1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Human Coprolites as a Source for Paleomicrobiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Sandra Appelt1, Michel Drancourt2, Matthieu Le Bailly3
  • Editors: Michel Drancourt4, Didier Raoult5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; 2: Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France; 3: Franche-Comté University, CNRS UMR 6249 Chrono-Environment, Besançon, France; 4: Aix Marseille Université Faculté de Médecine, Marseille, France; 5: Aix Marseille Université Faculté de Médecine, Marseille, France
  • Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0002-2014
  • Received 06 May 2015 Accepted 22 October 2015 Published 05 August 2016
  • Michel Drancourt, Michel.Drancourt@univ-mrs.fr
image of Human Coprolites as a Source for Paleomicrobiology
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Human Coprolites as a Source for Paleomicrobiology, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/PoH-0002-2014-1.gif /docserver/preview/fulltext/microbiolspec/4/4/PoH-0002-2014-2.gif
  • Abstract:

    The paleomicrobiology of coprolites, which are fossilized fecal materials, has already yielded data about various organisms, including micro-eukaryotes, bacteria, and archaea, thus expanding our comprehension of ancient human dietary habits, gut microbiota, and intestinal and systemic infections. This mini-review briefly describes previous works and summarizes the main techniques used in handling coprolites and the findings obtained about ancient gut microbiota. Past intestinal and systemic infections are outlined.

  • Citation: Appelt S, Drancourt M, Le Bailly M. 2016. Human Coprolites as a Source for Paleomicrobiology. Microbiol Spectrum 4(4):PoH-0002-2014. doi:10.1128/microbiolspec.PoH-0002-2014.

Key Concept Ranking

Bacteria and Archaea
0.59108734
Restriction Fragment Length Polymorphism
0.43030915
0.59108734

References

1. Taylor GM, Goyal M, Legge AJ, Shaw RJ, Young D. 1999. Genotypic analysis of Mycobacterium tuberculosis from medieval human remains. Microbiology 145:899–904. http://dx.doi.org/10.1099/13500872-145-4-899. [PubMed][CrossRef]
2. Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG. 2001. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol 50:355–366. http://dx.doi.org/10.1099/0022-1317-50-4-355. [PubMed][CrossRef]
3. Tran TN, Aboudharam G, Raoult D, Drancourt M. 2011. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. Biotechniques 50:370–380. http://dx.doi.org/10.2144/000113689. [PubMed][CrossRef]
4. Reinhard KJ, Bryant VMJ. 1992. Coprolite analysis: a biological perspective on archaeology, p 245–288. In Shiffer M (ed), Advances in Archaeological Method and Theory. University of Arizona Press, Tucson, AZ.
5. Araújo A, Reinhard K, Bastos OM, Costa LC, Pirmez C, Iñiguez A, Vicente AC, Morel CM, Ferreira LF. 1998. Paleoparasitology: perspectives with new techniques. Rev Inst Med Trop Sao Paulo 40:371–376. http://dx.doi.org/10.1590/S0036-46651998000600006. [PubMed][CrossRef]
6. Bouchet F, Guidon N, Dittmar K, Harter S, Ferreira LF, Chaves SM, Reinhard K, Araújo A. 2003. Parasite remains in archaeological sites. Mem Inst Oswaldo Cruz 98(Suppl 1):47–52. http://dx.doi.org/10.1590/S0074-02762003000900009. [PubMed][CrossRef]
7. Dittmar K. 2009. Old parasites for a new world: the future of paleoparasitological research. a review. J Parasitol 95:365–371. http://dx.doi.org/10.1645/GE-1676.1. [PubMed][CrossRef]
8. Tito RY, Knights D, Metcalf J, Obregon-Tito AJ, Cleeland L, Najar F, Roe B, Reinhard K, Sobolik K, Belknap S, Foster M, Spicer P, Knight R, Lewis CM Jr. 2012. Insights from characterizing extinct human gut microbiomes. PLoS One 7:e51146. http://dx.doi.org/10.1371/journal.pone.0051146. [PubMed][CrossRef]
9. Dentzien-Dias PC, Poinar G Jr, de Figueiredo AE, Pacheco AC, Horn BL, Schultz CL. 2013. Tapeworm eggs in a 270 million-year-old shark coprolite. PLoS One 8:e55007. http://dx.doi.org/10.1371/journal.pone.0055007. [PubMed][CrossRef]
10. Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte L, Crespo-Torres E, Toranzos GA, Jimenez-Flores R, Hamrick A, Cano RJ. 2013. Microbial communities in pre-columbian coprolites. PLoS One 8:e65191. http://dx.doi.org/10.1371/journal.pone.0065191. [PubMed][CrossRef]
11. Sistiaga A, Mallol C, Galván B, Summons RE. 2014. The Neanderthal meal: a new perspective using faecal biomarkers. PLoS One 9:e101045. http://dx.doi.org/10.1371/journal.pone.0101045. [PubMed][CrossRef]
12. Jenkins DL, Davis LG, Stafford TW Jr, Campos PF, Hockett B, Jones GT, Cummings LS, Yost C, Connolly TJ, Yohe RM II, Gibbons SC, Raghavan M, Rasmussen M, Paijmans JL, Hofreiter M, Kemp BM, Barta JL, Monroe C, Gilbert MT, Willerslev E. 2012. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337:223–228. http://dx.doi.org/10.1126/science.1218443. [CrossRef]
13. Bouchet F, Harter S, Le Bailly M. 2003. The state of the art of paleoparasitological research in the Old World. Mem Inst Oswaldo Cruz 98(Suppl 1):95–101. http://dx.doi.org/10.1590/S0074-02762003000900015. [PubMed][CrossRef]
14. Gonçalves ML, Araújo A, Ferreira LF. 2003. Human intestinal parasites in the past: new findings and a review. Mem Inst Oswaldo Cruz 98(Suppl 1):103–118. http://dx.doi.org/10.1590/S0074-02762003000900016. [PubMed][CrossRef]
15. Rollo F, Ermini L, Luciani S, Marota I, Olivieri C. 2006. Studies on the preservation of the intestinal microbiota’s DNA in human mummies from cold environments. Med Secoli 18:725–740. [PubMed]
16. Reinhard KJ, Bryant VM. 2008. Pathoecology and the future of coprolite studies in bioarchaeology. Natural Resources 43:205–224.
17. Bouchet F, Harter S, Paicheler JC, Aráujo A, Ferreira LF. 2002. First recovery of Schistosoma mansoni eggs from a latrine in Europe (15-16th centuries). J Parasitol 88:404–405. [PubMed]
18. Carrio J, Riquelme J, Navarro C, Munuera M. 2001. Pollen in hyaena coprolites reflects late glacial landscape in southern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 176:193–205. http://dx.doi.org/10.1016/S0031-0182(01)00338-8. [CrossRef]
19. Chaves SDM, Reinhard K. 2006. Critical analysis of coprolite evidence of medicinal plant use, Piauí, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 237:110–118. http://dx.doi.org/10.1016/j.palaeo.2005.11.031. [CrossRef]
20. Gilbert MT, Jenkins DL, Götherstrom A, Naveran N, Sanchez JJ, Hofreiter M, Thomsen PF, Binladen J, Higham TF, Yohe RM II, Parr R, Cummings LS, Willerslev E. 2008. DNA from pre-Clovis human coprolites in Oregon, North America. Science 320:786–789. http://dx.doi.org/10.1126/science.1154116. [PubMed][CrossRef]
21. Goldberg P, Berna F, Macphail RI. 2009. Comment on “DNA from pre-Clovis human coprolites in Oregon, North America.” Science 325:148, author reply 148. http://dx.doi.org/10.1126/science.1167531. [CrossRef]
22. Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM Jr. 2008. Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3:e3703. http://dx.doi.org/10.1371/journal.pone.0003703. [PubMed][CrossRef]
23. Reinhard K, Fink TM, Skiles J. 2003. A case of megacolon in Rio Grande valley as a possible case of Chagas disease. Mem Inst Oswaldo Cruz 98(Suppl 1):165–172. http://dx.doi.org/10.1590/S0074-02762003000900025. [PubMed][CrossRef]
24. Loreille O, Roumat E, Verneau O, Bouchet F, Hänni C. 2001. Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int J Parasitol 31:1101–1106. http://dx.doi.org/10.1016/S0020-7519(01)00214-4. [PubMed][CrossRef]
25. Poinar HN, Kuch M, Sobolik KD, Barnes I, Stankiewicz AB, Kuder T, Spaulding WG, Bryant VM, Cooper A, Pääbo S. 2001. A molecular analysis of dietary diversity for three archaic Native Americans. Proc Natl Acad Sci U S A 98:4317–4322. http://dx.doi.org/10.1073/pnas.061014798. [CrossRef]
