1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The Conserved Role of YidC in Membrane Protein Biogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Sri Karthika Shanmugam1, Ross E. Dalbey2
  • Editors: Maria Sandkvist3, Eric Cascales4, Peter J. Christie5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210; 2: Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210; 3: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan; 4: CNRS Aix-Marseille Université, Mediterranean Institute of Microbiology, Marseille, France; 5: Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas
  • Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0014-2018
  • Received 05 September 2018 Accepted 30 October 2018 Published 11 January 2019
  • Ross E. Dalbey, [email protected]
image of The Conserved Role of YidC in Membrane Protein Biogenesis
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The Conserved Role of YidC in Membrane Protein Biogenesis, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/7/1/PSIB-0014-2018-1.gif /docserver/preview/fulltext/microbiolspec/7/1/PSIB-0014-2018-2.gif
  • Abstract:

    YidC insertase plays a pivotal role in the membrane integration, folding, and assembly of a number of proteins, including energy-transducing respiratory complexes, both autonomously and in concert with the SecYEG channel in bacteria. The YidC family of proteins is widely conserved in all domains of life, with new members recently identified in the eukaryotic endoplasmic reticulum membrane. Bacterial and organellar members share the conserved 5-transmembrane core, which forms a unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and the lipid phase. In this chapter, we discuss the YidC family of proteins, focusing on its mechanism of substrate insertion independently and in association with the Sec translocon.

  • Citation: Shanmugam S, Dalbey R. 2019. The Conserved Role of YidC in Membrane Protein Biogenesis. Microbiol Spectrum 7(1):PSIB-0014-2018. doi:10.1128/microbiolspec.PSIB-0014-2018.

References

1. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580. http://dx.doi.org/10.1006/jmbi.2000.4315. [PubMed]
2. Pohlschröder M, Prinz WA, Hartmann E, Beckwith J. 1997. Protein translocation in the three domains of life: variations on a theme. Cell 91:563–566. http://dx.doi.org/10.1016/S0092-8674(00)80443-2.
3. Duong F, Wickner W. 1997. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756–2768. http://dx.doi.org/10.1093/emboj/16.10.2756. [PubMed]
4. Dalbey RE, Kuhn A. 2004. YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J Cell Biol 166:769–774. http://dx.doi.org/10.1083/jcb.200405161. [PubMed]
5. Samuelson JC, Chen M, Jiang F, Möller I, Wiedmann M, Kuhn A, Phillips GJ, Dalbey RE. 2000. YidC mediates membrane protein insertion in bacteria. Nature 406:637–641. http://dx.doi.org/10.1038/35020586. [PubMed]
6. Yi L, Celebi N, Chen M, Dalbey RE. 2004. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J Biol Chem 279:39260–39267. http://dx.doi.org/10.1074/jbc.M405490200. [PubMed]
7. Facey SJ, Neugebauer SA, Krauss S, Kuhn A. 2007. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J Mol Biol 365:995–1004. http://dx.doi.org/10.1016/j.jmb.2006.10.083. [PubMed]
8. Pross E, Soussoula L, Seitl I, Lupo D, Kuhn A. 2016. Membrane targeting and insertion of the C-tail protein SciP. J Mol Biol 428:4218–4227. http://dx.doi.org/10.1016/j.jmb.2016.09.001. [PubMed]
9. Peschke M, Le Goff M, Koningstein GM, Karyolaimos A, de Gier JW, van Ulsen P, Luirink J. 2018. SRP, FtsY, DnaK and YidC are required for the biogenesis of the E. coli tail-anchored membrane proteins DjlC and Flk. J Mol Biol 430:389–403. http://dx.doi.org/10.1016/j.jmb.2017.12.004. [PubMed]
