron in environments where it is limited, for instance the eukaryotic host, is a critical factor for bacterial growth. To acquire iron, bacteria have evolved specific iron uptake mechanisms. These systems are often chromosomally encoded, while those that are plasmid-encoded are rare. Two main plasmid types, ColV and pJM1, have been shown to harbor determinants that increase virulence by providing the cell with essential iron for growth. It is clear that these two plasmid groups evolved independently from each other since they do not share similarities either in the plasmid backbones or in the iron uptake systems they harbor. The siderophores aerobactin and salmochelin that are found on ColV plasmids fall in the hydroxamate and catechol group, respectively, whereas both functional groups are present in the anguibactin siderophore, the only iron uptake system found on pJM1-type plasmids. Besides siderophore-mediated iron uptake, ColV plasmids carry additional genes involved in iron metabolism. These systems include ABC transporters, hemolysins, and a hemoglobin protease. ColV- and pJM1-like plasmids have been shown to confer virulence to their bacterial host, and this trait can be completely ascribed to their encoded iron uptake systems.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/2/6/PLAS-0030-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0030-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1a

Click to view

FIGURE 1a

Schematic representation of a ColV plasmid ( 30 ) showing all open reading frames related to iron uptake, their function, and their membrane localization when relevant. Each system is color-coded. The region is shown as a gray box, and the origins of replication are shown as black boxes. Structures of the two siderophores aerobactin and salmochelin S4 are shown within the plasmid. doi:10.1128/microbiolspec.PLAS-0030-2014.f1

Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0030-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1b

Click to view

FIGURE 1b

Schematic representation of a ColV plasmid ( 30 ) showing all open reading frames related to iron uptake, their function, and their membrane localization when relevant. Each system is color-coded. The region is shown as a gray box, and the origins of replication are shown as black boxes. Structures of the two siderophores aerobactin and salmochelin S4 are shown within the plasmid. doi:10.1128/microbiolspec.PLAS-0030-2014.f1

Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0030-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Schematic representation of the pJM1 plasmid showing all open reading frames, the structure of anguibactin, and the transport proteins in the membranes. Genes that are involved in siderophore synthesis are shown in red; those involved in transport are blue. Black boxes indicate the location of the antisense RNAs. The shaded proteins in transport are chromosomally encoded. Location of the origins of replication is indicated by a black line. doi:10.1128/microbiolspec.PLAS-0030-2014.f2

Source: microbiolspec December 2014 vol. 2 no. 6 doi:10.1128/microbiolspec.PLAS-0030-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error