1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

RNA Thermometers in Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Edmund Loh1, Francesco Righetti3, Hannes Eichner4, Christian Twittenhoff5, Franz Narberhaus6
  • Editors: Gisela Storz7, Kai Papenfort8
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; 2: SCELSE, Nanyang Technological University, 639798, Singapore; 3: Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; 4: Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden; 5: Microbial Biology, Ruhr University, Bochum, Germany; 6: Microbial Biology, Ruhr University, Bochum, Germany; 7: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD; 8: Department of Biology I, Microbiology, LMU Munich, Martinsried, Germany
  • Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017
  • Received 20 November 2017 Accepted 22 January 2018 Published 06 April 2018
  • Franz Narberhaus, franz.narberhaus@rub.de; Edmund Loh, edmund.loh@ki.se
image of RNA Thermometers in Bacterial Pathogens
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    RNA Thermometers in Bacterial Pathogens, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/2/RWR-0012-2017-1.gif /docserver/preview/fulltext/microbiolspec/6/2/RWR-0012-2017-2.gif
  • Abstract:

    Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.

  • Citation: Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. 2018. RNA Thermometers in Bacterial Pathogens. Microbiol Spectrum 6(2):RWR-0012-2017. doi:10.1128/microbiolspec.RWR-0012-2017.

References

1. Klinkert B, Narberhaus F. 2009. Microbial thermosensors. Cell Mol Life Sci 66:2661–2676. [PubMed]
2. Roncarati D, Scarlato V. 2017. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 41:549–574. [PubMed]
3. Morita MT, Tanaka Y, Kodama TS, Kyogoku Y, Yanagi H, Yura T. 1999. Translational induction of heat shock transcription factor σ32: evidence for a built-in RNA thermosensor. Genes Dev 13:655–665. [PubMed]
4. Nocker A, Hausherr T, Balsiger S, Krstulovic NP, Hennecke H, Narberhaus F. 2001. A mRNA-based thermosensor controls expression of rhizobial heat shock genes. Nucleic Acids Res 29:4800–4807. [PubMed]
5. Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561.
6. Grosso-Becera MV, Servín-González L, Soberón-Chávez G. 2015. RNA structures are involved in the thermoregulation of bacterial virulence-associated traits. Trends Microbiol 23:509–518. [PubMed]
7. Ignatov D, Johansson J. 2017. RNA-mediated signal perception in pathogenic bacteria. Wiley Interdiscip Rev RNA 8:e1429. doi:10.1002/wrna.1429. [PubMed]
8. Kortmann J, Narberhaus F. 2012. Bacterial RNA thermometers: molecular zippers and switches. Nat Rev Microbiol 10:255–265. [PubMed]
9. Krajewski SS, Narberhaus F. 2014. Temperature-driven differential gene expression by RNA thermosensors. Biochim Biophys Acta 1839:978–988. [PubMed]
10. Waldminghaus T, Heidrich N, Brantl S, Narberhaus F. 2007. FourU: a novel type of RNA thermometer in Salmonella. Mol Microbiol 65:413–424. [PubMed]
11. Böhme K, Steinmann R, Kortmann J, Seekircher S, Heroven AK, Berger E, Pisano F, Thiermann T, Wolf-Watz H, Narberhaus F, Dersch P. 2012. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 8:e1002518. doi:10.1371/journal.ppat.1002518. [PubMed]
12. Weber GG, Kortmann J, Narberhaus F, Klose KE. 2014. RNA thermometer controls temperature-dependent virulence factor expression in Vibrio cholerae. Proc Natl Acad Sci U S A 111:14241–14246. [PubMed]
13. Reniere ML, Whiteley AT, Hamilton KL, John SM, Lauer P, Brennan RG, Portnoy DA. 2015. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 517:170–173. [PubMed]
14. Hall M, Grundström C, Begum A, Lindberg MJ, Sauer UH, Almqvist F, Johansson J, Sauer-Eriksson AE. 2016. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc Natl Acad Sci U S A 113:14733–14738. [PubMed]