10. Hennon SW, Soman R, Zhu L, Dalbey RE. 2015. YidC/Alb3/Oxa1 family of insertases. J Biol Chem 290:14866–14874. http://dx.doi.org/10.1074/jbc.R115.638171. [PubMed]
11. van der Laan M, Urbanus ML, Ten Hagen-Jongman CM, Nouwen N, Oudega B, Harms N, Driessen AJ, Luirink J. 2003. A conserved function of YidC in the biogenesis of respiratory chain complexes. Proc Natl Acad Sci U S A 100:5801–5806. http://dx.doi.org/10.1073/pnas.0636761100. [PubMed]
12. van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ. 2004. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J Cell Biol 165:213–222. http://dx.doi.org/10.1083/jcb.200402100. [PubMed]
13. du Plessis DJ, Nouwen N, Driessen AJ. 2006. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J Biol Chem 281:12248–12252. http://dx.doi.org/10.1074/jbc.M600048200. [PubMed]
14. Price CE, Driessen AJ. 2008. YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J Biol Chem 283:26921–26927. http://dx.doi.org/10.1074/jbc.M804490200. [PubMed]
15. Ravaud S, Stjepanovic G, Wild K, Sinning I. 2008. The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J Biol Chem 283:9350–9358. http://dx.doi.org/10.1074/jbc.M710493200. [PubMed]
16. Jiang F, Chen M, Yi L, de Gier JW, Kuhn A, Dalbey RE. 2003. Defining the regions of Escherichia coli YidC that contribute to activity. J Biol Chem 278:48965–48972. http://dx.doi.org/10.1074/jbc.M307362200. [PubMed]
17. Petriman NA, Jauß B, Hufnagel A, Franz L, Sachelaru I, Drepper F, Warscheid B, Koch HG. 2018. The interaction network of the YidC insertase with the SecYEG translocon, SRP and the SRP receptor FtsY. Sci Rep 8:578. http://dx.doi.org/10.1038/s41598-017-19019-w. [PubMed]
18. Xie K, Kiefer D, Nagler G, Dalbey RE, Kuhn A. 2006. Different regions of the nonconserved large periplasmic domain of Escherichia coli YidC are involved in the SecF interaction and membrane insertase activity. Biochemistry 45:13401–13408. http://dx.doi.org/10.1021/bi060826z. [PubMed]
19. Chiba S, Ito K. 2015. MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation. J Bacteriol 197:99–107. http://dx.doi.org/10.1128/JB.02074-14. [PubMed]
20. Errington J, Appleby L, Daniel RA, Goodfellow H, Partridge SR, Yudkin MD. 1992. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for sigma G activity at an intermediate stage of sporulation. J Gen Microbiol 138:2609–2618. http://dx.doi.org/10.1099/00221287-138-12-2609. [PubMed]
21. Borowska MT, Dominik PK, Anghel SA, Kossiakoff AA, Keenan RJ. 2015. A YidC-like protein in the archaeal plasma membrane. Structure 23:1715–1724. http://dx.doi.org/10.1016/j.str.2015.06.025. [PubMed]
22. Jiang F, Yi L, Moore M, Chen M, Rohl T, Van Wijk KJ, De Gier JW, Henry R, Dalbey RE. 2002. Chloroplast YidC homolog Albino3 can functionally complement the bacterial YidC depletion strain and promote membrane insertion of both bacterial and chloroplast thylakoid proteins. J Biol Chem 277:19281–19288. http://dx.doi.org/10.1074/jbc.M110857200. [PubMed]
23. Preuss M, Ott M, Funes S, Luirink J, Herrmann JM. 2005. Evolution of mitochondrial oxa proteins from bacterial YidC. Inherited and acquired functions of a conserved protein insertion machinery. J Biol Chem 280:13004–13011. http://dx.doi.org/10.1074/jbc.M414093200. [PubMed]
24. van Bloois E, Koningstein G, Bauerschmitt H, Herrmann JM, Luirink J. 2007. Saccharomyces cerevisiae Cox18 complements the essential Sec-independent function of Escherichia coli YidC. FEBS J 274:5704–5713. http://dx.doi.org/10.1111/j.1742-4658.2007.06094.x. [PubMed]
25. Sundberg E, Slagter JG, Fridborg I, Cleary SP, Robinson C, Coupland G. 1997. ALBINO3, an Arabidopsis nuclear gene essential for chloroplast differentiation, encodes a chloroplast protein that shows homology to proteins present in bacterial membranes and yeast mitochondria. Plant Cell 9:717–730.