26. da Rocha GC, Serra-Freire NM. 2009. Paleoparasitology at “Place d’Armes”, Namur, Belgium: a biostatistics analysis of trichurid eggs between the Old and New World. Rev Bras Parasitol Vet 18:70–74. http://dx.doi.org/10.4322/rbpv.01803013. [PubMed][CrossRef]
27. Fugassa MH, Gonzalez Olivera EA, Petrigh RS. 2013. First palaeoparasitological record of a dioctophymatid egg in an archaeological sample from Patagonia. Acta Trop 128:175–177. http://dx.doi.org/10.1016/j.actatropica.2013.06.001. [PubMed][CrossRef]
28. Iñiguez AM, Reinhard K, Carvalho Gonçalves ML, Ferreira LF, Araújo A, Paulo Vicente AC. 2006. SL1 RNA gene recovery from Enterobius vermicularis ancient DNA in pre-Columbian human coprolites. Int J Parasitol 36:1419–1425. http://dx.doi.org/10.1016/j.ijpara.2006.07.005. [CrossRef]
29. Dufour B, Le Bailly M. Testing new parasite egg extraction methods in paleoparasitology and an attempt at quantification. Int J Paleopathol, in press. doi:10.1016/j.ijpp.2013.03.008. [CrossRef]
30. Le Bailly M, Leuzinger U, Bouchet F. 2003. Dioctophymidae eggs in coprolites from Neolithic site of Arbon-Bleiche 3 (Switzerland). J Parasitol 89:1073–1076. http://dx.doi.org/10.1645/GE-3202RN. [PubMed][CrossRef]
31. Le Bailly M, Leuzinger U, Schlichtherle H, Bouchet F. 2005. Diphyllobothrium: neolithic parasite? J Parasitol 91:957–959. http://dx.doi.org/10.1645/GE-3456RN.1. [PubMed][CrossRef]
32. Goncalves ML, da Silva VL, de Andrade CM, Reinhard K, da Rocha GC, Le Bailly M, Bouchet F, Ferreira LF, Araujo A. 2004. Amoebiasis distribution in the past: first steps using an immunoassay technique. Trans R Soc Trop Med Hyg 98:88–91. http://dx.doi.org/10.1016/S0035-9203(03)00011-7. [CrossRef]
33. Poinar HN, Hofreiter M, Spaulding WG, Martin PS, Stankiewicz BA, Bland H, Evershed RP, Possnert G, Pääbo S. 1998. Molecular coproscopy: dung and diet of the extinct ground sloth Nothrotheriops shastensis. Science 281:402–406. http://dx.doi.org/10.1126/science.281.5375.402. [CrossRef]
34. Ortega YR, Bonavia D. 2003. Cryptosporidium, Giardia, and Cyclospora in ancient Peruvians. J Parasitol 89:635–636. http://dx.doi.org/10.1645/GE-3083RN. [PubMed][CrossRef]
35. Allison MJ, Bergman T, Gerszten E. 1999. Further studies on fecal parasites in antiquity. Am J Clin Pathol 112:605–609. http://dx.doi.org/10.1093/ajcp/112.5.605. [PubMed][CrossRef]
36. da Rocha GC, Harter-Lailheugue S, Le Bailly M, Araújo A, Ferreira LF, da Serra-Freire NM, Bouchet F. 2006. Paleoparasitological remains revealed by seven historic contexts from “Place d’Armes”, Namur, Belgium. Mem Inst Oswaldo Cruz 101(Suppl 2):43–52. http://dx.doi.org/10.1590/S0074-02762006001000008. [CrossRef]
37. Fernandes A, Ferreira LF, Gonçalves ML, Bouchet F, Klein CH, Iguchi T, Sianto L, Araujo A. 2005. Intestinal parasite analysis in organic sediments collected from a 16th-century Belgian archeological site. Cad Saude Publica 21:329–332. http://dx.doi.org/10.1590/S0102-311X2005000100037. [CrossRef]
38. Shin DH, Chai JY, Park EA, Lee W, Lee H, Lee JS, Choi YM, Koh BJ, Park JB, Oh CS, Bok GD, Kim WL, Lee E, Lee EJ, Seo M. 2009. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea. J Parasitol 95:768–771. http://dx.doi.org/10.1645/GE-1763.1. [PubMed][CrossRef]
39. Gonçalves ML, Araújo A, Duarte R, da Silva JP, Reinhard K, Bouchet F, Ferreira LF. 2002. Detection of Giardia duodenalis antigen in coprolites using a commercially available enzyme-linked immunosorbent assay. Trans R Soc Trop Med Hyg 96:640–643. http://dx.doi.org/10.1016/S0035-9203(02)90337-8. [CrossRef]
40. Le Bailly M, Gonçalves ML, Harter-Lailheugue S, Prodéo F, Araujo A, Bouchet F. 2008. New finding of Giardia intestinalis (Eukaryote, Metamonad) in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays. Mem Inst Oswaldo Cruz 103:298–300. http://dx.doi.org/10.1590/S0074-02762008005000018. [CrossRef]
41. Le Bailly M, Bouchet F. 2006. Paléoparasitologie et immunologie: l’exemple d’Entamoeba histolytica. Archeosciences 30:129–135. http://dx.doi.org/10.4000/archeosciences.281. [CrossRef]
