1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Author: Olivier Dutour1
  • Editors: Michel Drancourt2, Didier Raoult3
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Laboratoire d’Anthropologie biologique Paul Broca – École Pratique des Hautes Etudes, PSL Research University Paris, Paris, France; 2: Aix Marseille Université Faculté de Médecine, Marseille, France; 3: Aix Marseille Université Faculté de Médecine, Marseille, France
  • Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0014-2015
  • Received 10 June 2015 Accepted 17 June 2015 Published 08 July 2016
  • Olivier Dutour, olivier.dutour@ephe.sorbonne.fr
image of Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/4/4/PoH-0014-2015-1.gif /docserver/preview/fulltext/microbiolspec/4/4/PoH-0014-2015-2.gif
  • Abstract:

    Paleopathology studies the traces of disease on human and animal remains from ancient times. Infectious diseases have been, for over a century, one of its main fields of interest. The applications of paleogenetics methods to microbial aDNA, that started in the 90s combined to the recent development of new sequencing techniques allowing ‘paleogenomics’ approaches, have completely renewed the issue of the infections in the past. These advances open up new challenges in the understanding of the evolution of human-pathogen relationships, integrated in “One Health” concept.

    In this perspective, an integrative multidisciplinary approach combining data from ancient texts and old bones to those of old molecules is of great interest for reconstructing the past of human infections. Despite some too optimistic prediction of their eradication in the late 20th century, some of these ancient human diseases, such as plague, leprosy or tuberculosis, are still present and continue their evolution at the beginning of this 21rst century. Better know the past to predict a part of the future of human diseases remains, more than ever, the motto of the paleopathological science.

  • Citation: Dutour O. 2016. Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules. Microbiol Spectrum 4(4):PoH-0014-2015. doi:10.1128/microbiolspec.PoH-0014-2015.

Key Concept Ranking

Severe Acute Respiratory Syndrome
0.6364931
Human Infectious Diseases
0.5331799
Animal Infectious Diseases
0.49938443
Infectious Diseases
0.4644131
Acute Respiratory Distress Syndrome
0.43958884
0.6364931