26. Gerdes L, Bals T, Klostermann E, Karl M, Philippar K, Hünken M, Soll J, Schünemann D. 2006. A second thylakoid membrane-localized Alb3/OxaI/YidC homologue is involved in proper chloroplast biogenesis in Arabidopsis thaliana. J Biol Chem 281:16632–16642. http://dx.doi.org/10.1074/jbc.M513623200. [PubMed]
27. Woolhead CA, Thompson SJ, Moore M, Tissier C, Mant A, Rodger A, Henry R, Robinson C. 2001. Distinct Albino3-dependent and -independent pathways for thylakoid membrane protein insertion. J Biol Chem 276:40841–40846. http://dx.doi.org/10.1074/jbc.M106523200. [PubMed]
28. Benz M, Bals T, Gügel IL, Piotrowski M, Kuhn A, Schünemann D, Soll J, Ankele E. 2009. Alb4 of Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding photosynthetic complex, the CF1CF0-ATP synthase. Mol Plant 2:1410–1424. http://dx.doi.org/10.1093/mp/ssp095. [PubMed]
29. Falk S, Ravaud S, Koch J, Sinning I. 2010. The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J Biol Chem 285:5954–5962. http://dx.doi.org/10.1074/jbc.M109.084996. [PubMed]
30. Klostermann E, Droste Gen Helling I, Carde JP, Schünemann D. 2002. The thylakoid membrane protein ALB3 associates with the cpSecY-translocase in Arabidopsis thaliana. Biochem J 368:777–781. http://dx.doi.org/10.1042/bj20021291. [PubMed]
31. Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G. 1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J Mol Biol 239:201–212. http://dx.doi.org/10.1006/jmbi.1994.1363. [PubMed]
32. Funes S, Nargang FE, Neupert W, Herrmann JM. 2004. The Oxa2 protein of Neurospora crassa plays a critical role in the biogenesis of cytochrome oxidase and defines a ubiquitous subbranch of the Oxa1/YidC/Alb3 protein family. Mol Biol Cell 15:1853–1861. http://dx.doi.org/10.1091/mbc.e03-11-0789. [PubMed]
33. Ott M, Herrmann JM. 2010. Co-translational membrane insertion of mitochondrially encoded proteins. Biochim Biophys Acta 1803:767–775. http://dx.doi.org/10.1016/j.bbamcr.2009.11.010. [PubMed]
34. Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA. 2003. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438–6447. http://dx.doi.org/10.1093/emboj/cdg624. [PubMed]
35. Fiumera HL, Broadley SA, Fox TD. 2007. Translocation of mitochondrially synthesized Cox2 domains from the matrix to the intermembrane space. Mol Cell Biol 27:4664–4673. http://dx.doi.org/10.1128/MCB.01955-06. [PubMed]
36. Chen Y, Dalbey RE. 2018. Oxa1 superfamily: new members found in the ER. Trends Biochem Sci 43:151–153. http://dx.doi.org/10.1016/j.tibs.2017.12.005. [PubMed]
37. Anghel SA, McGilvray PT, Hegde RS, Keenan RJ. 2017. Identification of Oxa1 homologs operating in the eukaryotic endoplasmic reticulum. Cell Rep 21:3708–3716. http://dx.doi.org/10.1016/j.celrep.2017.12.006. [PubMed]
38. Srivastava R, Zalisko BE, Keenan RJ, Howell SH. 2017. The GET system inserts the tail-anchored protein, SYP72, into endoplasmic reticulum membranes. Plant Physiol 173:1137–1145. http://dx.doi.org/10.1104/pp.16.00928. [PubMed]
39. Guna A, Volkmar N, Christianson JC, Hegde RS. 2018. The ER membrane protein complex is a transmembrane domain insertase. Science 359:470–473. http://dx.doi.org/10.1126/science.aao3099. [PubMed]
40. Shurtleff MJ, Itzhak DN, Hussmann JA, Schirle Oakdale NT, Costa EA, Jonikas M, Weibezahn J, Popova KD, Jan CH, Sinitcyn P, Vembar SS, Hernandez H, Cox J, Burlingame AL, Brodsky JL, Frost A, Borner GH, Weissman JS. 2018. The ER membrane protein complex interacts cotranslationally to enable biogenesis of multipass membrane proteins. eLife 7:7. http://dx.doi.org/10.7554/eLife.37018. [PubMed]
