1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Plasmid Detection, Characterization, and Ecology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
  • XML
    101.21 Kb
  • HTML
    122.54 Kb
  • PDF
    385.74 Kb
  • Authors: Kornelia Smalla1, Sven Jechalke2, Eva M. Top3
  • Editors: Marcelo Tolmasky4, Juan Carlos Alonso5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany; 2: Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany; 3: University of Idaho, Department of Biological Sciences, 875 Perimeter MS 3051, Moscow, Idaho 83844-3051; 4: California State University, Fullerton, CA; 5: Centro Nacional de Biotecnología, Cantoblanco, Madrid, Spain
  • Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.PLAS-0038-2014
  • Received 12 December 2014 Accepted 12 December 2014 Published 27 February 2015
  • Kornelia Smalla, Kornelia.smalla@jki.bund.de
image of Plasmid Detection, Characterization, and Ecology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Plasmid Detection, Characterization, and Ecology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/3/1/PLAS-0038-2014-1.gif /docserver/preview/fulltext/microbiolspec/3/1/PLAS-0038-2014-2.gif
  • Abstract:

    Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. It is thought that to reduce the cost of plasmid carriage, only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness toward environmental changes. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance, and diversity of plasmids in environmental bacteria. Increasingly, cultivation-independent total-community DNA-based methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic-resistance-gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids, as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity, and evolution studies, but numerous challenges still exist.

  • Citation: Smalla K, Jechalke S, Top E. 2015. Plasmid Detection, Characterization, and Ecology. Microbiol Spectrum 3(1):PLAS-0038-2014. doi:10.1128/microbiolspec.PLAS-0038-2014.