42. Mitchell PD, Stern E, Tepper Y. 2008. Dysentery in the crusader kingdom of Jerusalem: an ELISA analysis of two medieval latrines in the City of Acre (Israel). J Archaeol Sci 35:1849–1853. http://dx.doi.org/10.1016/j.jas.2007.11.017. [CrossRef]
43. Cooper A, Poinar HN. 2000. Ancient DNA: do it right or not at all. Science 289:1139. http://dx.doi.org/10.1126/science.289.5482.1139b. [PubMed][CrossRef]
44. Hofreiter M, Serre D, Poinar HN, Kuch M, Pääbo S. 2001. Ancient DNA. Nat Rev Genet 2:353–359. http://dx.doi.org/10.1038/35072071. [CrossRef]
45. Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M. 2004. Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679. http://dx.doi.org/10.1146/annurev.genet.37.110801.143214. [PubMed][CrossRef]
46. Drancourt M, Raoult D. 2005. Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3:23–35. http://dx.doi.org/10.1038/nrmicro1063. [PubMed][CrossRef]
47. Willerslev E, Cooper A. 2005. Ancient DNA. Proc Biol Sci 272:3–16. http://dx.doi.org/10.1098/rspb.2004.2813. [PubMed][CrossRef]
48. Poinar HN. 2002. The genetic secrets some fossils hold. Acc Chem Res 35:676–684. http://dx.doi.org/10.1021/ar000207x. [PubMed][CrossRef]
49. Volossiouk T, Robb EJ, Nazar RN. 1995. Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61:3972–3976. [PubMed]
50. Rosenstraus M, Wang Z, Chang SY, DeBonville D, Spadoro JP. 1998. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol 36:191–197. [PubMed]
51. Honoré-Bouakline S, Vincensini JP, Giacuzzo V, Lagrange PH, Herrmann JL. 2003. Rapid diagnosis of extrapulmonary tuberculosis by PCR: impact of sample preparation and DNA extraction. J Clin Microbiol 41:2323–2329. http://dx.doi.org/10.1128/JCM.41.6.2323-2329.2003. [CrossRef]
52. Tito RY, Belknap SL III, Sobolik KD, Ingraham RC, Cleeland LM, Lewis CM Jr. 2011. Brief communication: DNA from early Holocene American dog. Am J Phys Anthropol 145:653–657. http://dx.doi.org/10.1002/ajpa.21526. [PubMed][CrossRef]
53. Iñiguez AM, Araújo A, Ferreira LF, Vicente AC. 2003. Analysis of ancient DNA from coprolites: a perspective with random amplified polymorphic DNA-polymerase chain reaction approach. Mem Inst Oswaldo Cruz 98(Suppl 1):63–65. http://dx.doi.org/10.1590/S0074-02762003000900012. [PubMed][CrossRef]
54. Iñiguez AM, Reinhard KJ, Araújo A, Ferreira LF, Vicente AC. 2003a. Enterobius vermicularis: ancient DNA from North and South American human coprolites. Mem Inst Oswaldo Cruz 98(Suppl 1):67–69. http://dx.doi.org/10.1590/S0074-02762003000900013. [CrossRef]
55. Luciani S, Fornaciari G, Rickards O, Labarga CM, Rollo F. 2006. Molecular characterization of a pre-Columbian mummy and in situ coprolite. Am J Phys Anthropol 129:620–629. http://dx.doi.org/10.1002/ajpa.20314. [PubMed][CrossRef]
56. Cleeland LM, Reichard MV, Tito RY, Reinhard KJ, Lewis CM Jr. 2013. Clarifying prehistoric parasitism from a complementary morphological and molecular approach. J Archaeol Sci 40:3060–3066. http://dx.doi.org/10.1016/j.jas.2013.03.010. [PubMed][CrossRef]
57. Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MT, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A. 2003. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795. http://dx.doi.org/10.1126/science.1084114. [CrossRef]
58. Raoult D, Aboudharam G, Crubézy E, Larrouy G, Ludes B, Drancourt M. 2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A 97:12800–12803. http://dx.doi.org/10.1073/pnas.220225197. [PubMed][CrossRef]
59. Gijón Botella H, Afonso Vargas JA, Arnay de la Rosa M, Leles D, González Reimers E, Vicente AC, Iñiguez AM. 2010. Paleoparasitologic, paleogenetic and paleobotanic analysis of XVIII century coprolites from the church La Concepción in Santa Cruz de Tenerife, Canary Islands, Spain. Mem Inst Oswaldo Cruz 105:1054–1056. http://dx.doi.org/10.1590/S0074-02762010000800017. [CrossRef]