References

1. Editor Nature. 2011. Editorial: Microbiology by numbers. Nat Rev Microbiol 9:628–628. [CrossRef]
2. Taylor LH, Latham SM, Woolhouse ME. 2001. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci 356:983–989. [CrossRef]
3. Woolhouse MEJ, Taylor LH, Haydon DT. 2001. Population biology of multihost pathogens. Science 292:1109–1112. [CrossRef]
4. Woolhouse MEJ, Gowtage-Sequeria S. 2005. Host range and emerging and reemerging Pathogens. Emerg Infect Dis 11:1842–1847. [CrossRef]
5. Dunn RR, Davies TJ, Harris NC, Gavin MC. 2010. Global drivers of human pathogen richness and prevalence. Proc Biol Sci 277:2587–2595. [CrossRef]
6. McMichael AJ. 2004. Environmental and social influences on emerging infectious diseases: past, present and future. Philos Trans R Soc Lond B Biol Sci 359:1049–1058. [CrossRef]
7. Jenner E. 1798. An Inquiry into the Causes and Effects of the Variolæ Vaccinæ, a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire, and Known by the Name of the Cow Pox. Sampson Low, London, UK.
8. Ministry of Foreign and European Affairs. 2011. French Position on the One Health Concept: for an Integrated Approach to Health in View of the Globalization of Health Risks. Strategic Working Document.
9. World Health Organization. 2010. The FAO-OIE-WHO Collaboration: Tripartite Concept Note. Sharing Responsibilities and Coordinating Global Activities to Address Health Risks at the Animal-Human-Ecosystems Interfaces. WHO Press, Geneva, Switzerland.
10. Darwin C. 1859. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London, UK.
11. Ehrlich PR, Raven PH. 1964. Butterflies and plants: a study in coevolution. Evolution 18:586–608. [CrossRef]
12. Grmek MD. 1969. Préliminaires d’une étude historique des maladies. Ann Econ Soc Civil XXIV:1473–1483. [CrossRef]
13. Van Valen L. 1973. A new evolutionary law. Evol Theory 1:1–30.
14. Omran AR. 1971. The epidemiologic transition: a theory of the epidemiology of population change. Milbank Mem Fund Q 49:509–538. [CrossRef]
15. Dobson AP, Carper ER. 1996. Infectious diseases and human population history. Bioscience 46:115–126. [CrossRef]
16. Cockburn TA. 1971. Infectious diseases in ancient populations. Curr Anthropol 12:45–62. [CrossRef]
17. Grmek MD. 1994. Les maladies à l’aube de la civilisation occidentale. Payot, Paris, France.
18. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC. 1984. DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284. [CrossRef]
19. Paabo S. 1985. Molecular cloning of ancient Egyptian mummy DNA. Nature 314:644–645. [CrossRef]
20. Spiegelman M, Lemma E. 1993. The use of the polymerase chain reaction (PCR) to detect Mycobacterium tuberculosis in ancient skeletons. Int J Osteoarchaeol 3:137–143. [CrossRef]
21. Rafi A, Spiegelman M, Stanford J, Lemma E, Donoghue H, Zias J. 1994. DNA of Mycobacterium leprae detected by PCR in ancient bone. Int J Osteoarchaeol 4:287–290. [CrossRef]
22. Zink AR, Reischl U, Wolf H, Nerlich AG. 2002. Molecular analysis of ancient microbial infections. FEMS Microbiol Lett 213:141–147. [CrossRef]
23. Drancourt M, Raoult D. 2008. Molecular detection of past pathogens, p 55–68. In Raoult D, Drancourt M (ed), Paleomicrobiology: Past Human Infections. Springer, Berlin–Heidelberg, Germany.
24. Drancourt M, Raoult D. 2005. Palaeomicrobiology: current issues and perspectives. Nat Rev Microbiol 3:23–35. [CrossRef]
25. Dutour O. 2011. La paléopathologie. Comité des Travaux Historiques et Scientifiques, Paris, France.
26. Ruffer MA. 1913. On pathological lesions found in Coptic bodies. J Path Bact 18:149–162. [CrossRef]
27. Knapp M. 2011. The next generation of genetic investigations into the Black Death. Proc Natl Acad Sci U S A 108:15669–15670. [CrossRef]
28. Dutour O, Palfi G, Roberts C. 2012. International congresses on the evolution and paleoepidemiology of infectious diseases, p 678–683. In Buikstra JE, Roberts C (ed), The Global History of Paleopathology: Pioneers and Prospects. Oxford University Press, New York, NY. [CrossRef]
29. Dutour O, Pálfi G, Bérato J, Brun J-P, ed. 1994. L’origine de la syphilis en Europe: avant ou après 1493? Centre Archéologique du Var, Toulon / Errance, Paris, France.
30. Pálfi G, Dutour O, Deák J, Hutás I, ed. 1999. Tuberculosis: Past and Present. Golden Book/Tuberculosis Foundation, Budapest/Szeged, Hungary.
31. Roberts CA, Lewis ME, Manchester K (ed). 2002. The Past and Present of Leprosy. Archaeological, Historical, Paleopathological and Clinical Approaches. Proceedings of the International Congress on the Evolution and Paleoepidemiology of the Infectious Diseases 3 (ICEPID), University of Bradford, 26th-31st July, 1999. Archaeopress, Oxford, UK.
32. Signoli M, Chevé D, Adalian P, Boetsch G, Dutour O (ed). 2007. Peste: entre épidémies et sociétés / Plague: from Epidemics to Societies. Firenze University Press, Florence, Italy.
33. Pálfi G, Dutour O, Perrin P, Sola C, Zink A (ed). 2015. Tuberculosis in Evolution. Elsevier, Edinburgh, UK.
34. Dutour O. 2011. Paleopathology: an archaeological approach of diseases. TÜBA-AR 14:165–172.