Key Concept Ranking

Mobile Genetic Elements
0.4716037
0.4716037

References

1. Heuer H, Abdo Z, Smalla K. 2008. Patchy distribution of flexible genetic elements in bacterial populations mediates robustness to environmental uncertainty. FEMS Microbiol Ecol 65:361–371. [PubMed][CrossRef]
2. Heuer H, Smalla K. 2012. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 36:1083–1104. [PubMed][CrossRef]
3. Djordjevic SP, Stokes HW, Roy Chowdhury P. 2013. Mobile elements, zoonotic pathogens and commensal bacteria: conduits for the delivery of resistance genes into humans, production animals and soil microbiotia. Front Microbiol 4:86. doi:10.3389/fmicb.2013.00086. [PubMed][CrossRef]
4. Schlüter A, Szczepanowski R, Pühler A, Top EM. 2007. Genomics of IncP-1 antibiotic resistance plasmids isolated from wastewater treatment plants provides evidence for a widely accessible drug resistance gene pool. FEMS Microbiol Rev 31:449–477. [PubMed][CrossRef]
5. Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. 2011. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2. doi:10.1038/ncomms1267. [PubMed][CrossRef]
6. Sen D, Brown CJ, Top EM, Sullivan J. 2012. Inferring the evolutionary history of IncP-1 plasmids despite incongruence among backbone gene trees. Mol Biol Evol [Epub ahead of print.] doi:10.1093/molbev/mss210. [PubMed][CrossRef]
7. Staley JT, Konopka A. 1985. Measurement of in-situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346. [PubMed][CrossRef]
8. Amann RI, Ludwig W, Schleifer KH. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169. [PubMed]
9. Oliver JD. 2010. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425. [PubMed]
10. Dealtry S, Ding GC, Weichelt V, Dunon V, Schlüter A, Martini MC, Del Papa MF, Lagares A, Amos GCA, Wellington EMH, Gaze WH, Sipkema D, Sjöling S, Springael D, Heuer H, van Elsas JD, Thomas C, Smalla K. 2014. Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats. PLoS One 9. doi:10.1371/journal.pone.0089922. [CrossRef]
11. Shintani M, Takahashi Y, Yamane H, Nojiri H. 2010. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 25:253–265. [PubMed][CrossRef]
12. Dennis JJ. 2005. The evolution of IncP catabolic plasmids. Curr Opin Biotechnol 16:291–298. [PubMed][CrossRef]
13. Bahl MI, Burmølle M, Meisner A, Hansen LH, Sørensen SJ. 2009. All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid 62:134–139. [PubMed][CrossRef]
14. Götz A, Pukall R, Smit E, Tietze E, Prager R, Tschäpe H, Van Elsas JD, Smalla K. 1996. Detection and characterization of broad-host-range plasmids in environmental bacteria by PCR. Appl Environ Microbiol 62:2621–2628. [PubMed]
15. Dealtry S, Holmsgaard PN, Dunon V, Jechalke S, Ding GC, Krögerrecklenfort E, Heuer H, Hansen LH, Springael D, Zühlke S, Sørensen SJ, Smalla K. 2014. Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year. Appl Environ Microbiol 80:4012–4020. [PubMed][CrossRef]
16. Holmsgaard PN, Sørensen SJ, Hansen LH. 2013. Simultaneous pyrosequencing of the 16S rRNA, IncP-1 trfA, and merA genes. J Microbiol Methods 95:280–284. [PubMed][CrossRef]
17. Heuer H, Krögerrecklenfort E, Wellington EMH, Egan S, van Elsas JD, van Overbeek L, Collard JM, Guillaume G, Karagouni AD, Nikolakopoulou TL, Smalla K. 2002. Gentamicin resistance genes in environmental bacteria: prevalence and transfer. FEMS Microbiol Ecol 42:289–302. [PubMed][CrossRef]
18. Smalla K, Haines AS, Jones K, Krögerrecklenfort E, Heuer H, Schloter M, Thomas CM. 2006. Increased abundance of IncP-1 beta plasmids and mercury resistance genes in mercury-polluted river sediments: first discovery of IncP-1 beta plasmids with a complex mer transposon as the sole accessory element. Appl Environ Microbiol 72:7253–7259. [PubMed][CrossRef]
19. Binh CTT, Heuer H, Kaupenjohann M, Smalla K. 2008. Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37. [PubMed][CrossRef]
20. Jutkina J, Heinaru E, Vedler E, Juhanson J, Heinaru A. 2011. Occurrence of plasmids in the aromatic degrading bacterioplankton of the Baltic Sea. Genes 2:853–868. [PubMed][CrossRef]
21. Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, Hashsham SA, Tiedje JM. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA 110:3435–3440. doi:10.1073/pnas.1222743110. [PubMed][CrossRef]
22. Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K. 2014. Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Front Microbiol 4. doi:10.3389/fmicb.2013.00420. [PubMed][CrossRef]
23. Jechalke S, Dealtry S, Smalla K, Heuer H. 2013. Quantification of IncP-1 plasmid prevalence in environmental samples. Appl Environ Microbiol 79:1410–1413. [PubMed][CrossRef]
24. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K. 2014. Fate and effects of veterinary antibiotics in soil. Trends Microbiol 22:536–545. [PubMed][CrossRef]
25. Rosche TM, Siddique A, Larsen MH, Figurski DH. 2000. Incompatibility protein IncC and global regulator KorB interact in active partition of promiscuous plasmid RK2. J Bacteriol 182:6014–6026. [PubMed][CrossRef]
26. Herman D, Thomas CM, Stekel DJ. 2011. Global transcription regulation of RK2 plasmids: a case study in the combined use of dynamical mathematical models and statistical inference for integration of experimental data and hypothesis exploration. BMC Syst Biol 5:119. doi:10.1186/1752-0509-5-119. [PubMed][CrossRef]
