1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Small-Molecule-Binding Riboswitches

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Thea S. Lotz1, Beatrix Suess2
  • Editors: Gisela Storz3, Kai Papenfort4
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Synthetic Genetic Circuits, Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; 2: Synthetic Genetic Circuits, Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; 3: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD; 4: Department of Biology I, Microbiology, LMU Munich, Martinsried, Germany
  • Source: microbiolspec August 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.RWR-0025-2018
  • Received 11 February 2018 Accepted 11 May 2018 Published 03 August 2018
  • Beatrix Suess, [email protected]
image of Small-Molecule-Binding Riboswitches
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Small-Molecule-Binding Riboswitches, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/4/RWR-0025-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/4/RWR-0025-2018-2.gif
  • Abstract:

    RNA is a versatile biomolecule capable of transferring information, taking on distinct three-dimensional shapes, and reacting to ambient conditions. RNA molecules utilize a wide range of mechanisms to control gene expression. An example of such regulation is riboswitches. Consisting exclusively of RNA, they are able to control important metabolic processes, thus providing an elegant and efficient RNA-only regulation system. Existing across all domains of life, riboswitches appear to represent one of the most highly conserved mechanisms for the regulation of a broad range of biochemical pathways. Through binding of a wide range of small-molecule ligands to their so-called aptamer domain, riboswitches undergo a conformational change in their downstream “expression platform.” In consequence, the pattern of gene expression changes, which in turn results in increased or decreased protein production. Riboswitches unite the sensing and transduction of a signal that can directly be coupled to the metabolism of the cell; thus they constitute a very potent regulatory mechanism for many organisms. Highly specific RNA-binding domains not only occur but can also be evolved by means of the SELEX (systematic evolution of ligands by exponential enrichment) method, which allows selection of aptamers against almost any ligand. Coupling of these aptamers with an expression platform has led to the development of synthetic riboswitches, a highly active research field of great relevance and immense potential. The aim of this review is to summarize developments in the riboswitch field over the last decade and address key questions of recent research.

  • Citation: Lotz T, Suess B. 2018. Small-Molecule-Binding Riboswitches. Microbiol Spectrum 6(4):RWR-0025-2018. doi:10.1128/microbiolspec.RWR-0025-2018.

References

1. Morris KV, Mattick JS. 2014. The rise of regulatory RNA. Nat Rev Genet 15:423–437. http://dx.doi.org/10.1038/nrg3722. [PubMed]
2. Etzel M, Mörl M. 2017. Synthetic riboswitches: from plug and pray toward plug and play. Biochemistry 56:1181–1198. http://dx.doi.org/10.1021/acs.biochem.6b01218. [PubMed]
3. Winkler WC, Cohen-Chalamish S, Breaker RR. 2002. An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A 99:15908–15913. http://dx.doi.org/10.1073/pnas.212628899. [PubMed]
4. Serganov A, Nudler E. 2013. A decade of riboswitches. Cell 152:17–24. http://dx.doi.org/10.1016/j.cell.2012.12.024. [PubMed]
5. Wachter A. 2014. Gene regulation by structured mRNA elements. Trends Genet 30:172–181. http://dx.doi.org/10.1016/j.tig.2014.03.001. [PubMed]
6. Breaker RR. 2012. Riboswitches and the RNA world. Cold Spring Harb Perspect Biol 4:a003566. http://dx.doi.org/10.1101/cshperspect.a003566. [PubMed]
7. Wittmann A, Suess B. 2012. Engineered riboswitches: expanding researchers’ toolbox with synthetic RNA regulators. FEBS Lett 586:2076–2083. http://dx.doi.org/10.1016/j.febslet.2012.02.038. [PubMed]
8. Wieland M, Ausländer D, Fussenegger M. 2012. Engineering of ribozyme-based riboswitches for mammalian cells. Methods 56:351–357. http://dx.doi.org/10.1016/j.ymeth.2012.01.005. [PubMed]
9. Roth A, Winkler WC, Regulski EE, Lee BW, Lim J, Jona I, Barrick JE, Ritwik A, Kim JN, Welz R, Iwata-Reuyl D, Breaker RR. 2007. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14:308–317. http://dx.doi.org/10.1038/nsmb1224. [PubMed]
10. Meyer MM, Roth A, Chervin SM, Garcia GA, Breaker RR. 2008. Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 14:685–695. http://dx.doi.org/10.1261/rna.937308. [PubMed]
11. Batey RT. 2015. Riboswitches: still a lot of undiscovered country. RNA 21:560–563. http://dx.doi.org/10.1261/rna.050765.115. [PubMed]
12. McCown PJ, Corbino KA, Stav S, Sherlock ME, Breaker RR. 2017. Riboswitch diversity and distribution. RNA 23:995–1011. http://dx.doi.org/10.1261/rna.061234.117. [PubMed]
13. Jones CP, Ferré-D’Amaré AR. 2017. Long-range interactions in riboswitch control of gene expression. Annu Rev Biophys 46:455–481. http://dx.doi.org/10.1146/annurev-biophys-070816-034042. [PubMed]
14. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. 2004. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 101:6421–6426. http://dx.doi.org/10.1073/pnas.0308014101. [PubMed]
15. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR. 2010. Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31. http://dx.doi.org/10.1186/gb-2010-11-3-r31. [PubMed]
16. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E. 2002. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756. http://dx.doi.org/10.1016/S0092-8674(02)01134-0.
