1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

The History of Epidemic Typhus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Emmanouil Angelakis1, Yassina Bechah2, Didier Raoult3
  • Editors: Michel Drancourt4, Didier Raoult5
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France; 2: Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France; 3: Unité de Recherche sur les Maladies Infectieuses Transmissibles et Emergentes, Aix-Marseille Université, UM63, CNRS 7278, IRD 198, INSERM U1095, Marseille, France; 4: Aix Marseille Université Faculté de Médecine, Marseille, France; 5: Aix Marseille Université Faculté de Médecine, Marseille, France
  • Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
  • Received 19 November 2015 Accepted 23 November 2015 Published 12 August 2016
  • Emmanouil Angelakis, e.angelakis@hotmail.com
image of The History of Epidemic Typhus
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    The History of Epidemic Typhus, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/PoH-0010-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/PoH-0010-2015-2.gif
  • Abstract:

    Epidemic typhus caused by is one of the oldest pestilential diseases of humankind. The disease is transmitted to human beings by the body louse and is still considered a major threat by public health authorities, despite the efficacy of antibiotics, because poor sanitary conditions are conducive to louse proliferation. Epidemic typhus has accompanied disasters that impact humanity and has arguably determined the outcome of more wars than have soldiers and generals. The detection, identification, and characterization of microorganisms in ancient remains by paleomicrobiology has permitted the diagnosis of past epidemic typhus outbreaks through the detection of . Various techniques, including microscopy and immunodetection, can be used in paleomicrobiology, but most of the data have been obtained by using PCR-based molecular techniques on dental pulp samples. Paleomicrobiology enabled the identification of the first outbreak of epidemic typhus in the 18th century in the context of a pan-European great war in the city of Douai, France, and supported the hypothesis that typhus was imported into Europe by Spanish soldiers returning from America. was also detected in the remains of soldiers of Napoleon’s Grand Army in Vilnius, Lithuania, which indicates that Napoleon’s soldiers had epidemic typhus. The purpose of this article is to underscore the modern comprehension of clinical epidemic typhus, focus on the historical relationships of the disease, and examine the use of paleomicrobiology in the detection of past epidemic typhus outbreaks.

  • Citation: Angelakis E, Bechah Y, Raoult D. 2016. The History of Epidemic Typhus. Microbiol Spectrum 4(4):PoH-0010-2015. doi:10.1128/microbiolspec.PoH-0010-2015.

Key Concept Ranking

Rocky Mountain Spotted Fever
0.52201176
Bacterial Diseases
0.51962656
Infectious Diseases
0.4710494
Immune Systems
0.4435857
0.52201176