35. Dutour O, Signoli M, Georgeon E, Da Silva J. 1994. Le charnier de la Grande Peste de Marseille (rue Leca): données de la fouille de la partie centrale et premiers résultats anthropologiques. Préhistoire Anthropologie Méditerranéennes 3:191–204.
36. Signoli M, Dutour O. 1997. Le charnier des jardins du couvent de l’Observance (1722). Provence Hist 189:469–488.
37. Drancourt M, Aboudharam G, Signoli M, Dutour O, Raoult D. 1998. Detection of 400-year-old Yersinia pestis DNA in human dental pulp: an approach to the diagnosis of ancient septicemia. Proc Natl Acad Sci U S A 95:12637–12640. [CrossRef]
38. Gilbert MT, Cuccui J, White W, Lynnerup N, Titball RW, Cooper A, Prentice MB. 2004. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims. Microbiology 150:341–354. [CrossRef]
39. Cunha BA. 2004. The cause of the plague of Athens: plague, typhoid, typhus, smallpox, or measles? Infect Dis Clin North Am 18:29–43. [CrossRef]
40. Papagrigorakis MJ, Yapijakis C, Synodinos PN, Baziotopoulou-Valavani E. 2006. DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the Plague of Athens. Int J Infect Dis 10:206–214. [CrossRef]
41. Schuenemann VJ, Bos K, DeWitte S, Schmedes S, Jamieson J, Mittnik A, Forrest S, Coombes BK, Wood JW, Earn DJD, White W, Krause J, Poinar HN. 2011. Targeted enrichment of ancient pathogens yielding the pPCP1 plasmid of Yersinia pestis from victims of the Black Death. Proc Natl Acad Sci U S A 108:e746–e752. doi:10.1073/pnas.1105107108. [CrossRef]
42. Gostin LO, Berkman BE. 2007. Pandemic influenza: ethics, law, and the public’s health. Admin Law Rev 59:121–175.
43. Dutour O, Signoli M, Pálfi G. 1998. How can we reconstruct the epidemiology of infectious diseases in the past? p 241–263. In Greenblatt C (ed), Digging for Pathogens: Ancient Emerging Diseases – Their Evolutionary, Anthropological and Archaeological Context. Balaban, Rehovot, Israel.
44. Dutour O, Ardagna Y, Maczel M, Signoli M. 2003. Epidemiology of infectious diseases in the past. Yersin, Koch and the skeletons, p 151–166. In Greenblatt C, Spiegelman M (ed), Emerging Pathogens, Archaeology, Ecology & Evolution of Infectious Disease. Oxford University Press, Oxford, UK.
45. Dutour O, Maczel M, Ardagna Y. 2007. Intérêt du “modèle peste” dans les études paléoépidémiologiques, p 89–96. In Signoli M, Chevé D, Adalian P, Boestch G, Dutour O (ed), La peste: entre épidémies et sociétés. Firenze University Press, Florence, Italy.
46. Dutour O. 2008. Archaeology of human pathogens: palaeopathological appraisal of palaeoepidemiology, p 125–144. In Raoult D, Drancourt M (ed), Paleomicrobiology: Past Human Infections. Springer, Berlin–Heidelberg, Germany. [CrossRef]
47. Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, Coombes BK, McPhee JB, DeWitte SN, Meyer M, Schmedes S, Wood J, Earn DJD, Herring DA, Bauer P, Poinar HN, Krause J. 2011. A draft genome of Yersinia pestis from victims of the Black Death. Nature 478:506–510. [CrossRef]
48. Wagner DM, Klunk J, Harbeck M, Devault A, Waglechner N, Sahl JW, Enk J, Birdsell DN, Kuch M, Lumibao C, Poinar D, Pearson T, Fourment M, Golding B, Riehm JM, Earn DJD, DeWitte S, Rouillard J-M, Grupe G, Wiechmann I, Bliska JB, Keim PS, Scholz HC, Holmes EC, Poinar H. 2014. Yersinia pestis and the Plague of Justinian 541–543 AD: a genomic analysis. Lancet Infect Dis 14:319–326. [CrossRef]
49. Aufderheide AC, Rodriguez-Martin C. 1998. The Cambridge Encyclopedia of Human Paleopathology. Cambridge University Press, Cambridge, UK.
50. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689. [CrossRef]
51. Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V. 2005. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1:e5. [CrossRef]
52. Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, van Soolingen D, Rüsch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S. 2008. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog 4:e1000160. doi:10.1371/journal.ppat.1000160.
53. Kappelman J, Alcicek MC, Kazanci N, Schultz M, Ozkul M, Sen S. 2008. First Homo erectus from Turkey and implications for migrations into temperate Eurasia. Am J Phys Anthropol 135:110–116. [CrossRef]
54. Roberts CA, Pfister LA, Mays S. 2009. Letter to the editor: was tuberculosis present in Homo erectus in Turkey? Am J Phys Anthropol 139:442–444.
55. Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D. 2001. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33:305–311. [CrossRef]
56. Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OYC, Gernaey AM, Galili E, Eshed V, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M. 2008. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the eastern Mediterranean. PLoS One 3:e3426. doi:10.1371/journal.pone.0003426.
57. Baker O, Lee OY, Wu HH, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O’Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer D, Le Mort F, Perrin P, Gourichon L, Dutailly B, Palfi G, Coqueugniot H, Dutour O. 2015. Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb) 95 Suppl 1:S4–S12. doi:10.1016/j.tube.2015.02.001. [CrossRef]
58. Baker BJ. 1999. Early manifestations of tuberculosis in the skeleton, p 301–307. In Pálfi G, Dutour O, Deák J, Hutás I (ed), Tuberculosis: Past and Present. Golden Book/Tuberculosis Foundation, Budapest/Szeged, Hungary.