60. Leles D, Araújo A, Ferreira LF, Vicente AC, Iñiguez AM. 2008. Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Colombian South America times. Mem Inst Oswaldo Cruz 103:106–108. http://dx.doi.org/10.1590/S0074-02762008005000004. [CrossRef]
61. Ubaldi M, Luciani S, Marota I, Fornaciari G, Cano RJ, Rollo F. 1998. Sequence analysis of bacterial DNA in the colon of an Andean mummy. Am J Phys Anthropol 107:285–295. http://dx.doi.org/10.1002/(SICI)1096-8644(199811)107:3<285::AID-AJPA5>3.0.CO;2-U. [PubMed][CrossRef]
62. Cano RJ, Tiefenbrunner F, Ubaldi M, Del Cueto C, Luciani S, Cox T, Orkand P, Künzel KH, Rollo F. 2000. Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol 112:297–309. http://dx.doi.org/10.1002/1096-8644(200007)112:3<297::AID-AJPA2>3.0.CO;2-0. [PubMed][CrossRef]
63. Leles D, Araújo A, Ferreira LF, Vicente AC, Iñiguez AM. 2008. Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Colombian South America times. Mem Inst Oswaldo Cruz 103:106–108. http://dx.doi.org/10.1590/S0074-02762008005000004. [CrossRef]
64. Kuch M, Poinar H. 2012. Extraction of DNA from paleofeces. Methods Mol Biol 840:37–42. http://dx.doi.org/10.1007/978-1-61779-516-9_5. [PubMed][CrossRef]
65. Kiatpathomchai W, Boonsaeng V, Tassanakajon A, Wongteerasupaya C, Jitrapakdee S, Panyim S. 2001. A non-stop, single-tube, semi-nested PCR technique for grading the severity of white spot syndrome virus infections in Penaeus monodon. Dis Aquat Organ 47:235–239. http://dx.doi.org/10.3354/dao047235. [PubMed][CrossRef]
66. Zeaiter Z, Fournier PE, Greub G, Raoult D. 2003. Diagnosis of Bartonella endocarditis by a real-time nested PCR assay using serum. J Clin Microbiol 41:919–925. http://dx.doi.org/10.1128/JCM.41.3.919-925.2003. [PubMed][CrossRef]
67. Neumaier M, Braun A, Wagener C, International Federation of Clinical Chemistry Scientific Division Committee on Molecular Biology Techniques. 1998. Fundamentals of quality assessment of molecular amplification methods in clinical diagnostics. Clin Chem 44:12–26. [PubMed]
68. Gijón Botella H, Afonso Vargas JA, Arnay de la Rosa M, Leles D, González Reimers E, Vicente AC, Iñiguez AM. 2010. Paleoparasitologic, paleogenetic and paleobotanic analysis of XVIII century coprolites from the church La Concepción in Santa Cruz de Tenerife, Canary Islands, Spain. Mem Inst Oswaldo Cruz 105:1054–1056. http://dx.doi.org/10.1590/S0074-02762010000800017. [CrossRef]
69. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P. 2008. A bioinformatician’s guide to metagenomics. Microbiol Mol Biol Rev 72:557–578. http://dx.doi.org/10.1128/MMBR.00009-08. [PubMed][CrossRef]
70. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J. 2009. Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866. http://dx.doi.org/10.1373/clinchem.2008.107565. [PubMed][CrossRef]
71. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. 2011. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13:47–58. http://dx.doi.org/10.1038/nrg3129. [PubMed][CrossRef]
72. Wang Y, Qian PY. 2009. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4:e7401. http://dx.doi.org/10.1371/journal.pone.0007401. [PubMed][CrossRef]
73. Cano RJ, Rivera-Perez J, Toranzos GA, Santiago-Rodriguez TM, Narganes-Storde YM, Chanlatte-Baik L, García-Roldán E, Bunkley-Williams L, Massey SE. 2014. Paleomicrobiology: revealing fecal microbiomes of ancient indigenous cultures. PLoS One 9:e106833. http://dx.doi.org/10.1371/journal.pone.0106833. [CrossRef]
74. Sutton MQ, Reinhard KJ. 1995. Cluster analysis of the coprolites from antelope house: implications for anasazi diet and cuisine. J Archaeol Sci 22:741–750. http://dx.doi.org/10.1016/0305-4403(95)90004-7. [CrossRef]
75. Shin DH, Oh CS, Chai JY, Lee HJ, Seo M. 2011. Enterobius vermicularis eggs discovered in coprolites from a medieval Korean mummy. Korean J Parasitol 49:323–326. http://dx.doi.org/10.3347/kjp.2011.49.3.323. [PubMed][CrossRef]