17. Winkler W, Nahvi A, Breaker RR. 2002. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956. http://dx.doi.org/10.1038/nature01145. [PubMed]
18. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. 2002. Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959. http://dx.doi.org/10.1074/jbc.M208965200.
19. Sudarsan N, Barrick JE, Breaker RR. 2003. Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647. http://dx.doi.org/10.1261/rna.5090103. [PubMed]
20. Cheah MT, Wachter A, Sudarsan N, Breaker RR. 2007. Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500. http://dx.doi.org/10.1038/nature05769. [PubMed]
21. Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, Gomi K, Hanamoto H. 2003. Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. FEBS Lett 555:516–520. http://dx.doi.org/10.1016/S0014-5793(03)01335-8.
22. Sudarsan N, Wickiser JK, Nakamura S, Ebert MS, Breaker RR. 2003. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17:2688–2697. http://dx.doi.org/10.1101/gad.1140003. [PubMed]
23. Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. 2007. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19:3437–3450. http://dx.doi.org/10.1105/tpc.107.053645. [PubMed]
24. Bocobza SE, Aharoni A. 2014. Small molecules that interact with RNA: riboswitch-based gene control and its involvement in metabolic regulation in plants and algae. Plant J 79:693–703. http://dx.doi.org/10.1111/tpj.12540. [PubMed]
25. Croft MT, Moulin M, Webb ME, Smith AG. 2007. Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci U S A 104:20770–20775. http://dx.doi.org/10.1073/pnas.0705786105. [PubMed]
26. Kim JN, Roth A, Breaker RR. 2007. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2′-deoxyguanosine. Proc Natl Acad Sci U S A 104:16092–16097. http://dx.doi.org/10.1073/pnas.0705884104. [PubMed]
27. Gilbert W. 1986. Origin of life: the RNA world. Nature 319:618. http://dx.doi.org/10.1038/319618a0.
28. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR. 2002. Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049. http://dx.doi.org/10.1016/S1074-5521(02)00224-7.
29. Ontiveros-Palacios N, Smith AM, Grundy FJ, Soberon M, Henkin TM, Miranda-Ríos J. 2008. Molecular basis of gene regulation by the THI-box riboswitch. Mol Microbiol 67:793–803. http://dx.doi.org/10.1111/j.1365-2958.2007.06088.x. [PubMed]
30. Edwards TE, Ferré-D’Amaré AR. 2006. Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14:1459–1468. http://dx.doi.org/10.1016/j.str.2006.07.008. [PubMed]
31. Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. 2006. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441:1167–1171. http://dx.doi.org/10.1038/nature04740. [PubMed]
32. Thore S, Leibundgut M, Ban N. 2006. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312:1208–1211. http://dx.doi.org/10.1126/science.1128451. [PubMed]
33. Manzetti S, Zhang J, van der Spoel D. 2014. Thiamin function, metabolism, uptake, and transport. Biochemistry 53:821–835. http://dx.doi.org/10.1021/bi401618y. [PubMed]
34. Franken JF, Stapert FP. 1954. Restoration of pyruvate breakdown in pigeon muscle homogenates impaired by thiamine deficiency. Biochim Biophys Acta 14:293–294. http://dx.doi.org/10.1016/0006-3002(54)90178-X.
35. Asakawa T, Wada H, Yamano T. 1968. Enzymatic conversion of phenylpyruvate to phenylacetate. Biochim Biophys Acta 170:375–391. http://dx.doi.org/10.1016/0304-4165(68)90017-2.
36. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. 2004. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286. http://dx.doi.org/10.1038/nature02362. [PubMed]
37. Watson PY, Fedor MJ. 2011. The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat Struct Mol Biol 18:359–363. http://dx.doi.org/10.1038/nsmb.1989. [PubMed]
38. Farmer JJ III. 1979. Vibrio (“Beneckea”) vulnificus, the bacterium associated with sepsis, septicaemia, and the sea. Lancet 2:903. http://dx.doi.org/10.1016/S0140-6736(79)92715-6.
39. Loh E, Righetti F, Eichner H, Twittenhoff C, Narberhaus F. 2018. RNA thermometers in bacterial pathogens. Microbiol Spectr 6:RWR-0012-2017. http://dx.doi.org/10.1128/microbiolspec.RWR-0012-2017. [PubMed]
40. Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR. 2006. Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304. http://dx.doi.org/10.1126/science.1130716. [PubMed]
41. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779. http://dx.doi.org/10.1016/j.cell.2009.08.046. [PubMed]
42. DebRoy S, Gebbie M, Ramesh A, Goodson JR, Cruz MR, van Hoof A, Winkler WC, Garsin DA. 2014. Riboswitches. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345:937–940. http://dx.doi.org/10.1126/science.1255091. [PubMed]
43. Mellin JR, Koutero M, Dar D, Nahori MA, Sorek R, Cossart P. 2014. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345:940–943. http://dx.doi.org/10.1126/science.1255083. [PubMed]
44. Mellin JR, Tiensuu T, Bécavin C, Gouin E, Johansson J, Cossart P. 2013. A riboswitch-regulated antisense RNA in Listeria monocytogenes. Proc Natl Acad Sci U S A 110:13132–13137. http://dx.doi.org/10.1073/pnas.1304795110. [PubMed]
45. Bengert P, Dandekar T. 2004. Riboswitch finder—a tool for identification of riboswitch RNAs. Nucleic Acids Res 32(Web Server issue):W154–W159. http://dx.doi.org/10.1093/nar/gkh352.
46. Chang TH, Huang HD, Wu LC, Yeh CT, Liu BJ, Horng JT. 2009. Computational identification of riboswitches based on RNA conserved functional sequences and conformations. RNA 15:1426–1430. http://dx.doi.org/10.1261/rna.1623809. [PubMed]
47. Weinberg Z, Nelson JW, Lünse CE, Sherlock ME, Breaker RR. 2017. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity. Proc Natl Acad Sci U S A 114:E2077–E2085. http://dx.doi.org/10.1073/pnas.1619581114. [PubMed]
48. Mandal M, Breaker RR. 2004. Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35. http://dx.doi.org/10.1038/nsmb710. [PubMed]
49. Liberman JA, Wedekind JE. 2012. Riboswitch structure in the ligand-free state. Wiley Interdiscip Rev RNA 3:369–384. http://dx.doi.org/10.1002/wrna.114. [PubMed]
50. Soukup GA, Breaker RR. 1999. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5:1308–1325. http://dx.doi.org/10.1017/S1355838299990891.
51. Regulski EE, Breaker RR. 2008. In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67. http://dx.doi.org/10.1007/978-1-59745-033-1_4. [PubMed]
52. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR. 2003. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586. http://dx.doi.org/10.1016/S0092-8674(03)00391-X.