59. Ortner DJ, ed. 2003. Identification of Pathological Conditions in Human Skeletal Remains, 2nd ed. Academic Press, San Diego, CA.
60. Maczel M. 2004. On the traces of tuberculosis. Diagnostic criteria of tuberculous affection in the human skeleton and their application in Hungarian and French anthropological series. PhD thesis in biological anthropology. University of La Méditerranée, Marseille, France – University of Szeged, Szeged, Hungary.
61. Pálfi G, Bereczki Z, Ortner DJ, Dutour O. 2012. Juvenile cases of skeletal tuberculosis from the Terry Anatomical Collection (Smithsonian Institution, Washington, D.C., USA). Acta Biol Szeged 56:1–12.
62. Haas CJ, Zink A, Molnar E, Szeimies U, Reischl U, Marcsik A, Ardagna Y, Dutour O, Palfi G, Nerlich AG. 2000. Molecular evidence for different stages of tuberculosis in ancient bone samples from Hungary. Am J Phys Anthropol 113:293–304. [CrossRef]
63. Ménard V, Lannelongue O. 1888. Tuberculose vertébrale. Asselin et Houzeau, Paris, France.
64. Sorrel É, Sorrel-Dejerine Y. 1932. Tuberculose osseuse et ostéo-articulaire. Masson et Cie, Paris, France.
65. World Health Organization. 2014. Antimicrobial resistance: global report on surveillance. WHO Press, Geneva, Switzerland.
66. Møller-Christensen V. 1961. Bone Changes in Leprosy. Munksgaard, Copenhagen, Denmark.
67. Steinbock RT. 1976. Paleopathological Diagnosis and Interpretation: Bone Diseases in Ancient Human Populations. Charles C. Thomas, Springfield, IL.
68. Robbins G, Tripathy VM, Misra VN, Mohanty RK, Shinde VS, Gray KM, Schug MD. 2009. Ancient skeletal evidence for leprosy in India (2000 B.C.). PLoS One 4:e5669. doi:10.1371/journal.pone.0005669. [CrossRef]
69. Mariotti V, Dutour O, Belcastro MG, Facchini F, Brasili P. 2005. Probable early presence of leprosy in Europe in a Celtic skeleton of the 4th–3rd century BC (Casalecchio di Reno, Bologna, Italy). Int J Osteoarchaeol 15:311–325. [CrossRef]
70. Molto JE. 2002. Leprosy in Roman period skeletons from Kellis 2, Dakhleh, Egypt, p 179–192. In Roberts CA, Lewis ME, Manchester K (ed), The Past and Present of Leprosy: Archaeological, Historical, Paleopathological and Clinical Approaches. Proceedings of the International Congress on the Evolution and Paleoepidemiology of the Infectious Diseases 3 (ICEPID), University of Bradford, 26th-31st July 1999. Archaeopress, Oxford, UK.
71. Mark S. 2002. Alexander the Great, seafaring, and the spread of leprosy. J Hist Med Allied Sci 57:285–311. [CrossRef]
72. Donoghue HD, Marcsik A, Matheson C, Vernon K, Nuorala E, Molto JE, Greenblatt CL, Spigelman M. 2005. Co-infection of Mycobacterium tuberculosis and Mycobacterium leprae in human archaeological samples: a possible explanation for the historical decline of leprosy. Proc Biol Sci 272:389–394. [CrossRef]
73. Minnikin DE, Besra GS, Lee O-YC, Spigelman M, Donoghue HD. 2011. The interplay of DNA and lipid biomarkers in the detection of tuberculosis and leprosy in mummies and other skeletal remains, p 109–114. In Gill-Frerking H, Rosendahl W, Zink A, Piombini-Mascali D (ed), Yearbook of Mummy Studies, vol 1. Verlag Dr. Friedrich Pfeil, Münich, Germany.
74. Monot M, Honore N, Garnier T, Zidane N, Sherafi D, Paniz-Mondolfi A, Matsuoka M, Taylor GM, Donoghue HD, Bouwman A, Mays S, Watson C, Lockwood D, Khamesipour A, Dowlati Y, Jianping S, Rea TH, Vera-Cabrera L, Stefani MM, Banu S, Macdonald M, Sapkota BR, Spencer JS, Thomas J, Harshman K, Singh P, Busso P, Gattiker A, Rougemont J, Brennan PJ, Cole ST. 2009. Comparative genomic and phylogeographic analysis of Mycobacterium leprae. Nat Genet 41:1282–1289. [CrossRef]
75. Schuenemann VJ, Singh P, Mendum TA, Krause-Kyora B, Jager G, Bos KI, Herbig A, Economou C, Benjak A, Busso P, Nebel A, Boldsen JL, Kjellstrom A, Wu H, Stewart GR, Taylor GM, Bauer P, Lee OY, Wu HH, Minnikin DE, Besra GS, Tucker K, Roffey S, Sow SO, Cole ST, Nieselt K, Krause J. 2013. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341:179–183. [CrossRef]
76. Mendum T, Schuenemann V, Roffey S, Taylor G, Wu H, Singh P, Tucker K, Hinds J, Cole S, Kierzek A, Nieselt K, Krause J, Stewart G. 2014. Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics 15:e270. doi:10.1186/1471-2164-15-270. [CrossRef]
77. Donoghue HD, Michael Taylor G, Marcsik A, Molnar E, Palfi G, Pap I, Teschler-Nicola M, Pinhasi R, Erdal YS, Veleminsky P, Likovsky J, Belcastro MG, Mariotti V, Riga A, Rubini M, Zaio P, Besra GS, Lee OY, Wu HH, Minnikin DE, Bull ID, O’Grady J, Spigelman M. 2015. A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infect Genet Evol 31:250–256. [CrossRef]
78. Wiechmann I, Grupe G. 2005. Detection of Yersinia pestis DNA in two early medieval skeletal finds from Aschheim (Upper Bavaria, 6th century A.D.). Am J Phys Anthropol 126:48–55. [CrossRef]
79. Raoult D, Aboudharam G, Crubezy E, Larrouy G, Ludes B, Drancourt M. 2000. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc Natl Acad Sci U S A 97:12800–12803. [CrossRef]
80. Yersin A. 1894. La peste bubonique à Hong-Kong. Ann Inst Pasteur (Paris) 8:662–667.
microbiolspec.PoH-0014-2015.citations
cm/4/4
content/journal/microbiolspec/10.1128/microbiolspec.PoH-0014-2015
Loading