41. Spann D, Pross E, Chen Y, Dalbey RE, Kuhn A. 2018. Each protomer of a dimeric YidC functions as a single membrane insertase. Sci Rep 8:589. http://dx.doi.org/10.1038/s41598-017-18830-9. [PubMed]
42. Boy D, Koch HG. 2009. Visualization of distinct entities of the SecYEG translocon during translocation and integration of bacterial proteins. Mol Biol Cell 20:1804–1815. http://dx.doi.org/10.1091/mbc.e08-08-0886. [PubMed]
43. Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, Dalbey R, Kuhn A. 2004. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J 23:294–301. http://dx.doi.org/10.1038/sj.emboj.7600063. [PubMed]
44. Aschtgen MS, Zoued A, Lloubès R, Journet L, Cascales E. 2012. The C-tail anchored TssL subunit, an essential protein of the enteroaggregative Escherichia coli Sci-1 type VI secretion system, is inserted by YidC. Microbiologyopen 1:71–82. http://dx.doi.org/10.1002/mbo3.9. [PubMed]
45. Dalbey RE, Kuhn A, Zhu L, Kiefer D. 2014. The membrane insertase YidC. Biochim Biophys Acta 1843:1489–1496. http://dx.doi.org/10.1016/j.bbamcr.2013.12.022. [PubMed]
46. Kumazaki K, Chiba S, Takemoto M, Furukawa A, Nishiyama K, Sugano Y, Mori T, Dohmae N, Hirata K, Nakada-Nakura Y, Maturana AD, Tanaka Y, Mori H, Sugita Y, Arisaka F, Ito K, Ishitani R, Tsukazaki T, Nureki O. 2014. Structural basis of Sec-independent membrane protein insertion by YidC. Nature 509:516–520. http://dx.doi.org/10.1038/nature13167. [PubMed]
47. Kumazaki K, Kishimoto T, Furukawa A, Mori H, Tanaka Y, Dohmae N, Ishitani R, Tsukazaki T, Nureki O. 2014. Crystal structure of Escherichia coli YidC, a membrane protein chaperone and insertase. Sci Rep 4:7299. http://dx.doi.org/10.1038/srep07299. [PubMed]
48. Chen Y, Soman R, Shanmugam SK, Kuhn A, Dalbey RE. 2014. The role of the strictly conserved positively charged residue differs among the Gram-positive, Gram-negative, and chloroplast YidC homologs. J Biol Chem 289:35656–35667. http://dx.doi.org/10.1074/jbc.M114.595082. [PubMed]
49. Zhu L, Wasey A, White SH, Dalbey RE. 2013. Charge composition features of model single-span membrane proteins that determine selection of YidC and SecYEG translocase pathways in Escherichia coli. J Biol Chem 288:7704–7716. http://dx.doi.org/10.1074/jbc.M112.429431. [PubMed]
50. Price CE, Driessen AJ. 2010. Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. J Biol Chem 285:3575–3581. http://dx.doi.org/10.1074/jbc.M109.051128. [PubMed]
51. Chen Y, Capponi S, Zhu L, Gellenbeck P, Freites JA, White SH, Dalbey RE. 2017. YidC insertase of Escherichia coli: water accessibility and membrane shaping. Structure 25:1403–1414.e3. http://dx.doi.org/10.1016/j.str.2017.07.008. [PubMed]
52. Klenner C, Yuan J, Dalbey RE, Kuhn A. 2008. The Pf3 coat protein contacts TM1 and TM3 of YidC during membrane biogenesis. FEBS Lett 582:3967–3972. http://dx.doi.org/10.1016/j.febslet.2008.10.044. [PubMed]
53. Neugebauer SA, Baulig A, Kuhn A, Facey SJ. 2012. Membrane protein insertion of variant MscL proteins occurs at YidC and SecYEG of Escherichia coli. J Mol Biol 417:375–386. http://dx.doi.org/10.1016/j.jmb.2012.01.046. [PubMed]
54. Kedrov A, Wickles S, Crevenna AH, van der Sluis EO, Buschauer R, Berninghausen O, Lamb DC, Beckmann R. 2016. Structural dynamics of the YidC:ribosome complex during membrane protein biogenesis. Cell Rep 17:2943–2954. http://dx.doi.org/10.1016/j.celrep.2016.11.059. [PubMed]