15. de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA. 2011. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14:118–127. [PubMed]
16. Loh E, Memarpour F, Vaitkevicius K, Kallipolitis BH, Johansson J, Sondén B. 2012. An unstructured 5′-coding region of the prfA mRNA is required for efficient translation. Nucleic Acids Res 40:1818–1827. [PubMed]
17. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779 . [PubMed]
18. Conner JG, Teschler JK, Jones CJ, Yildiz FH. 2016. Staying alive: Vibrio cholerae’s cycle of environmental survival, transmission, and dissemination. Microbiol Spectr 4:VMBF-0015-2015. doi:10.1128/microbiolspec.VMBF-0015-2015.
19. DiRita VJ, Parsot C, Jander G, Mekalanos JJ. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci U S A 88:5403–5407. [PubMed]
20. Townsley L, Yildiz FH. 2015. Temperature affects c-di-GMP signalling and biofilm formation in Vibrio cholerae. Environ Microbiol 17:4290–4305. [PubMed]
21. Wren BW. 2003. The yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1:55–64. [PubMed]
22. Cornelis G, Sluiters C, de Rouvroit CL, Michiels T. 1989. Homology between virF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 171:254–262. [PubMed]
23. Chung LK, Bliska JB. 2016. Yersinia versus host immunity: how a pathogen evades or triggers a protective response. Curr Opin Microbiol 29:56–62. [PubMed]
24. Nuss AM, Heroven AK, Waldmann B, Reinkensmeier J, Jarek M, Beckstette M, Dersch P. 2015. Transcriptomic profiling of Yersinia pseudotuberculosis reveals reprogramming of the Crp regulon by temperature and uncovers Crp as a master regulator of small RNAs. PLoS Genet 11:e1005087. doi:10.1371/journal.pgen.1005087. [PubMed]
25. Wattiau P, Cornelis GR. 1994. Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. J Bacteriol 176:3878–3884. [PubMed]
26. Schwiesow L, Lam H, Dersch P, Auerbuch V. 2015. Yersinia type III secretion system master regulator LcrF. J Bacteriol 198:604–614. [PubMed]
27. Chen S, Thompson KM, Francis MS. 2016. Environmental regulation of Yersinia pathophysiology. Front Cell Infect Microbiol 6:25. doi:10.3389/fcimb.2016.00025. [PubMed]
28. Jackson MW, Silva-Herzog E, Plano GV. 2004. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 54:1364–1378. [PubMed]
29. Hoe NP, Goguen JD. 1993. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 175:7901–7909.
30. Kertesz M, Wan Y, Mazor E, Rinn JL, Nutter RC, Chang HY, Segal E. 2010. Genome-wide measurement of RNA secondary structure in yeast. Nature 467:103–107. [PubMed]
31. Wan Y, Qu K, Ouyang Z, Kertesz M, Li J, Tibshirani R, Makino DL, Nutter RC, Segal E, Chang HY. 2012. Genome-wide measurement of RNA folding energies. Mol Cell 48:169–181. [PubMed]
32. Righetti F, Nuss AM, Twittenhoff C, Beele S, Urban K, Will S, Bernhart SH, Stadler PF, Dersch P, Narberhaus F. 2016. Temperature-responsive in vitro RNA structurome of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 113:7237–7242. [PubMed]
33. Nuss AM, Heroven AK, Dersch P. 2017. RNA regulators: formidable modulators of Yersinia virulence. Trends Microbiol 25:19–34. [PubMed]
34. Jafri RZ, Ali A, Messonnier NE, Tevi-Benissan C, Durrheim D, Eskola J, Fermon F, Klugman KP, Ramsay M, Sow S, Zhujun S, Bhutta ZA, Abramson J. 2013. Global epidemiology of invasive meningococcal disease. Popul Health Metr 11:17. doi:10.1186/1478-7954-11-17. [PubMed]
35. Tzeng YL, Thomas J, Stephens DS. 2016. Regulation of capsule in Neisseria meningitidis. Crit Rev Microbiol 42:759–772. [PubMed]
36. Harrison LH, Trotter CL, Ramsay ME. 2009. Global epidemiology of meningococcal disease. Vaccine 27(Suppl 2):B51–B63. [PubMed]
37. Jarvis GA, Vedros NA. 1987. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect Immun 55:174–180. [PubMed]
38. Spinosa MR, Progida C, Talà A, Cogli L, Alifano P, Bucci C. 2007. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 75:3594–3603. [PubMed]