References

1. Raoult D, Roux V. 1997. Rickettsioses as paradigms of new or emerging infectious diseases. Clin Microbiol Rev 10:694–719. [PubMed]
2. Angelakis E, Botelho E, Socolovschi C, Sobas CR, Piketty C, Parola P, Raoult D. 2010. Murine typhus as a cause of fever in travelers from Tunisia and Mediterranean areas. J Travel Med 17:310–315. [PubMed][CrossRef]
3. Bechah Y, C. Capo C, J. L. Mege JL, Raoult D. 2008. Epidemic typhus. Lancet Infect Dis 8:417–426. [CrossRef]
4. Raoult D, Woodward T, Dumler JS. 2004. The history of epidemic typhus. Infect Dis Clin North Am 18:127–140. [PubMed][CrossRef]
5. Mokrani K, Fournier PE, Dalichaouche M, Tebbal S, Aouati A, Raoult D. 2004. Reemerging threat of epidemic typhus in Algeria. J Clin Microbiol 42:3898–3900. [PubMed][CrossRef]
6. Tarasevich I, Rydkina E, Raoult D. 1998. Outbreak of epidemic typhus in Russia. Lancet 352:1151. [PubMed][CrossRef]
7. Raoult D, Ndihokubwayo JB, Tissot-Dupont H, Roux V, Faugere B, Abegbinni R, Birtles RJ. 1998. Outbreak of epidemic typhus associated with trench fever in Burundi. Lancet 352:353–358. [PubMed][CrossRef]
8. Lutwick LI. 2001. Brill-Zinsser disease. Lancet 357:1198–1200. [PubMed][CrossRef]
9. Stein A, Purgus R, Olmer M, Raoult D. 1999. Brill-Zinsser disease in France. Lancet 353:1936. [PubMed][CrossRef]
10. Gross L. 1996. How Charles Nicolle of the Pasteur Institute discovered that epidemic typhus is transmitted by lice: reminiscences from my years at the Pasteur Institute in Paris. Proc Natl Acad Sci U S A 93:10539–10540. [PubMed][CrossRef]
11. Houhamdi L, Fournier PE, Fang R, Lepidi H, Raoult D. 2002. An experimental model of human body louse infection with Rickettsia prowazekii. J Infect Dis 186:1639–1646. [PubMed][CrossRef]
12. Ormsbee RA, Hoogstraal H, Yousser LB, Hildebrandt P, Atalla W. 1968. Evidence for extra-human epidemic typhus in the wild animals of Egypt. J Hyg Epidemiol Microbiol Immunol 12:1–6. [PubMed]
13. Reiss-Gutfreund RJ. 1966. The isolation of Rickettsia prowazeki and mooseri from unusual sources. Am J Trop Med Hyg 15:943–949. [PubMed]
14. Medina-Sanchez A, Bouyer DH, Cantara-Rodriguez V, Mafra C, Zavala-Castro J, Whitworth T, Popov VL, Fernandez-Salas I, Walker DH. 2005. Detection of a typhus group Rickettsia in Amblyomma ticks in the state of Nuevo Leon, Mexico. Ann NY Acad Sci 1063:327–332. [PubMed][CrossRef]
15. Bozeman FM, Masiello SA, Williams MS, Elisberg BL. 1975. Epidemic typhus rickettsiae isolated from flying squirrels. Nature 255:545–547. [PubMed][CrossRef]
16. Sonenshine DE, Bozeman FM, Williams MS, Masiello SA, Chadwick DP, Stocks NI, Lauer DM, Elisberg BL. 1978. Epizootiology of epidemic typhus (Rickettsia prowazekii) in flying squirrels. Am J Trop Med Hyg 27:339–349. [PubMed]
17. Reynolds MG, Krebs JS, Comer JA, Sumner JW, Rushton TC, Lopez CE, Nicholson WL, Rooney JA, Lance-Parker SE, McQuiston JH, Paddock CD, Childs JE. 2003. Flying squirrel-associated typhus, United States. Emerg Infect Dis 9:1341–1343. [PubMed][CrossRef]
18. Chapman AS, Swerdlow DL, Dato VM, Anderson AD, Moodie CE, Marriott C, Amman B, Hennessey M, Fox P, Green DB, Pegg E, Nicholson WL, Eremeeva ME, Dasch GA. 2009. Cluster of sylvatic epidemic typhus cases associated with flying squirrels, 2004-2006. Emerg Infect Dis 15:1005–1011. [PubMed][CrossRef]
19. McQuiston JH, Knights EB, Demartino PJ, Paparello SF, Nicholson WL, Singleton J, Brown CM, Massung RF, Urbanowski JC. 2010. Brill-Zinsser disease in a patient following infection with sylvatic epidemic typhus associated with flying squirrels. Clin Infect Dis 51:712–715. [PubMed][CrossRef]
20. Parola P, Raoult D. 2006. Tropical rickettsioses. Clin Dermatol 24:191–200. [PubMed][CrossRef]
21. Houhamdi L, Raoult D. 2007. Louse-borne epidemic typhus, p 51–61. In Raoult D, Parola P (ed). Rickettsial diseases. CRC Press, New York, USA. [CrossRef]
22. Raoult D, Roux V. 1999. The body louse as a vector of reemerging human diseases. Clin Infect Dis 29:888–911. [PubMed][CrossRef]
23. Brouqui P. 2011. Arthropod-borne diseases associated with political and social disorder. Annu Rev Entomol 56:357–374. [PubMed][CrossRef]
24. Veracx A, Raoult D. 2012. Biology and genetics of human head and body lice. Trends Parasitol 28:563–571. [PubMed][CrossRef]
25. Foucault C, Brouqui P, Raoult D. 2006. Bartonella quintana characteristics and clinical management. Emerg Infect Dis 12:217–223. [PubMed][CrossRef]
26. La Scola B, Fournier PE, Brouqui P, Raoult D. 2001. Detection and culture of Bartonella quintana, Serratia marcescens, and Acinetobacter spp. from decontaminated human body lice. J Clin Microbiol 39:1707–1709. [PubMed][CrossRef]
27. Baxter JD. 1996. The typhus group. Clin Dermatol 14:271–278. [PubMed][CrossRef]
28. Perine PL, Chandler BP, Krause DK, McCardle P, Awoke S, Habte-Gabr E, Wisseman CL, Jr, McDade JE. 1992. A clinico-epidemiological study of epidemic typhus in Africa. Clin Infect Dis 14:1149–1158. [PubMed][CrossRef]
29. Weissmann G. 2005. Rats, lice, and Zinsser. Emerg Infect Dis 11:492–496. [PubMed][CrossRef]
30. Andersson JO, Andersson SGE. 2000. A century of typhus, lice and Rickettsia. Res Microbiol 151:143–150. [PubMed][CrossRef]
31. Burns JN, Acuna-Soto R, Stahle DW. 2014. Drought and epidemic typhus, central Mexico, 1655-1918. Emerg Infect Dis 20:442–447. [PubMed][CrossRef]
32. Hansen W, Freney J. 1996. Le typhus épidémique, sa transmission et la découverte de l’agent étiologique. Lyon Pharmaceutique 47:130–138.
33. Ricketts HT, Gomez L. 1908. Studies on immunity in Rocky Mountain spotted fever. J Infect Dis 5:221–244. [CrossRef]
34. Wolbach SB, Todd JL, Palfrey FW. 1922. Pathology of typhus in man, p 152–256. In Wolbach SB, Todd JL, Palfrey FW (ed), The Etiology and Pathology of Typhus. Harvard University Press, Cambridge, MA.