76. Haas J, Creamer W, Huamán Mesía L, Goldstein D, Reinhard K, Rodríguez CV. 2013. Evidence for maize (Zea mays) in the Late Archaic (3000-1800 B.C.) in the Norte Chico region of Peru. Proc Natl Acad Sci U S A 110:4945–4949. http://dx.doi.org/10.1073/pnas.1219425110. [CrossRef]
77. Bouchet F. 1995. Recovery of helminth eggs from archeological excavations of the Grand Louvre (Paris, France). J Parasitol 81:785–787. http://dx.doi.org/10.2307/3283976. [PubMed][CrossRef]
78. Jiménez FA, Gardner SL, Araújo A, Fugassa M, Brooks RH, Racz E, Reinhard KJ. 2012. Zoonotic and human parasites of inhabitants of Cueva de los Muertos Chiquitos, Rio Zape Valley, Durango, Mexico. J Parasitol 98:304–309. http://dx.doi.org/10.1645/GE-2915.1. [CrossRef]
79. De Miranda Chaves S, Reinhard K. 2006. Critical analysis of coprolite evidence of medicinal plant use, Piauí, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 237:110–118. http://dx.doi.org/10.1016/j.palaeo.2005.11.031. [CrossRef]
80. Taglioretti V, Fugassa MH, Beltrame MO, Sardella NH. 2014. Biometric identification of capillariid eggs from archaeological sites in Patagonia. J Helminthol 88:196–202. http://dx.doi.org/10.1017/S0022149X13000035. [PubMed][CrossRef]
81. Home PD, Tuck JA. 1996. Archaeoparasitology at a 17th century colonial site in Newfoundland. J Parasitol 82:512–515. http://dx.doi.org/10.2307/3284098. [PubMed][CrossRef]
82. Sianto L, Teixeira-Santos I, Chame M, Chaves SM, Souza SM, Ferreira LF, Reinhard K, Araujo A. 2012. Eating lizards: a millenary habit evidenced by Paleoparasitology. BMC Res Notes 5:586. http://dx.doi.org/10.1186/1756-0500-5-586. [PubMed][CrossRef]
83. Bouchet F. 1997. Intestinal capillariasis in neolithic inhabitants of Chalain (Jura, France). Lancet 349:256. http://dx.doi.org/10.1016/S0140-6736(05)64868-4. [PubMed][CrossRef]
84. Bouchet F, West D, Lefèvre C, Corbett D. 2001. Identification of parasitoses in a child burial from Adak Island (Central Aleutian Islands, Alaska). C R Acad Sci III 324:123–127. http://dx.doi.org/10.1016/S0764-4469(00)01287-7. [PubMed][CrossRef]
85. Horne PD. 2002. First evidence of enterobiasis in ancient Egypt. J Parasitol 88:1019–1021. http://dx.doi.org/10.1645/0022-3395(2002)088[1019:FEOEIA]2.0.CO;2. [CrossRef]
86. de Candanedo Guerra RM, Gazêta GS, Amorim M, Duarte AN, Serra-Freire NM. 2003. Ecological analysis of acari recovered from coprolites from archaeological site of northeast Brazil. Mem Inst Oswaldo Cruz 98(Suppl 1):181–190. http://dx.doi.org/10.1590/S0074-02762003000900027. [PubMed][CrossRef]
87. Reinhard K, Urban O. 2003. Diagnosing ancient diphyllobothriasis from Chinchorro mummies. Mem Inst Oswaldo Cruz 98(Suppl 1):191–193. http://dx.doi.org/10.1590/S0074-02762003000900028. [PubMed][CrossRef]
88. Santoro C, Vinton SD, Reinhard KJ. 2003. Inca expansion and parasitism in the lluta valley: preliminary data. Mem Inst Oswaldo Cruz 98(Suppl 1):161–163. http://dx.doi.org/10.1590/S0074-02762003000900024. [PubMed][CrossRef]
89. Dittmar K, Steyn M. 2004. Paleoparasitological analysis of coprolites from K2, an Iron Age archaeological site in South Africa: the first finding of Dicrocoelium sp. eggs. J Parasitol 90:171–173. http://dx.doi.org/10.1645/GE-3224RN. [PubMed][CrossRef]
90. Moore JG, Grundmann AW, Hall HJ, Fry GF. 1974. Human fluke infection in Glen Canyon at AD 1250. Am J Phys Anthropol 41:115–117. http://dx.doi.org/10.1002/ajpa.1330410115. [PubMed][CrossRef]
91. Sianto L, Reinhard KJ, Chame M, Chaves S, Mendonça S, Gonçalves ML, Fernandes A, Ferreira LF, Araújo A. 2005. The finding of Echinostoma (Trematoda: Digenea) and hookworm eggs in coprolites collected from a Brazilian mummified body dated 600-1,200 years before present. J Parasitol 91:972–975. http://dx.doi.org/10.1645/GE-3445RN.1. [CrossRef]
92. Dean G. 2006. The science of coprolite analysis: the view from Hinds cave. Palaeogeogr Palaeoclimatol Palaeoecol 237:67–79. http://dx.doi.org/10.1016/j.palaeo.2005.11.029. [CrossRef]