39. Jones CH, Mohamed N, Rojas E, Andrew L, Hoyos J, Hawkins JC, McNeil LK, Jiang Q, Mayer LW, Wang X, Gilca R, De Wals P, Pedneault L, Eiden J, Jansen KU, Anderson AS. 2016. Comparison of phenotypic and genotypic approaches to capsule typing of Neisseria meningitidis by use of invasive and carriage isolate collections. J Clin Microbiol 54:25–34. [PubMed]
40. Harrison OB, Claus H, Jiang Y, Bennett JS, Bratcher HB, Jolley KA, Corton C, Care R, Poolman JT, Zollinger WD, Frasch CE, Stephens DS, Feavers I, Frosch M, Parkhill J, Vogel U, Quail MA, Bentley SD, Maiden MC. 2013. Description and nomenclature of Neisseria meningitidis capsule locus. Emerg Infect Dis 19:566–573. [PubMed]
41. Loh E, Kugelberg E, Tracy A, Zhang Q, Gollan B, Ewles H, Chalmers R, Pelicic V, Tang CM. 2013. Temperature triggers immune evasion by Neisseria meningitidis. Nature 502:237–240. [PubMed]
42. Abbas AK, Heimann K, Jergus K, Orlikowsky T, Leonhardt S. 2011. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed Eng Online 10:93. doi:10.1186/1475-925X-10-93. [PubMed]
43. Keck T, Leiacker R, Schick M, Rettinger G, Kühnemann S. 2000. Temperature and humidity profile of the paranasal sinuses before and after mucosal decongestion by xylometazolin. Laryngorhinootologie 79:749–752. (In German.) [PubMed]
44. Barnwal RP, Loh E, Godin KS, Yip J, Lavender H, Tang CM, Varani G. 2016. Structure and mechanism of a molecular rheostat, an RNA thermometer that modulates immune evasion by Neisseria meningitidis. Nucleic Acids Res 44:9426–9437. [PubMed]
45. Ferreira VP, Herbert AP, Hocking HG, Barlow PN, Pangburn MK. 2006. Critical role of the C-terminal domains of factor H in regulating complement activation at cell surfaces. J Immunol 177:6308–6316. [PubMed]
46. Józsi M, Oppermann M, Lambris JD, Zipfel PF. 2007. The C-terminus of complement factor H is essential for host cell protection. Mol Immunol 44:2697–2706. [PubMed]
47. Schneider MC, Exley RM, Chan H, Feavers I, Kang YH, Sim RB, Tang CM. 2006. Functional significance of factor H binding to Neisseria meningitidis. J Immunol 176:7566–7575. [PubMed]
48. Seib KL, Serruto D, Oriente F, Delany I, Adu-Bobie J, Veggi D, Aricò B, Rappuoli R, Pizza M. 2009. Factor H-binding protein is important for meningococcal survival in human whole blood and serum and in the presence of the antimicrobial peptide LL-37. Infect Immun 77:292–299. [PubMed]
49. Loh E, Lavender H, Tan F, Tracy A, Tang CM. 2016. Thermoregulation of meningococcal fHbp, an important virulence factor and vaccine antigen, is mediated by anti-ribosomal binding site sequences in the open reading frame. PLoS Pathog 12:e1005794. doi:10.1371/journal.ppat.1005794. [PubMed]
50. Choy HA, Kelley MM, Chen TL, Møller AK, Matsunaga J, Haake DA. 2007. Physiological osmotic induction of Leptospira interrogans adhesion: LigA and LigB bind extracellular matrix proteins and fibrinogen. Infect Immun 75:2441–2450. [PubMed]
51. Lin YP, McDonough SP, Sharma Y, Chang YF. 2010. The terminal immunoglobulin-like repeats of LigA and LigB of Leptospira enhance their binding to gelatin binding domain of fibronectin and host cells. PLoS One 5:e11301. doi:10.1371/journal.pone.0011301. [PubMed]
52. Lin YP, Greenwood A, Nicholson LK, Sharma Y, McDonough SP, Chang YF. 2009. Fibronectin binds to and induces conformational change in a disordered region of leptospiral immunoglobulin-like protein B. J Biol Chem 284:23547–23557. [PubMed]
53. Lin YP, Lee DW, McDonough SP, Nicholson LK, Sharma Y, Chang YF. 2009. Repeated domains of Leptospira immunoglobulin-like proteins interact with elastin and tropoelastin. J Biol Chem 284:19380–19391. [PubMed]
54. Choy HA, Kelley MM, Croda J, Matsunaga J, Babbitt JT, Ko AI, Picardeau M, Haake DA. 2011. The multifunctional LigB adhesin binds homeostatic proteins with potential roles in cutaneous infection by pathogenic Leptospira interrogans. PLoS One 6:e16879. doi:10.1371/journal.pone.0016879. [PubMed]