27. Jechalke S, Focks A, Rosendahl I, Groeneweg J, Siemens J, Heuer H, Smalla K. 2013. Structural and functional response of the soil bacterial community to application of manure from difloxacin-treated pigs. FEMS Microbiol Ecol 87:78–88. [PubMed][CrossRef]
28. Kopmann C, Jechalke S, Rosendahl I, Groeneweg J, Krögerrecklenfort E, Zimmerling U, Weichelt V, Siemens J, Amelung W, Heuer H, Smalla K. 2013. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 83:125–134. [PubMed][CrossRef]
29. Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K. 2014. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144. [PubMed]
30. Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K. 2014. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front Microbiol 5. doi:10.3389/fmicb.2014.00002. [PubMed][CrossRef]
31. Brown CJ, Sen DY, Yano H, Bauer ML, Rogers LM, Van der Auwera GA, Top EM. 2013. Diverse broad-host-range plasmids from freshwater carry few accessory genes. Appl Environ Microbiol 79:7684–7695. [PubMed][CrossRef]
32. Król JE, Penrod JT, McCaslin H, Rogers LM, Yano H, Stancik AD, Dejonghe W, Brown CJ, Parales RE, Wuertz S, Top EM. 2012. Role of IncP-1 beta plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. Appl Environ Microbiol 78:828–838. [PubMed][CrossRef]
33. Tauch A, Schneiker S, Selbitschka W, Pühler A, van Overbeek LS, Smalla K, Thomas CM, Bailey MJ, Forney LJ, Weightman A, Ceglowski P, Pembroke T, Tietze E, Schröder G, Lanka E, van Elsas JD. 2002. The complete nucleotide sequence and environmental distribution of the cryptic, conjugative, broad-host-range plasmid pIPO2 isolated from bacteria of the wheat rhizosphere. Microbiology 148:1637–1653. [PubMed]
34. Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M. 2003. Replication functions of new broad host range plasmids isolated from polluted soils. Res Microbiol 154:499–509. [PubMed][CrossRef]
35. Frost LS, Thomas CM. 2014. Naming and annotation of plasmids. Mol Life Sci. doi:10.1007/978-1-4614-6436-5_568-2. [CrossRef]
36. Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P. 2002. Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp nov and Burkholderia terricola sp nov. Syst Appl Microbiol 25:340–352. [PubMed][CrossRef]
37. Sentchilo V, Mayer AP, Guy L, Miyazaki R, Tringe SG, Barry K, Malfatti S, Goessmann A, Robinson-Rechavi M, Van der Meer JR. 2013. Community-wide plasmid gene mobilization and selection. ISME J 7:1173–1186. [PubMed][CrossRef]
38. Norman A, Riber L, Luo WT, Li LL, Hansen LH, Sørensen SJ. 2014. An improved method for including upper size range plasmids in metamobilomes. PLoS One 9. doi:10.1371/journal.pone.0104405. [PubMed][CrossRef]
39. Li LL, Norman A, Hansen LH, Sørensen SJ. 2012. Metamobilomics: expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. Clin Microbiol Infect 18:5–7. [PubMed][CrossRef]
40. Umbarger MA, Toro E, Wright MA, Porreca GJ, Bau D, Hong SH, Fero MJ, Zhu LJ, Marti-Renom MA, McAdams HH, Shapiro L, Dekker J, Church GM. 2011. The three-dimensional architecture of a bacterial genome and its alteration by genetic perturbation. Mol Cell 44:252–264. [PubMed][CrossRef]
41. Burton JN, Liachko I, Dunham MJ, Shendure J. 2014. Species-level deconvolution of metagenome assemblies with Hi-C-based contact probability maps. G3:Genes, Genomes, Genetics 4:1339–1346. [PubMed][CrossRef]
42. Beitel CW, Froenicke L, Lang JM, Korf IF, Michelmore RW, Eisen JA, Darling AE. 2014. Strain- and plasmid-level deconvolution of a synthetic metagenome by sequencing proximity ligation products. PeerJ 2:e415. doi:10.7717/peerj.415. [PubMed][CrossRef]
43. Jones BV, Marchesi JR. 2007. Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat Methods 4:55–61. [PubMed][CrossRef]
44. Warburton PJ, Allan E, Hunter S, Ward J, Booth V, Wade WG, Mullany P. 2011. Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon aided capture (TRACA). FEMS Microbiol Ecol 523:349–354. [PubMed][CrossRef]
45. Zhang T, Zhang X-X, Ye L. 2011. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6:e26041. doi:10.1371/journal.pone.0026041. [PubMed][CrossRef]
46. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, Lu F, Redzej A, Fronzes R, Orlova EV, Waksman G. 2014. Structure of a type IV secretion system. Nature 508:550–553. [PubMed][CrossRef]
47. van Elsas JD, Gardener BBM, Wolters AC, Smit E. 1998. Isolation, characterization, and transfer of cryptic gene-mobilizing plasmids in the wheat rhizosphere. Appl Environ Microbiol 64:880–889. [PubMed]
48. Schneiker S, Keller M, Dröge M, Lanka E, Pühler A, Selbitschka W. 2001. The genetic organization and evolution of the broad host range mercury resistance plasmid pSB102 isolated from a microbial population residing in the rhizosphere of alfalfa. Nucleic Acids Res 29:5169–5181. [PubMed][CrossRef]
49. Heuer H, Kopmann C, Binh CTT, Top EM, Smalla K. 2009. Spreading antibiotic resistance through spread manure: characteristics of a novel plasmid type with low %G plus C content. Environ Microbiol 11:937–949. [PubMed][CrossRef]
50. Jechalke S, Kopmann C, Rosendahl I, Groeneweg J, Weichelt V, Krögerrecklenfort E, Brandes N, Nordwig M, Ding G-C, Siemens J, Heuer H, Smalla K. 2013. Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 79:1704–1711. [PubMed][CrossRef]
51. Heuer H, Smalla K. 2007. Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Environ Microbiol 9:657–666. [PubMed][CrossRef]