35. Cox HR. 1938. Use of yolk sac of developing chick embryo as medium for growing rickettsiae of Rocky montain spotted fever and typhus group. Public Health Rep 53:2241–2247. [CrossRef]
36. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UCM, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurland CG. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140. [PubMed][CrossRef]
37. Bechah Y, El KK, Mediannikov O, Leroy Q, Pelletier N, Robert C, Medigue C, Mege JL, Raoult D. 2010. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities. Genome Res 20:655–663. [PubMed][CrossRef]
38. Driskell LO, Yu XJ, Zhang L, Liu Y, Popov VL, Walker DH, Tucker AM, Wood DO. 2009. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect Immun 77:3244–3248. [PubMed][CrossRef]
39. Drancourt M, Raoult D. 2005. Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3:23–35. [PubMed][CrossRef]
40. Swain FM. 1969. Paleomicrobiology. Annu Rev Microbiol 23:455–472. [PubMed][CrossRef]
41. Donoghue HD. 2011. Insights gained from palaeomicrobiology into ancient and modern tuberculosis. Clin Microbiol Infect 17:821–829. [PubMed][CrossRef]
42. Malou N, Tran TN, Nappez C, Signoli M, Le FC, Castex D, Drancourt M, Raoult D. 2012. Immuno-PCR—a new tool for paleomicrobiology: the plague paradigm. PLoS One 7:e31744. doi:10.1371/journal.pone.0031744. [PubMed][CrossRef]
43. Raoult D, Drancourt M. 2002. Cause of Black Death. Lancet Infect Dis 2:459. [PubMed][CrossRef]
44. Drancourt M, Raoult D. 2002. Molecular insights into the history of plague. Microbes Infect 4:105–109. [PubMed][CrossRef]
45. Raoult D, Dutour O, Houhamdi L, Jankauskas R, Fournier PE, Ardagna Y, Drancourt M, Signoli M, La VD, Macia Y, Aboudharam G. 2006. Evidence for louse-transmitted diseases in soldiers of Napoleon’s Grand Army in Vilnius. J Infect Dis 193:112–120. [PubMed][CrossRef]
46. Taubenberger JK. 2003. Fixed and frozen flu: the 1918 influenza and lessons for the future. Avian Dis 47:789–791. [PubMed][CrossRef]
47. Zink AR, Grabner W, Reischl U, Wolf H, Nerlich AG. 2003. Molecular study on human tuberculosis in three geographically distinct and time delineated populations from ancient Egypt. Epidemiol Infect 130:239–249. [PubMed][CrossRef]
48. Gilbert MT, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB. 2004. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341–354. [PubMed][CrossRef]
49. Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. 2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of Medieval Black Death. Proc Natl Acad Sci U S A 97:12800–12803. [PubMed][CrossRef]
50. Le GM, Philip C, Aboudharam G. 2011. Orthodontic treatment of bilateral geminated maxillary permanent incisors. Am J Orthod Dentofacial Orthop 139:698–703. [PubMed][CrossRef]
51. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A 95:12637–12640. [PubMed][CrossRef]
52. Potsch L, Meyer U, Rothschild S, Schneider PM, Rittner C. 1992. Application of DNA techniques for identification using human dental pulp as a source of DNA. Int J Legal Med 105:139–143. [PubMed][CrossRef]
53. Pfeiffer H, Huhne J, Seitz B, Brinkmann B. 1999. Influence of soil storage and exposure period on DNA recovery from teeth. Int J Legal Med 112:142–144. [PubMed][CrossRef]
54. Hoss M, Jaruga P, Zastawny TH, Dizdaroglu M, Paabo S. 1996. DNA damage and DNA sequence retrieval from ancient tissues. Nucleic Acids Res 24:1304–1307. [PubMed][CrossRef]
55. Taylor GM, Goyal M, Legge AJ, Shaw RJ, Young D. 1999. Genotypic analysis of Mycobacterium tuberculosis from medieval human remains. Microbiology 145(Pt 4):899–904. [PubMed][CrossRef]
56. Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M. 2003. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anthropol 120:144–152. [PubMed][CrossRef]
57. Drancourt M, Roux V, Dang LV, Tran-Hung L, Castex D, Chenal-Francisque V, Ogata H, Fournier PE, Crubezy E, Raoult D. 2004. Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 10:1585–1592. [PubMed][CrossRef]
58. Nguyen-Hieu T, Aboudharam G, Signoli M, Rigeade C, Drancourt M, Raoult D. 2010. Evidence of a louse-borne outbreak involving typhus in Douai, 1710-1712 during the war of Spanish succession. PLoS One 5:e15405. doi:10.1371/journal.pone.0015405. [PubMed][CrossRef]
59. Tran TN, Aboudharam G, Raoult D, Drancourt M. 2011. Beyond ancient microbial DNA: nonnucleotidic biomolecules for paleomicrobiology. Biotechniques 50:370–380. [PubMed][CrossRef]
60. Sano T, Smith CL, Cantor CR. 1992. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258:120–122. [PubMed][CrossRef]
61. Fornaciari G, Castagna M, Tognetti A, Tornaboni D, Bruno J. 1989. Syphilis in a Renaissance Italian mummy. Lancet 2:614. [PubMed][CrossRef]
62. Dumler JS. 1991. Fatal Rocky Mountain spotted fever in Maryland - 1901. J Am Med Assoc 265:718. [PubMed][CrossRef]
63. Tran TN, Aboudharam G, Gardeisen A, Davoust B, Bocquet-Appel JP, Flaudrops C, Belghazi M, Raoult D, Drancourt M. 2011. Classification of ancient mammal individuals using dental pulp MALDI-TOF MS peptide profiling. PLoS One 6:e17319. doi:10.1371/journal.pone.0017319. [PubMed][CrossRef]
64. Birtles RJ, Canales J, Ventosilla P, Alvarez E, Guerra H, Llanos-Cuentas A, Raoult D, Doshi N, Harrison TG. 1999. Survey of Bartonella species infecting intradomicillary animals in the Huayllacallan Valley, Ancash, Peru, a region endemic for human bartonellosis. Am J Trop Med Hyg 60:799–805. [PubMed]
65. Angelakis E, Diatta G, Abdissa A, Trape JF, Mediannikov O, Richet H, Raoult D. 2011. Altitude-dependent Bartonella quintana genotype C in head lice, Ethiopia. Emerg Infect Dis 17:2357–2359. [PubMed][CrossRef]
microbiolspec.PoH-0010-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.PoH-0010-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PoH-0010-2015
2016-08-12
2017-05-29