55. Winterfeld S, Ernst S, Börsch M, Gerken U, Kuhn A. 2013. Real time observation of single membrane protein insertion events by the Escherichia coli insertase YidC. PLoS One 8:e59023. http://dx.doi.org/10.1371/journal.pone.0059023. [PubMed]
56. Geng Y, Kedrov A, Caumanns JJ, Crevenna AH, Lamb DC, Beckmann R, Driessen AJ. 2015. Role of the cytosolic loop C2 and the C terminus of YidC in ribosome binding and insertion activity. J Biol Chem 290:17250–17261. http://dx.doi.org/10.1074/jbc.M115.650309. [PubMed]
57. Soman R, Yuan J, Kuhn A, Dalbey RE. 2014. Polarity and charge of the periplasmic loop determine the YidC and sec translocase requirement for the M13 procoat lep protein. J Biol Chem 289:1023–1032. http://dx.doi.org/10.1074/jbc.M113.522250. [PubMed]
58. Kol S, Majczak W, Heerlien R, van der Berg JP, Nouwen N, Driessen AJ. 2009. Subunit a of the F(1)F(0) ATP synthase requires YidC and SecYEG for membrane insertion. J Mol Biol 390:893–901. http://dx.doi.org/10.1016/j.jmb.2009.05.074. [PubMed]
59. Celebi N, Yi L, Facey SJ, Kuhn A, Dalbey RE. 2006. Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. J Mol Biol 357:1428–1436. http://dx.doi.org/10.1016/j.jmb.2006.01.030. [PubMed]
60. Zhu L, Klenner C, Kuhn A, Dalbey RE. 2012. Both YidC and SecYEG are required for translocation of the periplasmic loops 1 and 2 of the multispanning membrane protein TatC. J Mol Biol 424:354–367. http://dx.doi.org/10.1016/j.jmb.2012.09.026. [PubMed]
61. Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG. 2012. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 23:464–479. http://dx.doi.org/10.1091/mbc.e11-07-0590. [PubMed]
62. Schulze RJ, Komar J, Botte M, Allen WJ, Whitehouse S, Gold VA, Lycklama A, Nijeholt JA, Huard K, Berger I, Schaffitzel C, Collinson I. 2014. Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc Natl Acad Sci U S A 111:4844–4849. http://dx.doi.org/10.1073/pnas.1315901111. [PubMed]
63. Egea PF, Stroud RM. 2010. Lateral opening of a translocon upon entry of protein suggests the mechanism of insertion into membranes. Proc Natl Acad Sci U S A 107:17182–17187. http://dx.doi.org/10.1073/pnas.1012556107. [PubMed]
64. Van den Berg B, Clemons WM, Jr, Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427:36–44. http://dx.doi.org/10.1038/nature02218. [PubMed]
65. Sachelaru I, Petriman NA, Kudva R, Kuhn P, Welte T, Knapp B, Drepper F, Warscheid B, Koch HG. 2013. YidC occupies the lateral gate of the SecYEG translocon and is sequentially displaced by a nascent membrane protein. J Biol Chem 288:16295–16307. http://dx.doi.org/10.1074/jbc.M112.446583. [PubMed]
66. Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Müller M. 2001. YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714. http://dx.doi.org/10.1093/embo-reports/kve154. [PubMed]
67. Nagamori S, Smirnova IN, Kaback HR. 2004. Role of YidC in folding of polytopic membrane proteins. J Cell Biol 165:53–62. http://dx.doi.org/10.1083/jcb.200402067. [PubMed]
68. Zhu L, Kaback HR, Dalbey RE. 2013. YidC protein, a molecular chaperone for LacY protein folding via the SecYEG protein machinery. J Biol Chem 288:28180–28194. http://dx.doi.org/10.1074/jbc.M113.491613. [PubMed]
69. Serdiuk T, Mari SA, Müller DJ. 2017. Pull-and-paste of single transmembrane proteins. Nano Lett 17:4478–4488. http://dx.doi.org/10.1021/acs.nanolett.7b01844. [PubMed]
70. Nouwen N, Driessen AJ. 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 44:1397–1405. http://dx.doi.org/10.1046/j.1365-2958.2002.02972.x. [PubMed]