52. Heuer H, Binh CTT, Jechalke S, Kopmann C, Zimmerling U, Krögerrecklenfort E, Ledger T, González B, Top EM, Smalla K. 2012. IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: diversification driven by class 1 integron gene cassettes. Front Microbiol 3. doi:10.3389/fmicb.2012.00002. [CrossRef]
53. Smalla K, Heuer H, Götz A, Niemeyer D, Krögerrecklenfort E, Tietze E. 2000. Exogenous isolation of antibiotic resistance plasmids from piggery manure slurries reveals a high prevalence and diversity of IncQ-like plasmids. Appl Environ Microbiol 66:4854–4862. [PubMed][CrossRef]
54. Drønen AK, Torsvik V, Top EM. 1999. Comparison of the plasmid types obtained by two distantly related recipients in biparental exogenous plasmid isolations from soil. FEMS Microbiol Lett 176:105–110. [CrossRef]
55. Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother 53:2227–2238. [PubMed][CrossRef]
56. Alvarado A, Garcillán-Barcia MP, de la Cruz F. 2012. A degenerate primer MOB typing (DPMT) method to classify gamma-Proteobacterial plasmids in clinical and environmental settings. Plos One 7. doi:10.1371/journal.pone.0040438. [PubMed][CrossRef]
57. de Toro M, Garcillán-Barcia MP, de la Cruz F. 2015. Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids. In Tolmasky ME, Alonso JC (ed), Plasmids: Biology and Impact in Biotechnology and Discovery. ASM Press, Washington, DC, in press. [PubMed]
58. Amos GCA, Hawkey PM, Gaze WH, Wellington EM. 2014. Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment. J Antimicrob Chemother 69:1785–1791. [PubMed][CrossRef]
59. Eltlbany N, Prokscha ZZ, Castañeda-Ojeda MP, Krogerrecklenfort E, Heuer H, Wohanka W, Ramos C, Smalla K. 2012. A new bacterial disease on Mandevilla sanderi, caused by Pseudomonas savastanoi: lessons learned for bacterial diversity studies. Appl Environ Microbiol 78:8492–8497. [PubMed][CrossRef]
60. Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, Smets BF. 2014. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. doi:10.1038/ismej.2014.191. [PubMed][CrossRef]
61. Pukall R, Tschäpe H, Smalla K. 1996. Monitoring the spread of broad host and narrow host range plasmids in soil microcosms. FEMS Microbiol Ecol 20:53–66. [CrossRef]
62. Heuer H, Ebers J, Weinert N, Smalla K. 2010. Variation in permissiveness for broad-host-range plasmids among genetically indistinguishable isolates of Dickeya sp. from a small field plot. FEMS Microbiol Ecol 73:190–196. [PubMed]
63. De Gelder L, Vandecasteele FPJ, Brown CJ, Forney LJ, Top EM. 2005. Plasmid donor affects host range of promiscuous IncP-1 beta plasmid pB10 in an activated-sludge microbial community. Appl Environ Microbiol 71:5309–5317. [PubMed][CrossRef]
64. Bellanger X, Guilloteau H, Bonot S, Merlin C. 2014. Demonstrating plasmid-based horizontal gene transfer in complex environmental matrices: a practical approach for a critical review. Sci Total Environ 493:872–882. [PubMed][CrossRef]
65. Musovic S, Oregaard G, Kroer N, Sørensen SJ. 2006. Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among Gram-positive and Gram-negative bacteria indigenous to the barley rhizosphere. Appl Environ Microbiol 72:6687–6692. [PubMed][CrossRef]
66. Musovic S, Dechesne A, Sørensen J, Smets BF. 2010. Novel assay to assess permissiveness of a soil microbial community toward receipt of mobile genetic elements. Appl Environ Microbiol 76:4813–4818. [PubMed][CrossRef]
67. Shintani M, Matsui K, Inoue J, Hosoyama A, Ohji S, Yamazoe A, Nojiri H, Kimbara K, Ohkuma M. 2014. Single-cell analyses revealed transfer ranges of IncP-1, IncP-7, and IncP-9 plasmids in a soil bacterial community. Appl Environ Microbiol 80:138–145. [PubMed][CrossRef]
68. Thomas CM, Smith CA. 1987. Incompatibility group-P plasmids: genetics, evolution, and use in genetic manipulation. Annu Rev Microbiol 41:77–101. [PubMed][CrossRef]
69. Musovic S, Klumper U, Dechesne A, Magid J, Smets BF. 2014. Long-term manure exposure increases soil bacterial community potential for plasmid uptake. Environ Microbiol Rep 6:125–130. [PubMed][CrossRef]
70. Takahashi Y, Shintani M, Takase N, Kazo Y, Kawamura F, Hara H, Nishida H, Okada K, Yamane H, Nojiri H. 2014. Modulation of primary cell function of host Pseudomonas bacteria by the conjugative plasmid pCAR1. Environ Microbiol [Epub ahead of print.] doi:10.1111/1462-2920.12515. [PubMed][CrossRef]
71. Jechalke S, Kopmann C, Richter M, Moenickes S, Heuer H, Smalla K. 2013. Plasmid-mediated fitness advantage of Acinetobacter baylyi in sulfadiazine-polluted soil. FEMS Microbiol Lett 348:127–132. [PubMed][CrossRef]
72. Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. 2014. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5. doi:10.1128/mBio.01918-14. [PubMed][CrossRef]
73. Suzuki H, Sota M, Brown CJ, Top EM. 2008. Using Mahalanobis distance to compare genomic signatures between bacterial plasmids and chromosomes. Nucleic Acids Res 36:e147. [PubMed][CrossRef]
74. Suzuki H, Yano H, Brown CJ, Top EM. 2010. Predicting plasmid promiscuity based on genomic signature. J Bacteriol 192:6045–6055. [PubMed][CrossRef]
75. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F. 2014. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by Plasmid Constellation Network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 10:e1004766. [PubMed][CrossRef]
microbiolspec.PLAS-0038-2014.citations
cm/3/1
content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0038-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0038-2014
2015-02-27
2017-12-13