Abstract:

Epidemic typhus caused by is one of the oldest pestilential diseases of humankind. The disease is transmitted to human beings by the body louse and is still considered a major threat by public health authorities, despite the efficacy of antibiotics, because poor sanitary conditions are conducive to louse proliferation. Epidemic typhus has accompanied disasters that impact humanity and has arguably determined the outcome of more wars than have soldiers and generals. The detection, identification, and characterization of microorganisms in ancient remains by paleomicrobiology has permitted the diagnosis of past epidemic typhus outbreaks through the detection of . Various techniques, including microscopy and immunodetection, can be used in paleomicrobiology, but most of the data have been obtained by using PCR-based molecular techniques on dental pulp samples. Paleomicrobiology enabled the identification of the first outbreak of epidemic typhus in the 18th century in the context of a pan-European great war in the city of Douai, France, and supported the hypothesis that typhus was imported into Europe by Spanish soldiers returning from America. was also detected in the remains of soldiers of Napoleon’s Grand Army in Vilnius, Lithuania, which indicates that Napoleon’s soldiers had epidemic typhus. The purpose of this article is to underscore the modern comprehension of clinical epidemic typhus, focus on the historical relationships of the disease, and examine the use of paleomicrobiology in the detection of past epidemic typhus outbreaks.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Human body louse (). Typical size is 2 to 4 mm.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Classic abdominal skin rash of typhus.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Actual foci of epidemic typhus.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

General view of the burial site in Douai, France.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Imperial-type button found in the grave in Vilnius.

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Some epidemiological features of typhus group

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015
Generic image for table
TABLE 2

History of epidemic typhus and the description of

Source: microbiolspec August 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0010-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error