71. Tsukazaki T, Mori H, Echizen Y, Ishitani R, Fukai S, Tanaka T, Perederina A, Vassylyev DG, Kohno T, Maturana AD, Ito K, Nureki O. 2011. Structure and function of a membrane component SecDF that enhances protein export. Nature 474:235–238. http://dx.doi.org/10.1038/nature09980. [PubMed]
72. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46(W1) :W296–W303. http://dx.doi.org/10.1093/nar/gky427. [PubMed]
73. Kiefer D, Kuhn A. 2018. YidC-mediated membrane insertion. FEMS Microbiol Lett 365:365. http://dx.doi.org/10.1093/femsle/fny106. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PSIB-0014-2018
2019-01-11
2019-03-18

Abstract:

YidC insertase plays a pivotal role in the membrane integration, folding, and assembly of a number of proteins, including energy-transducing respiratory complexes, both autonomously and in concert with the SecYEG channel in bacteria. The YidC family of proteins is widely conserved in all domains of life, with new members recently identified in the eukaryotic endoplasmic reticulum membrane. Bacterial and organellar members share the conserved 5-transmembrane core, which forms a unique hydrophilic cavity in the inner leaflet of the bilayer accessible from the cytoplasm and the lipid phase. In this chapter, we discuss the YidC family of proteins, focusing on its mechanism of substrate insertion independently and in association with the Sec translocon.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

YidC family of proteins. (Top) Structural homology in the YidC/Alb3/Oxa1 family, shown by highlighting the conserved TMs in green (TM1), red (TM2), cyan (TM3), purple (TM4), and yellow (TM5). The YidC structure is adapted from the crystal structure solved in (PDB code 3WO7); Alb3 and Oxa1 structures are three-dimensional (3D) computational models made using SWISS-MODEL workspace as described in reference 72 . (Bottom) Newly identified members of the Oxa1 superfamily, with highlighting of the conserved three TM segments in green (TM1), red (TM2), and yellow (TM3). The archaeal DUF106 structure is adapted from the crystal structure solved in (PDB code 5C8J). Yeast Get1, human TMCO1, and human EMC3 structures are evolutionary covariance-based 3D models adapted from those described in references 36 and 37 . The cytoplasmic regions of these models were modified as described in reference 36 .

Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0014-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of YidC-mediated membrane insertion of Pf3 coat protein. This figure is adapted from a review by Kiefer and Kuhn ( 73 ). Binding of Pf3 coat protein to YidC. Pf3 TM segment interacts with the cytoplasmic part of the greasy slide, and the N-terminal tail of Pf3 (blue) enters the hydrophilic cavity of YidC possessing the conserved Arg residue (red). Pf3 coat TM segment inserts across the YidC greasy slide formed by TM3 and TM5 (purple) and release of the N-tail into the periplasmic space. Release of Pf3 into the bilayer.

Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0014-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of the YidC-Sec insertion pathway. The SRP-bound substrate is cotranslationally targeted to the Sec holotranslocon (SecDFYajC [not represented]) via the membrane-associated SRP receptor FtsY. The substrate amino-terminal TM segment inserts at the interface of SecYEG and YidC and the second TM segment initiates C-terminal translocation. The model substrate shown here, Fa, is inserted into the bilayer.

Source: microbiolspec January 2019 vol. 7 no. 1 doi:10.1128/microbiolspec.PSIB-0014-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error