53. Kulshina N, Baird NJ, Ferré-D’Amaré AR. 2009. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat Struct Mol Biol 16:1212–1217. http://dx.doi.org/10.1038/nsmb.1701. [PubMed]
54. Stoddard CD, Montange RK, Hennelly SP, Rambo RP, Sanbonmatsu KY, Batey RT. 2010. Free state conformational sampling of the SAM-I riboswitch aptamer domain. Structure 18:787–797. http://dx.doi.org/10.1016/j.str.2010.04.006. [PubMed]
55. Scott WG, Finch JT, Grenfell R, Fogg J, Smith T, Gait MJ, Klug A. 1995. Rapid crystallization of chemically synthesized hammerhead RNAs using a double screening procedure. J Mol Biol 250:327–332. http://dx.doi.org/10.1006/jmbi.1995.0380. [PubMed]
56. Gilbert SD, Montange RK, Stoddard CD, Batey RT. 2006. Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb Symp Quant Biol 71:259–268. http://dx.doi.org/10.1101/sqb.2006.71.015. [PubMed]
57. Edwards AL, Garst AD, Batey RT. 2009. Determining structures of RNA aptamers and riboswitches by X-ray crystallography. Methods Mol Biol 535:135–163. http://dx.doi.org/10.1007/978-1-59745-557-2_9. [PubMed]
58. Noeske J, Buck J, Fürtig B, Nasiri HR, Schwalbe H, Wöhnert J. 2007. Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch. Nucleic Acids Res 35:572–583. http://dx.doi.org/10.1093/nar/gkl1094. [PubMed]
59. Ottink OM, Rampersad SM, Tessari M, Zaman GJ, Heus HA, Wijmenga SS. 2007. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism. RNA 13:2202–2212. http://dx.doi.org/10.1261/rna.635307. [PubMed]
60. Haller A, Soulière MF, Micura R. 2011. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339–1348. http://dx.doi.org/10.1021/ar200035g. [PubMed]
61. Suddala KC, Walter NG. 2014. Riboswitch structure and dynamics by smFRET microscopy. Methods Enzymol 549:343–373. http://dx.doi.org/10.1016/B978-0-12-801122-5.00015-5. [PubMed]
62. Ellington AD, Szostak JW. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. [PubMed]
63. Tuerk C, Gold L. 1990. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. [PubMed]
64. Topp S, Reynoso CM, Seeliger JC, Goldlust IS, Desai SK, Murat D, Shen A, Puri AW, Komeili A, Bertozzi CR, Scott JR, Gallivan JP. 2010. Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol 76:7881–7884. http://dx.doi.org/10.1128/AEM.01537-10. [PubMed]
65. Berens C, Suess B. 2015. Riboswitch engineering—making the all-important second and third steps. Curr Opin Biotechnol 31:10–15. http://dx.doi.org/10.1016/j.copbio.2014.07.014. [PubMed]
66. Wachsmuth M, Findeiß S, Weissheimer N, Stadler PF, Mörl M. 2013. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551 http://dx.doi.org/10.1093/nar/gks1330. [PubMed]
67. Ceres P, Garst AD, Marcano-Velázquez JG, Batey RT. 2013. Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices. ACS Synth Biol 2:463–472. http://dx.doi.org/10.1021/sb4000096. [PubMed]
68. Ceres P, Trausch JJ, Batey RT. 2013. Engineering modular ‘ON’ RNA switches using biological components. Nucleic Acids Res 41:10449–10461. http://dx.doi.org/10.1093/nar/gkt787. [PubMed]
69. Robinson CJ, Vincent HA, Wu MC, Lowe PT, Dunstan MS, Leys D, Micklefield J. 2014. Modular riboswitch toolsets for synthetic genetic control in diverse bacterial species. J Am Chem Soc 136:10615–10624. http://dx.doi.org/10.1021/ja502873j. [PubMed]
70. Porter EB, Polaski JT, Morck MM, Batey RT. 2017. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nat Chem Biol 13:295–301. http://dx.doi.org/10.1038/nchembio.2278. [PubMed]
71. Suess B, Hanson S, Berens C, Fink B, Schroeder R, Hillen W. 2003. Conditional gene expression by controlling translation with tetracycline-binding aptamers. Nucleic Acids Res 31:1853–1858. http://dx.doi.org/10.1093/nar/gkg285. [PubMed]
72. Weigand JE, Sanchez M, Gunnesch EB, Zeiher S, Schroeder R, Suess B. 2008. Screening for engineered neomycin riboswitches that control translation initiation. RNA 14:89–97. http://dx.doi.org/10.1261/rna.772408. [PubMed]
73. Groher F, Bofill-Bosch C, Schneider C, Braun J, Jager S, Geißler K, Hamacher K, Suess B. 2018. Riboswitching with ciprofloxacin-development and characterization of a novel RNA regulator. Nucleic Acids Res 46:2121–2132. http://dx.doi.org/10.1093/nar/gkx1319. [PubMed]
74. Kim DS, Gusti V, Pillai SG, Gaur RK. 2005. An artificial riboswitch for controlling pre-mRNA splicing. RNA 11:1667–1677. http://dx.doi.org/10.1261/rna.2162205. [PubMed]
75. Vogel M, Weigand JE, Kluge B, Grez M, Suess B. 2018. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res 46:e48. http://dx.doi.org/10.1093/nar/gky062. [PubMed]
