1887
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.

Dual-Function RNAs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this Microbiology Spectrum Article
Price Non-Member $15.00
  • Authors: Medha Raina1, Alisa King2, Colleen Bianco3, Carin K. Vanderpool4
  • Editors: Gisela Storz5, Kai Papenfort6
  • VIEW AFFILIATIONS HIDE AFFILIATIONS
    Affiliations: 1: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892; 2: Department of Microbiology, University of Illinois, Urbana, IL 61801; 3: Department of Microbiology, University of Illinois, Urbana, IL 61801; 4: Department of Microbiology, University of Illinois, Urbana, IL 61801; 5: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD; 6: Department of Biology I, Microbiology, LMU Munich, Martinsried, Germany
  • Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
  • Received 10 May 2018 Accepted 16 July 2018 Published 07 September 2018
  • Medha Raina, [email protected]; Carin K. Vanderpool, [email protected]
image of Dual-Function RNAs
    Preview this microbiology spectrum article:
    Zoom in
    Zoomout

    Dual-Function RNAs, Page 1 of 2

    | /docserver/preview/fulltext/microbiolspec/6/5/RWR-0032-2018-1.gif /docserver/preview/fulltext/microbiolspec/6/5/RWR-0032-2018-2.gif
  • Abstract:

    Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called “dual-function” sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs—SgrS from enteric species, RNAIII and Psm-mec from , Pel RNA from , and SR1 from —and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.

  • Citation: Raina M, King A, Bianco C, Vanderpool C. 2018. Dual-Function RNAs. Microbiol Spectrum 6(5):RWR-0032-2018. doi:10.1128/microbiolspec.RWR-0032-2018.