93. Reinhard KJ, Ambler JR, Szuter CR. 2007. Hunter-gatherer use of small animal food resources: coprolite evidence. Int J Osteoarchaeol 17:416–428. http://dx.doi.org/10.1002/oa.883. [CrossRef]
94. Fugassa MH, Taglioretti V, Gonçalves ML, Araújo A, Sardella NH, Denegri GM. 2008. Capillaria spp. eggs in Patagonian archaeological sites: statistical analysis of morphometric data. Mem Inst Oswaldo Cruz 103:104–105. http://dx.doi.org/10.1590/S0074-02762008000100016. [PubMed][CrossRef]
95. Johnson KL, Reinhardt KJ, Sianto L, Araújo A, Gardner SL, Janovy J Jr. 2008. A tick from a prehistoric Arizona coprolite. J Parasitol 94:296–298. http://dx.doi.org/10.1645/GE-1059.1. [PubMed][CrossRef]
96. Riley T. 2008. Diet and seasonality in the Lower Pecos: evaluating coprolite data sets with cluster analysis. J Archaeol Sci 35:2726–2741. http://dx.doi.org/10.1016/j.jas.2008.04.022. [CrossRef]
97. Shin DH, Lim DS, Choi KJ, Oh CS, Kim MJ, Lee IS, Kim SB, Shin JE, Bok GD, Chai JY, Seo M. 2009. Scanning electron microscope study of ancient parasite eggs recovered from Korean mummies of the Joseon Dynasty. J Parasitol 95:137–145. http://dx.doi.org/10.1645/GE-1588.1. [PubMed][CrossRef]
98. Le Bailly M, Mouze S, da Rocha GC, Heim JL, Lichtenberg R, Dunand F, Bouchet F. 2010. Identification of Taenia sp. in a mummy from a Christian Necropolis in El-Deir, Oasis of Kharga, ancient Egypt. J Parasitol 96:213–215. http://dx.doi.org/10.1645/GE-2076.1. [CrossRef]
99. Fugassa MH, Reinhard KJ, Johnson KL, Gardner SL, Vieira M, Araújo A. 2011. Parasitism of prehistoric humans and companion animals from Antelope Cave, Mojave County, northwest Arizona. J Parasitol 97:862–867. http://dx.doi.org/10.1645/GE-2459.1. [PubMed][CrossRef]
100. Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM Jr. 2008. Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3:e3703. http://dx.doi.org/10.1371/journal.pone.0003703. [PubMed][CrossRef]
101. Sobolik KD, Gremillion KJ, Whitten PL, Watson PJ. 1996. Sex determination of prehistoric human paleofeces. Am J Phys Anthropol 101:283–290. http://dx.doi.org/10.1002/(SICI)1096-8644(199610)101:2<283::AID-AJPA10>3.0.CO;2-W. [PubMed][CrossRef]
102. Lin DS, Connor WE. 2001. Fecal steroids of the coprolite of a Greenland Eskimo mummy, AD 1475: a clue to dietary sterol intake. Am J Clin Nutr 74:44–49. [PubMed]
103. Marlar RA, Leonard BL, Billman BR, Lambert PM, Marlar JE. 2000. Biochemical evidence of cannibalism at a prehistoric Puebloan site in southwestern Colorado. Nature 407:74–78. http://dx.doi.org/10.1038/35024064. [PubMed][CrossRef]
104. Shillito LM, Almond MJ, Wicks K, Marshall LJ, Matthews W. 2009. The use of FT-IR as a screening technique for organic residue analysis of archaeological samples. Spectrochim Acta A Mol Biomol Spectrosc 72:120–125. http://dx.doi.org/10.1016/j.saa.2008.08.016. [CrossRef]
105. Vinton SD, Perry L, Reinhard KJ, Santoro CM, Teixeira-Santos I. 2009. Impact of empire expansion on household diet: the Inka in Northern Chile’s Atacama Desert. PLoS One 26:e8069. doi:10.1371/journal.pone.0008069. [PubMed][CrossRef]
106. Dridi B, Henry M, El Khéchine A, Raoult D, Drancourt M. 2009. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS One 4:e7063. http://dx.doi.org/10.1371/journal.pone.0007063. [CrossRef]
107. El Khéchine A, Henry M, Raoult D, Drancourt M. 2009. Detection of Mycobacterium tuberculosis complex organisms in the stools of patients with pulmonary tuberculosis. Microbiology 155:2384–2389. http://dx.doi.org/10.1099/mic.0.026484-0. [CrossRef]
108. Jirků M, Pomajbíková K, Petrželková KJ, Hůzová Z, Modrý D, Lukeš J. 2012. Detection of Plasmodium spp. in human feces. Emerg Infect Dis 18:634–636. http://dx.doi.org/10.3201/eid1804.110984. [PubMed][CrossRef]
109. Keita AK, Socolovschi C, Ahuka-Mundeke S, Ratmanov P, Butel C, Ayouba A, Inogwabini BI, Muyembe-Tamfum JJ, Mpoudi-Ngole E, Delaporte E, Peeters M, Fenollar F, Raoult D. 2013. Molecular evidence for the presence of Rickettsia felis in the feces of wild-living African apes. PLoS One 8:e54679. http://dx.doi.org/10.1371/journal.pone.0054679. [CrossRef]