55. Castiblanco-Valencia MM, Fraga TR, Silva LB, Monaris D, Abreu PA, Strobel S, Józsi M, Isaac L, Barbosa AS. 2012. Leptospiral immunoglobulin-like proteins interact with human complement regulators factor H, FHL-1, FHR-1, and C4BP. J Infect Dis 205:995–1004. [PubMed]
56. Choy HA. 2012. Multiple activities of LigB potentiate virulence of Leptospira interrogans: inhibition of alternative and classical pathways of complement. PLoS One 7:e41566. doi:10.1371/journal.pone.0041566. [PubMed]
57. Matsunaga J, Schlax PJ, Haake DA. 2013. Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive Lig proteins in Leptospira interrogans. J Bacteriol 195:5092–5101. [PubMed]
58. Matsunaga J, Medeiros MA, Sanchez Y, Werneid KF, Ko AI. 2007. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release. Microbiology 153:3390–3398. [PubMed]
59. Davis PB. 2001. Cystic fibrosis. Pediatr Rev 22:257–264. [PubMed]
60. Waldminghaus T, Fippinger A, Alfsmann J, Narberhaus F. 2005. RNA thermometers are common in α- and γ-proteobacteria. Biol Chem 386:1279–1286. [PubMed]
61. Chowdhury S, Maris C, Allain FH, Narberhaus F. 2006. Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25:2487–2497. [PubMed]
62. Krajewski SS, Nagel M, Narberhaus F. 2013. Short ROSE-like RNA thermometers control IbpA synthesis in Pseudomonas species. PLoS One 8:e65168. doi:10.1371/journal.pone.0065168. [PubMed]
63. Grosso-Becerra MV, Croda-García G, Merino E, Servín-González L, Mojica-Espinosa R, Soberón-Chávez G. 2014. Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci U S A 111:15562–15567. [PubMed]
64. Winstanley C, Fothergill JL. 2009. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9. [PubMed]
65. Wenner N, Maes A, Cotado-Sampayo M, Lapouge K. 2014. NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 16:1053–1068. [PubMed]
66. Delvillani F, Sciandrone B, Peano C, Petiti L, Berens C, Georgi C, Ferrara S, Bertoni G, Pasini ME, Dehò G, Briani F. 2014. Tet-Trap, a genetic approach to the identification of bacterial RNA thermometers: application to Pseudomonas aeruginosa. RNA 20:1963–1976. [PubMed]
67. Daddaoua A, Fillet S, Fernández M, Udaondo Z, Krell T, Ramos JL. 2012. Genes for carbon metabolism and the ToxA virulence factor in Pseudomonas aeruginosa are regulated through molecular interactions of PtxR and PtxS. PLoS One 7:e39390. doi:10.1371/journal.pone.0039390. [PubMed]
68. Needham BD, Trent MS. 2013. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 11:467–481. [PubMed]
69. Wei Y, Murphy ER. 2016. Shigella iron acquisition systems and their regulation. Front Cell Infect Microbiol 6:18. doi:10.3389/fcimb.2016.00018. [PubMed]
70. Kouse AB, Righetti F, Kortmann J, Narberhaus F, Murphy ER. 2013. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS One 8:e63781. doi:10.1371/journal.pone.0063781. [PubMed]
71. Wei Y, Kouse AB, Murphy ER. 2017. Transcriptional and posttranscriptional regulation of Shigella shuT in response to host-associated iron availability and temperature. MicrobiologyOpen 6:e00442. doi:10.1002/mbo3.442. [PubMed]
72. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000. Salmonella nomenclature. J Clin Microbiol 38:2465–2467. [PubMed]
73. Keestra-Gounder AM, Tsolis RM, Bäumler AJ. 2015. Now you see me, now you don’t: the interaction of Salmonella with innate immune receptors. Nat Rev Microbiol 13:206–216. [PubMed]
74. LaRock DL, Chaudhary A, Miller SI. 2015. Salmonellae interactions with host processes. Nat Rev Microbiol 13:191–205. [PubMed]
75. McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson RK. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413:852–856. [PubMed]
76. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, Sebaihia M, Baker S, Basham D, Brooks K, Chillingworth T, Connerton P, Cronin A, Davis P, Davies RM, Dowd L, White N, Farrar J, Feltwell T, Hamlin N, Haque A, Hien TT, Holroyd S, Jagels K, Krogh A, Larsen TS, Leather S, Moule S, O’Gaora P, Parry C, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413:848–852. [PubMed]
77. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 2012. Host-pathogen interaction in invasive Salmonellosis. PLoS Pathog 8:e1002933. doi:10.1371/journal.ppat.1002933. [PubMed]
78. Galán JE. 1999. Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr Opin Microbiol 2:46–50.
79. Galán JE, Curtiss R, III. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci U S A 86:6383–6387. [PubMed]
80. Clausen T, Kaiser M, Huber R, Ehrmann M. 2011. HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162. [PubMed]
81. Pallen MJ, Wren BW. 1997. The HtrA family of serine proteases. Mol Microbiol 26:209–221.
82. Mo E, Peters SE, Willers C, Maskell DJ, Charles IG. 2006. Single, double and triple mutants of Salmonella enterica serovar Typhimurium degP (htrA), degQ (hhoA) and degS (hhoB) have diverse phenotypes on exposure to elevated temperature and their growth in vivo is attenuated to different extents. Microb Pathog 41:174–182. [PubMed]
83. Klinkert B, Cimdins A, Gaubig LC, Roßmanith J, Aschke-Sonnenborn U, Narberhaus F. 2012. Thermogenetic tools to monitor temperature-dependent gene expression in bacteria. J Biotechnol 160:55–63. [PubMed]
84. Choi EK, Ulanowicz KA, Nguyen YA, Frandsen JK, Mitton-Fry RM. 2017. SHAPE analysis of the htrA RNA thermometer from Salmonella enterica. RNA 23:1569–1581. [PubMed]
85. Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H. 2010. Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847. [PubMed]
86. Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H. 2011. Modulation of the stability of the Salmonella fourU-type RNA thermometer. Nucleic Acids Res 39:8258–8270. [PubMed]
87. Meyer S, Carlson PD, Lucks JB. 2017. Characterizing the structure-function relationship of a naturally occurring RNA thermometer. Biochemistry 56:6629–6638. [PubMed]
88. Cimdins A, Roßmanith J, Langklotz S, Bandow JE, Narberhaus F. 2013. Differential control of Salmonella heat shock operons by structured mRNAs. Mol Microbiol 89:715–731. [PubMed]
89. Limanskaia OI, Murtazaeva LA, Limanskiĭ AP. 2013. Search for new potential RNA thermometers in the Salmonella enterica genome. Mikrobiologiia 82:69–78. (In Russian.)
90. Storz G. 1999. An RNA thermometer. Genes Dev 13:633–636. [PubMed]
91. Righetti F, Narberhaus F. 2014. How to find RNA thermometers. Front Cell Infect Microbiol 4:132. doi:10.3389/fcimb.2014.00132.
92. Waldminghaus T, Gaubig LC, Narberhaus F. 2007. Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics 278:555–564. [PubMed]
93. Chursov A, Kopetzky SJ, Bocharov G, Frishman D, Shneider A. 2013. RNAtips: analysis of temperature-induced changes of RNA secondary structure. Nucleic Acids Res 41(Web Server Issue):W486–W491.
94. Churkin A, Avihoo A, Shapira M, Barash D. 2014. RNAthermsw: direct temperature simulations for predicting the location of RNA thermometers. PLoS One 9:e94340. doi:10.1371/journal.pone.0094340.
95. Wan Y, Kertesz M, Spitale RC, Segal E, Chang HY. 2011. Understanding the transcriptome through RNA structure. Nat Rev Genet 12:641–655. [PubMed]
96. Kwok CK, Tang Y, Assmann SM, Bevilacqua PC. 2015. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem Sci 40:221–232. [PubMed]
97. Del Campo C, Bartholomäus A, Fedyunin I, Ignatova Z. 2015. Secondary structure across the bacterial transcriptome reveals versatile roles in mRNA regulation and function. PLoS Genet 11:e1005613. doi:10.1371/journal.pgen.1005613.
98. Qi F, Frishman D. 2017. Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions. Nucleic Acids Res 45:6109–6118. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.RWR-0012-2017
2018-04-06
2018-04-22