76. Kötter P, Weigand JE, Meyer B, Entian KD, Suess B. 2009. A fast and efficient translational control system for conditional expression of yeast genes. Nucleic Acids Res 37:e120. http://dx.doi.org/10.1093/nar/gkp578. [PubMed]
77. Beisel CL, Chen YY, Culler SJ, Hoff KG, Smolke CD. 2011. Design of small molecule-responsive microRNAs based on structural requirements for Drosha processing. Nucleic Acids Res 39:2981–2994. http://dx.doi.org/10.1093/nar/gkq954. [PubMed]
78. An CI, Trinh VB, Yokobayashi Y. 2006. Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA 12:710–716. http://dx.doi.org/10.1261/rna.2299306. [PubMed]
79. Ogawa A. 2011. Rational design of artificial riboswitches based on ligand-dependent modulation of internal ribosome entry in wheat germ extract and their applications as label-free biosensors. RNA 17:478–488. http://dx.doi.org/10.1261/rna.2433111. [PubMed]
80. Nomura Y, Zhou L, Miu A, Yokobayashi Y. 2013. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth Biol 2:684–689. http://dx.doi.org/10.1021/sb400037a. [PubMed]
81. Felletti M, Stifel J, Wurmthaler LA, Geiger S, Hartig JS. 2016. Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat Commun 7:12834. http://dx.doi.org/10.1038/ncomms12834. [PubMed]
82. Wieland M, Benz A, Klauser B, Hartig JS. 2009. Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem Int Ed Engl 48:2715–2718. http://dx.doi.org/10.1002/anie.200805311. [PubMed]
83. Win MN, Smolke CD. 2008. Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460. http://dx.doi.org/10.1126/science.1160311. [PubMed]
84. Beilstein K, Wittmann A, Grez M, Suess B. 2015. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth Biol 4:526–534. http://dx.doi.org/10.1021/sb500270h. [PubMed]
85. Cressina E, Chen L, Moulin M, Leeper FJ, Abell C, Smith AG. 2011. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches. Biochem Soc Trans 39:652–657. http://dx.doi.org/10.1042/BST0390652. [PubMed]
86. Johnson JE Jr, Reyes FE, Polaski JT, Batey RT. 2012. B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492:133–137. http://dx.doi.org/10.1038/nature11607. [PubMed]
87. Serganov A, Huang L, Patel DJ. 2009. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458:233–237. http://dx.doi.org/10.1038/nature07642. [PubMed]
88. Vicens Q, Mondragón E, Batey RT. 2011. Molecular sensing by the aptamer domain of the FMN riboswitch: a general model for ligand binding by conformational selection. Nucleic Acids Res 39:8586–8598. http://dx.doi.org/10.1093/nar/gkr565. [PubMed]
89. Gilbert SD, Love CE, Edwards AL, Batey RT. 2007. Mutational analysis of the purine riboswitch aptamer domain. Biochemistry 46:13297–13309. http://dx.doi.org/10.1021/bi700410g. [PubMed]
90. Garst AD, Héroux A, Rambo RP, Batey RT. 2008. Crystal structure of the lysine riboswitch regulatory mRNA element. J Biol Chem 283:22347–22351. http://dx.doi.org/10.1074/jbc.C800120200. [PubMed]
91. Serganov A, Huang L, Patel DJ. 2008. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455:1263–1267. http://dx.doi.org/10.1038/nature07326. [PubMed]
92. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. 2003. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707. http://dx.doi.org/10.1038/nsb967. [PubMed]
93. Montange RK, Batey RT. 2006. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172–1175 http://dx.doi.org/10.1038/nature04819. [PubMed]
94. Nahvi A, Barrick JE, Breaker RR. 2004. Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150. http://dx.doi.org/10.1093/nar/gkh167. [PubMed]
95. Cochrane JC, Lipchock SV, Strobel SA. 2007. Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem Biol 14:97–105. http://dx.doi.org/10.1016/j.chembiol.2006.12.005. [PubMed]
96. Klein DJ, Wilkinson SR, Been MD, Ferré-D’Amaré AR. 2007. Requirement of helix P2.2 and nucleotide G1 for positioning the cleavage site and cofactor of the glmS ribozyme. J Mol Biol 373:178–189. http://dx.doi.org/10.1016/j.jmb.2007.07.062. [PubMed]
97. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR. 2004. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279. http://dx.doi.org/10.1126/science.1100829. [PubMed]
98. Huang L, Serganov A, Patel DJ. 2010. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell 40:774–786. http://dx.doi.org/10.1016/j.molcel.2010.11.026. [PubMed]
99. Corbino KA, Barrick JE, Lim J, Welz R, Tucker BJ, Puskarz I, Mandal M, Rudnick ND, Breaker RR. 2005. Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6:R70. http://dx.doi.org/10.1186/gb-2005-6-8-r70. [PubMed]