Citations loading...

Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.PoH-0014-2015
2016-07-08
2017-09-23

Abstract:

Paleopathology studies the traces of disease on human and animal remains from ancient times. Infectious diseases have been, for over a century, one of its main fields of interest. The applications of paleogenetics methods to microbial aDNA, that started in the 90s combined to the recent development of new sequencing techniques allowing ‘paleogenomics’ approaches, have completely renewed the issue of the infections in the past. These advances open up new challenges in the understanding of the evolution of human-pathogen relationships, integrated in “One Health” concept.

In this perspective, an integrative multidisciplinary approach combining data from ancient texts and old bones to those of old molecules is of great interest for reconstructing the past of human infections. Despite some too optimistic prediction of their eradication in the late 20th century, some of these ancient human diseases, such as plague, leprosy or tuberculosis, are still present and continue their evolution at the beginning of this 21rst century. Better know the past to predict a part of the future of human diseases remains, more than ever, the motto of the paleopathological science.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Paleopathological (A) and historical (B) illustrations of superficial vertebral lesions due to tuberculosis: (A) Paleopathological case dating from the end of the 18th century (Dutour, 2011). (B) Historical description made by Victor Ménard in 1888 ( 63 ).

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0014-2015
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Plague epidemics and the first molecular identification of ancient DNA (aDNA) of

Source: microbiolspec July 2016 vol. 4 no. 4 doi:10.1128/microbiolspec.PoH-0014-2015

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error