Abstract:

Temperature variation is one of the multiple parameters a microbial pathogen encounters when it invades a warm-blooded host. To survive and thrive at host body temperature, human pathogens have developed various strategies to sense and respond to their ambient temperature. An instantaneous response is mounted by RNA thermometers (RNATs), which are integral sensory structures in mRNAs that modulate translation efficiency. At low temperatures outside the host, the folded RNA blocks access of the ribosome to the translation initiation region. The temperature shift upon entering the host destabilizes the RNA structure and thus permits ribosome binding. This reversible zipper-like mechanism of RNATs is ideally suited to fine-tune virulence gene expression when the pathogen enters or exits the body of its host. This review summarizes our present knowledge on virulence-related RNATs and discusses recent developments in the field.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) RNATs are structural elements located within the 5′ UTR of protein-coding mRNAs and control its translation by operating as reversible molecular zippers that mask or unmask the RBS in response to temperature changes. (B) Three examples of RNAT secondary structures: FourU element of , ROSE element of , and the 8-bp tandem repeats of (blue and yellow lines indicate repeats). CDS, coding sequence.

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Virulence-associated RNATs in bacterial pathogens. For details, see text and Table 1 .

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Synthesis of the virulence regulator PrfA in is regulated by an RNAT in the 5′ UTR of and a -acting SAM riboswitch element. detects temperature increase to 37°C as the signal of host entry, and as a consequence, PrfA is synthesized. A prematurely terminated riboswitch produced in the presence of SAM inhibits the translation of via base pairing with its 5′ UTR.

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Environmental regulation of expression in species. Multiple stimuli are integrated and influence LcrF synthesis on the transcriptional and translational level. Temperature affects both transcription and translation of , via the histone-like protein YmoA and the -encoded FourU RNAT, respectively.

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Summary of currently known virulence-associated RNATs in bacterial pathogens

Source: microbiolspec April 2018 vol. 6 no. 2 doi:10.1128/microbiolspec.RWR-0012-2017

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error