100. Gilbert SD, Rambo RP, Van Tyne D, Batey RT. 2008. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15:177–182. http://dx.doi.org/10.1038/nsmb.1371. [PubMed]
101. Fuchs RT, Grundy FJ, Henkin TM. 2006. The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 13:226–233. http://dx.doi.org/10.1038/nsmb1059. [PubMed]
102. Lu C, Smith AM, Fuchs RT, Ding F, Rajashankar K, Henkin TM, Ke A. 2008. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15:1076–1083. http://dx.doi.org/10.1038/nsmb.1494. [PubMed]
103. Park SY, Cromie MJ, Lee EJ, Groisman EA. 2010. A bacterial mRNA leader that employs different mechanisms to sense disparate intracellular signals. Cell 142:737–748. http://dx.doi.org/10.1016/j.cell.2010.07.046. [PubMed]
104. Cromie MJ, Shi Y, Latifi T, Groisman EA. 2006. An RNA sensor for intracellular Mg2+. Cell 125:71–84. http://dx.doi.org/10.1016/j.cell.2006.01.043. [PubMed]
105. Dann CE III, Wakeman CA, Sieling CL, Baker SC, Irnov I, Winkler WC. 2007. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892. http://dx.doi.org/10.1016/j.cell.2007.06.051. [PubMed]
106. Ramesh A, Wakeman CA, Winkler WC. 2011. Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J Mol Biol 407:556–570. http://dx.doi.org/10.1016/j.jmb.2011.01.049. [PubMed]
107. Pikovskaya O, Polonskaia A, Patel DJ, Serganov A. 2011. Structural principles of nucleoside selectivity in a 2′-deoxyguanosine riboswitch. Nat Chem Biol 7:748–755. http://dx.doi.org/10.1038/nchembio.631. [PubMed]
108. Kang M, Peterson R, Feigon J. 2009. Structural insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell 33:784–790. http://dx.doi.org/10.1016/j.molcel.2009.02.019. [PubMed]
109. Klein DJ, Edwards TE, Ferré-D’Amaré AR. 2009. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol 16:343–344. http://dx.doi.org/10.1038/nsmb.1563. [PubMed]
110. Spitale RC, Torelli AT, Krucinska J, Bandarian V, Wedekind JE. 2009. The structural basis for recognition of the preQ0 metabolite by an unusually small riboswitch aptamer domain. J Biol Chem 284:11012–11016 http://dx.doi.org/10.1074/jbc.C900024200. [PubMed]
111. Jenkins JL, Krucinska J, McCarty RM, Bandarian V, Wedekind JE. 2011. Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem 286:24626–24637. http://dx.doi.org/10.1074/jbc.M111.230375. [PubMed]
112. Regulski EE, Moy RH, Weinberg Z, Barrick JE, Yao Z, Ruzzo WL, Breaker RR. 2008. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol Microbiol 68:918–932. http://dx.doi.org/10.1111/j.1365-2958.2008.06208.x. [PubMed]
113. Wang JX, Lee ER, Morales DR, Lim J, Breaker RR. 2008. Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702. http://dx.doi.org/10.1016/j.molcel.2008.01.012. [PubMed]
114. Edwards AL, Reyes FE, Héroux A, Batey RT. 2010. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA 16:2144–2155. http://dx.doi.org/10.1261/rna.2341610. [PubMed]
115. Weinberg Z, Regulski EE, Hammond MC, Barrick JE, Yao Z, Ruzzo WL, Breaker RR. 2008. The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA 14:822–828. http://dx.doi.org/10.1261/rna.988608. [PubMed]
116. Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN, Link KH, Breaker RR. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413. http://dx.doi.org/10.1126/science.1159519. [PubMed]
117. Smith KD, Lipchock SV, Ames TD, Wang J, Breaker RR, Strobel SA. 2009. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat Struct Mol Biol 16:1218–1223. http://dx.doi.org/10.1038/nsmb.1702. [PubMed]
118. Poiata E, Meyer MM, Ames TD, Breaker RR. 2009. A variant riboswitch aptamer class for S-adenosylmethionine common in marine bacteria. RNA 15:2046–2056. http://dx.doi.org/10.1261/rna.1824209. [PubMed]
119. Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR. 2010. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329:845–848. http://dx.doi.org/10.1126/science.1190713. [PubMed]
120. Smith KD, Shanahan CA, Moore EL, Simon AC, Strobel SA. 2011. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc Natl Acad Sci U S A 108:7757–7762. http://dx.doi.org/10.1073/pnas.1018857108. [PubMed]
121. Ames TD, Rodionov DA, Weinberg Z, Breaker RR. 2010. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol 17:681–685. http://dx.doi.org/10.1016/j.chembiol.2010.05.020. [PubMed]
122. Trausch JJ, Ceres P, Reyes FE, Batey RT. 2011. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19:1413–1423. http://dx.doi.org/10.1016/j.str.2011.06.019. [PubMed]
123. Ames TD, Breaker RR. 2011. Bacterial aptamers that selectively bind glutamine. RNA Biol 8:82–89. http://dx.doi.org/10.4161/rna.8.1.13864.