110. Demeler J, Ramünke S, Wolken S, Ianiello D, Rinaldi L, Gahutu JB, Cringoli G, von Samson-Himmelstjerna G, Krücken J. 2013. Discrimination of gastrointestinal nematode eggs from crude fecal egg preparations by inhibitor-resistant conventional and real-time PCR. PLoS One 8:e61285. http://dx.doi.org/10.1371/journal.pone.0061285. [CrossRef]
111. Anastasiou E, Lorentz KO, Stein GJ, Mitchell PD. 2014. Prehistoric schistosomiasis parasite found in the Middle East. Lancet Infect Dis 14:553–554. http://dx.doi.org/10.1016/S1473-3099(14)70794-7. [PubMed][CrossRef]
112. Guhl F, Jaramillo C, Vallejo GA, Yockteng R, Cárdenas-Arroyo F, Fornaciari G, Arriaza B, Aufderheide AC. 1999. Isolation of Trypanosoma cruzi DNA in 4,000-year-old mummified human tissue from northern Chile. Am J Phys Anthropol 108:401–407. http://dx.doi.org/10.1002/(SICI)1096-8644(199904)108:4<401::AID-AJPA2>3.0.CO;2-P. [PubMed][CrossRef]
113. Rollo F, Ubaldi M, Ermini L, Marota I. 2002. Otzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proc Natl Acad Sci U S A 99:12594–12599. http://dx.doi.org/10.1073/pnas.192184599. [PubMed][CrossRef]
microbiolspec.PoH-0002-2014.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.PoH-0002-2014
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PoH-0002-2014
2016-08-05
2017-03-28

Abstract:

The paleomicrobiology of coprolites, which are fossilized fecal materials, has already yielded data about various organisms, including micro-eukaryotes, bacteria, and archaea, thus expanding our comprehension of ancient human dietary habits, gut microbiota, and intestinal and systemic infections. This mini-review briefly describes previous works and summarizes the main techniques used in handling coprolites and the findings obtained about ancient gut microbiota. Past intestinal and systemic infections are outlined.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Bibliometry. (B) Repartition and dating of human and mixed coprolites investigated during the last 21 years. The human coprolites reviewed herein were found in approximately 87 different archeological sites: 37 (42.5%) and 24 (27.6%) were located in South America and North America respectively, 18 (20.7%) were found in Europe, and 3 to 5 (3.4% to 5.7%) were found in Africa and Asia. Macroscopic / microscopic analyses are labeled with yellow squares, non-nucleotidic biomolecular analyses are with blue triangles, and molecularly analyzed coprolites with green circles. The corresponding references are listed in Table 2 . (C) Dating of coprolites.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0002-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Intestinal and systemic pathogens identified in human coprolites. The pathogens are grouped based on their taxonomic classification into intestinal helminths, intestinal protozoa, and unicellular eukaryotes and bacteria. The methods of identification that yielded positive results are marked in green, and negative tests are marked in gray. Microscopic observations were performed with light or electron microscopy. Non-nucleotidic biomolecular detection included testing with immunofluorescence assay (IFA) and enzyme-linked immunosorbent assay (ELISA), and molecular detection was performed with PCR amplification and next-generation sequencing.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0002-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

PCR systems used to amplify microbial ancient DNA out of coprolites

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0002-2014
Generic image for table
TABLE 2

Scientific studies performed on human and potentially mixed animal and human coprolites

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0002-2014

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error