Abstract:

Plasmids are important vehicles for rapid adaptation of bacterial populations to changing environmental conditions. It is thought that to reduce the cost of plasmid carriage, only a fraction of a local population carries plasmids or is permissive to plasmid uptake. Plasmids provide various accessory traits which might be beneficial under particular conditions. The genetic variation generated by plasmid carriage within populations ensures the robustness toward environmental changes. Plasmid-mediated gene transfer plays an important role not only in the mobilization and dissemination of antibiotic resistance genes but also in the spread of degradative pathways and pathogenicity determinants of pathogens. Here we summarize the state-of-the-art methods to study the occurrence, abundance, and diversity of plasmids in environmental bacteria. Increasingly, cultivation-independent total-community DNA-based methods are being used to characterize and quantify the diversity and abundance of plasmids in relation to various biotic and abiotic factors. An improved understanding of the ecology of plasmids and their hosts is crucial in the development of intervention strategies for antibiotic-resistance-gene spread. We discuss the potentials and limitations of methods used to determine the host range of plasmids, as the ecology of plasmids is tightly linked to their hosts. The recent advances in sequencing technologies provide an enormous potential for plasmid classification, diversity, and evolution studies, but numerous challenges still exist.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

/deliver/fulltext/microbiolspec/3/1/PLAS-0038-2014.html?itemId=/content/journal/microbiolspec/10.1128/microbiolspec.PLAS-0038-2014&mimeType=html&fmt=ahah

Figures

Image of FIGURE 1

Click to view

FIGURE 1

Overview of applying Hi-C technology to a mixed bacterial community to reliably associate plasmids with the chromosomes of their hosts (modified from Burton et al. [ 41 ]). (A) Rectangles indicate different cells carrying plasmids or not. Plasmids are cross-linked with bacterial chromosomes in close proximity (red circles). (B) The DNA in the cross-linked protein complexes is digested with III endonuclease following cell lysis, and free DNA ends are tagged with biotin. After ligation of blunt-ended DNA fragments under highly dilute conditions, which preferentially ligates fragments that are within the same cross-linked DNA/protein complex, cross-links are removed, DNA is purified, biotin is eliminated from unligated ends, DNA is size-selected, and ligation products are selected for through a biotin pull-down. The resulting Hi-C library is further analyzed by sequencing. (C) Workflow to create individual species/plasmid assemblies from a metagenome sample by combining shotgun, Hi-C, and (optionally) mate-pair libraries. doi:10.1128/microbiolspec.PLAS-0038-2014.f1

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.PLAS-0038-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Click to view

FIGURE 2

Exogenous capturing of plasmids by means of (A) biparental and (B) triparental mating. For biparental mating, environmental bacteria are mixed with recipient cells, and after a filter mating the cells are resuspended and plated on media containing rifampicin (Rif), kanamycin (Kan) (to select for the recipient), and antibiotics or heavy metals to which the recipient is sensitive. Triparental matings involve a second donor carrying a small mobilizable IncQ plasmid, and the plasmid capturing is exclusively based on the plasmid-mobilizing capacity. To facilitate the identification of transconjugants the recipient is labeled with the green fluorescent protein (). doi:10.1128/microbiolspec.PLAS-0038-2014.f2

Source: microbiolspec February 2015 vol. 3 no. 1 doi:10.1128/microbiolspec.PLAS-0038-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error