124. Ren A, Xue Y, Peselis A, Serganov A, Al-Hashimi HM, Patel DJ. 2015. Structural and dynamic basis for low-affinity, high-selectivity binding of l-glutamine by the glutamine riboswitch. Cell Rep 13:1800–1813. http://dx.doi.org/10.1016/j.celrep.2015.10.062. [PubMed]
125. Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. 2012. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335:233–235. http://dx.doi.org/10.1126/science.1215063. [PubMed]
126. Ren A, Rajashankar KR, Patel DJ. 2012. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486:85–89. http://dx.doi.org/10.1038/nature11152. [PubMed]
127. Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. 2013. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834–839. http://dx.doi.org/10.1038/nchembio.1363. [PubMed]
128. Ren A, Patel DJ. 2014. c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10:780–786. http://dx.doi.org/10.1038/nchembio.1606. [PubMed]
129. McCown PJ, Liang JJ, Weinberg Z, Breaker RR. 2014. Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chem Biol 21:880–889. http://dx.doi.org/10.1016/j.chembiol.2014.05.015. [PubMed]
130. Liberman JA, Suddala KC, Aytenfisu A, Chan D, Belashov IA, Salim M, Mathews DH, Spitale RC, Walter NG, Wedekind JE. 2015. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Proc Natl Acad Sci U S A 112:E3485–E3494. http://dx.doi.org/10.1073/pnas.1503955112. [PubMed]
131. Dambach M, Sandoval M, Updegrove TB, Anantharaman V, Aravind L, Waters LS, Storz G. 2015. The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol Cell 57:1099–1109. http://dx.doi.org/10.1016/j.molcel.2015.01.035. [PubMed]
132. Price IR, Gaballa A, Ding F, Helmann JD, Ke A. 2015. Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol Cell 57:1110–1123. http://dx.doi.org/10.1016/j.molcel.2015.02.016. [PubMed]
133. Kellenberger CA, Wilson SC, Hickey SF, Gonzalez TL, Su Y, Hallberg ZF, Brewer TF, Iavarone AT, Carlson HK, Hsieh YF, Hammond MC. 2015. GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP. Proc Natl Acad Sci U S A 112:5383–5388. http://dx.doi.org/10.1073/pnas.1419328112. [PubMed]
134. Nelson JW, Sudarsan N, Phillips GE, Stav S, Lünse CE, McCown PJ,Breaker RR. 2015. Control of bacterial exoelectrogenesis by c-AMP-GMP. Proc Natl Acad Sci U S A 112:5389–5394. http://dx.doi.org/10.1073/pnas.1419264112. [PubMed]
135. Ren A, Wang XC, Kellenberger CA, Rajashankar KR, Jones RA, Hammond MC, Patel DJ. 2015. Structural basis for molecular discrimination by a 3′,3′-cGAMP sensing riboswitch. Cell Rep 11:1–12. http://dx.doi.org/10.1016/j.celrep.2015.03.004. [PubMed]
136. Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T, Winkler WC, Breaker RR. 2015. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol Cell 57:1088–1098. http://dx.doi.org/10.1016/j.molcel.2015.02.009. [PubMed]
137. Kim PB, Nelson JW, Breaker RR. 2015. An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism. Mol Cell 57:317–328. http://dx.doi.org/10.1016/j.molcel.2015.01.001. [PubMed]
138. Ren A, Rajashankar KR, Patel DJ. 2015. Global RNA fold and molecular recognition for a pfl riboswitch bound to ZMP, a master regulator of one-carbon metabolism. Structure 23:1375–1381. http://dx.doi.org/10.1016/j.str.2015.05.016. [PubMed]
139. Li S, Hwang XY, Stav S, Breaker RR. 2016. The yjdF riboswitch candidate regulates gene expression by binding diverse azaaromatic compounds. RNA 22:530–541. http://dx.doi.org/10.1261/rna.054890.115. [PubMed]
140. Nelson JW, Atilho RM, Sherlock ME, Stockbridge RB, Breaker RR. 2017. Metabolism of free guanidine in bacteria is regulated by a widespread riboswitch class. Mol Cell 65:220–230. http://dx.doi.org/10.1016/j.molcel.2016.11.019. [PubMed]
141. Reiss CW, Xiong Y, Strobel SA. 2017. Structural basis for ligand binding to the guanidine-I riboswitch. Structure 25:195–202. http://dx.doi.org/10.1016/j.str.2016.11.020. [PubMed]
142. Sherlock ME, Malkowski SN, Breaker RR. 2017. Biochemical validation of a second guanidine riboswitch class in bacteria. Biochemistry 56:352–358. http://dx.doi.org/10.1021/acs.biochem.6b01270. [PubMed]
143. Huang L, Wang J, Lilley DM. 2017. The structure of the guanidine-II riboswitch. Cell Chem Biol 24:695–702.e2. http://dx.doi.org/10.1016/j.chembiol.2017.05.014. [PubMed]
144. Sherlock ME, Breaker RR. 2017. Biochemical validation of a third guanidine riboswitch class in bacteria. Biochemistry 56:359–363. http://dx.doi.org/10.1021/acs.biochem.6b01271. [PubMed]
145. Huang L, Wang J, Wilson TJ, Lilley DM. 2017. Structure of the guanidine III riboswitch. Cell Chem Biol 24:1407–1415.e2. http://dx.doi.org/10.1016/j.chembiol.2017.08.021. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.RWR-0025-2018
2018-08-03
2018-08-16

Abstract:

RNA is a versatile biomolecule capable of transferring information, taking on distinct three-dimensional shapes, and reacting to ambient conditions. RNA molecules utilize a wide range of mechanisms to control gene expression. An example of such regulation is riboswitches. Consisting exclusively of RNA, they are able to control important metabolic processes, thus providing an elegant and efficient RNA-only regulation system. Existing across all domains of life, riboswitches appear to represent one of the most highly conserved mechanisms for the regulation of a broad range of biochemical pathways. Through binding of a wide range of small-molecule ligands to their so-called aptamer domain, riboswitches undergo a conformational change in their downstream “expression platform.” In consequence, the pattern of gene expression changes, which in turn results in increased or decreased protein production. Riboswitches unite the sensing and transduction of a signal that can directly be coupled to the metabolism of the cell; thus they constitute a very potent regulatory mechanism for many organisms. Highly specific RNA-binding domains not only occur but can also be evolved by means of the SELEX (systematic evolution of ligands by exponential enrichment) method, which allows selection of aptamers against almost any ligand. Coupling of these aptamers with an expression platform has led to the development of synthetic riboswitches, a highly active research field of great relevance and immense potential. The aim of this review is to summarize developments in the riboswitch field over the last decade and address key questions of recent research.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Common mechanism of riboswitches in bacteria. (A) Regulation of translation initiation: In the absence of the ligand, a stem-loop structure is formed between the aptamer domain and a sequence complementary to the Shine-Dalgarno (SD) sequence. Thus, the SD sequence is accessible for 30S binding, and translation initiation occurs. As a consequence of ligand binding (pentagon) and the folding of the aptamer domain, an alternative stem-loop is formed, which sequesters the SD sequence, and the binding of the 30S ribosomal subunit is blocked. (B) Regulation of transcription termination: The aptamer domain is followed by a sequence complementary to the 3′ part of the aptamer and a U stretch. In the absence of the ligand, the complementary 3′ part is base-paired with the aptamer, forming a terminator structure. Thus, RNA polymerase (RNAP) dissociates and transcription is blocked. Upon ligand binding, terminator structure formation is inhibited and transcription can proceed, resulting in expression of the reporter gene.

Source: microbiolspec August 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.RWR-0025-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure of the TPP riboswitch. (A) Schematic depiction of the secondary structure of the riboswitch with and without TPP (marked in pink). TPP stabilizes the P1-P1′ helix, which leads to secondary structure changes. The formation of the expression platform follows as a consequence, so that the Shine-Dalgarno (SD) sequence is sequestered in another stem, inhibiting any further gene expression. (B) The X-ray crystal structure of the aptamer bound to TPP (black sticks, center) and Mg ions (black spheres). PDB ID 2GDI ( 31 ); annotations on the structures refer to helices (P) and junctions (J). Adapted from reference 85 with permission.

Source: microbiolspec August 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.RWR-0025-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Tables

Generic image for table
TABLE 1

Naturally occurring riboswitches

Source: microbiolspec August 2018 vol. 6 no. 4 doi:10.1128/microbiolspec.RWR-0025-2018

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error