References

1. Storz G, Vogel J, Wassarman KM. 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43:880–891. http://dx.doi.org/10.1016/j.molcel.2011.08.022. [PubMed]
2. Waters LS, Storz G. 2009. Regulatory RNAs in bacteria. Cell 136:615–628. http://dx.doi.org/10.1016/j.cell.2009.01.043. [PubMed]
3. Bobrovskyy M, Vanderpool CK. 2014. The small RNA SgrS: roles in metabolism and pathogenesis of enteric bacteria. Front Cell Infect Microbiol 4:61. http://dx.doi.org/10.3389/fcimb.2014.00061. [PubMed]
4. Balasubramanian D, Vanderpool CK. 2013. Deciphering the interplay between two independent functions of the small RNA regulator SgrS in Salmonella. J Bacteriol 195:4620–4630. http://dx.doi.org/10.1128/JB.00586-13.
5. Fröhlich KS, Papenfort K, Fekete A, Vogel J. 2013. A small RNA activates CFA synthase by isoform-specific mRNA stabilization. EMBO J 32:2963–2979. http://dx.doi.org/10.1038/emboj.2013.222.
6. Papenfort K, Sun Y, Miyakoshi M, Vanderpool CK, Vogel J. 2013. Small RNA-mediated activation of sugar phosphatase mRNA regulates glucose homeostasis. Cell 153:426–437. http://dx.doi.org/10.1016/j.cell.2013.03.003.
7. McCullen CA, Benhammou JN, Majdalani N, Gottesman S. 2010. Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192:5559–5571. http://dx.doi.org/10.1128/JB.00464-10.
8. Schumacher MA, Pearson RF, Møller T, Valentin-Hansen P, Brennan RG. 2002. Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein. EMBO J 21:3546–3556. http://dx.doi.org/10.1093/emboj/cdf322.
9. Zhang A, Wassarman KM, Rosenow C, Tjaden BC, Storz G, Gottesman S. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50:1111–1124. http://dx.doi.org/10.1046/j.1365-2958.2003.03734.x.
10. Chao Y, Papenfort K, Reinhardt R, Sharma CM, Vogel J. 2012. An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J 31:4005–4019. http://dx.doi.org/10.1038/emboj.2012.229.
11. Vogel J, Luisi BF. 2011. Hfq and its constellation of RNA. Nat Rev Microbiol 9:578–589. http://dx.doi.org/10.1038/nrmicro2615. [PubMed]
12. Vanderpool CK, Balasubramanian D, Lloyd CR. 2011. Dual-function RNA regulators in bacteria. Biochimie 93:1943–1949. http://dx.doi.org/10.1016/j.biochi.2011.07.016.
13. Gimpel M, Brantl S. 2017. Dual-function small regulatory RNAs in bacteria. Mol Microbiol 103:387–397. http://dx.doi.org/10.1111/mmi.13558.
14. Friedman RC, Kalkhof S, Doppelt-Azeroual O, Mueller SA, Chovancová M, von Bergen M, Schwikowski B. 2017. Common and phylogenetically widespread coding for peptides by bacterial small RNAs. BMC Genomics 18:553. http://dx.doi.org/10.1186/s12864-017-3932-y. [PubMed]
15. Miyakoshi M, Chao Y, Vogel J. 2015. Regulatory small RNAs from the 3′ regions of bacterial mRNAs. Curr Opin Microbiol 24:132–139. http://dx.doi.org/10.1016/j.mib.2015.01.013.
16. Jørgensen MG, Thomason MK, Havelund J, Valentin-Hansen P, Storz G. 2013. Dual function of the McaS small RNA in controlling biofilm formation. Genes Dev 27:1132–1145. http://dx.doi.org/10.1101/gad.214734.113.
17. Lalaouna D, Carrier MC, Massé E. 2015. Every little piece counts: the many faces of tRNA transcripts. Transcription 6:74–77. http://dx.doi.org/10.1080/21541264.2015.1093064.
18. Wadler CS, Vanderpool CK. 2007. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc Natl Acad Sci U S A 104:20454–20459. http://dx.doi.org/10.1073/pnas.0708102104. [PubMed]
19. Vanderpool CK, Gottesman S. 2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol Microbiol 54:1076–1089. http://dx.doi.org/10.1111/j.1365-2958.2004.04348.x.
20. Kaito C, Saito Y, Nagano G, Ikuo M, Omae Y, Hanada Y, Han X, Kuwahara-Arai K, Hishinuma T, Baba T, Ito T, Hiramatsu K, Sekimizu K. 2011. Transcription and translation products of the cytolysin gene psm-mec on the mobile genetic element SCCmec regulate Staphylococcus aureus virulence. PLoS Pathog 7:e1001267. http://dx.doi.org/10.1371/journal.ppat.1001267. [PubMed]
21. Mangold M, Siller M, Roppenser B, Vlaminckx BJ, Penfound TA, Klein R, Novak R, Novick RP, Charpentier E. 2004. Synthesis of group A streptococcal virulence factors is controlled by a regulatory RNA molecule. Mol Microbiol 53:1515–1527. http://dx.doi.org/10.1111/j.1365-2958.2004.04222.x.
22. Licht A, Preis S, Brantl S. 2005. Implication of CcpN in the regulation of a novel untranslated RNA (SR1) in Bacillus subtilis. Mol Microbiol 58:189–206. http://dx.doi.org/10.1111/j.1365-2958.2005.04810.x. [PubMed]
23. Horler RS, Vanderpool CK. 2009. Homologs of the small RNA SgrS are broadly distributed in enteric bacteria but have diverged in size and sequence. Nucleic Acids Res 37:5465–5476. http://dx.doi.org/10.1093/nar/gkp501.
24. Wassarman KM, Repoila F, Rosenow C, Storz G, Gottesman S. 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15:1637–1651. http://dx.doi.org/10.1101/gad.901001. [PubMed]
25. Kimata K, Tanaka Y, Inada T, Aiba H. 2001. Expression of the glucose transporter gene, ptsG, is regulated at the mRNA degradation step in response to glycolytic flux in Escherichia coli. EMBO J 20:3587–3595. http://dx.doi.org/10.1093/emboj/20.13.3587.
26. Morita T, El-Kazzaz W, Tanaka Y, Inada T, Aiba H. 2003. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 278:15608–15614. http://dx.doi.org/10.1074/jbc.M300177200.
27. Richards GR, Patel MV, Lloyd CR, Vanderpool CK. 2013. Depletion of glycolytic intermediates plays a key role in glucose-phosphate stress in Escherichia coli. J Bacteriol 195:4816–4825. http://dx.doi.org/10.1128/JB.00705-13.
28. Vanderpool CK, Gottesman S. 2007. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J Bacteriol 189:2238–2248. http://dx.doi.org/10.1128/JB.01689-06.
29. Rice JB, Vanderpool CK. 2011. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes. Nucleic Acids Res 39:3806–3819. http://dx.doi.org/10.1093/nar/gkq1219.
30. Kawamoto H, Koide Y, Morita T, Aiba H. 2006. Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61:1013–1022. http://dx.doi.org/10.1111/j.1365-2958.2006.05288.x.
31. Maki K, Uno K, Morita T, Aiba H. 2008. RNA, but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proc Natl Acad Sci U S A 105:10332–10337. http://dx.doi.org/10.1073/pnas.0803106105.
32. Rice JB, Balasubramanian D, Vanderpool CK. 2012. Small RNA binding-site multiplicity involved in translational regulation of a polycistronic mRNA. Proc Natl Acad Sci U S A 109:E2691–E2698. http://dx.doi.org/10.1073/pnas.1207927109.
33. Bobrovskyy M, Vanderpool CK. 2016. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol Microbiol 99:254–273. http://dx.doi.org/10.1111/mmi.13230.
34. Lloyd CR, Park S, Fei J, Vanderpool CK. 2017. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. J Bacteriol 199:e00869-16. http://dx.doi.org/10.1128/JB.00869-16.
35. Jahreis K, Pimentel-Schmitt EF, Brückner R, Titgemeyer F. 2008. Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891–907. http://dx.doi.org/10.1111/j.1574-6976.2008.00125.x.
36. Novick RP, Ross HF, Projan SJ, Kornblum J, Kreiswirth B, Moghazeh S. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975.
37. Vuong C, Götz F, Otto M. 2000. Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68:1048–1053. http://dx.doi.org/10.1128/IAI.68.3.1048-1053.2000.
38. Novick RP. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449. http://dx.doi.org/10.1046/j.1365-2958.2003.03526.x.
39. Novick RP, Geisinger E. 2008. Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. http://dx.doi.org/10.1146/annurev.genet.42.110807.091640.
40. Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F. 2000. Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6:668–679. http://dx.doi.org/10.1017/S1355838200992550.
41. Fechter P, Caldelari I, Lioliou E, Romby P. 2014. Novel aspects of RNA regulation in Staphylococcus aureus. FEBS Lett 588:2523–2529. http://dx.doi.org/10.1016/j.febslet.2014.05.037.
42. Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J, Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J 24:824–835. http://dx.doi.org/10.1038/sj.emboj.7600572.
43. Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev 21:1353–1366. http://dx.doi.org/10.1101/gad.423507.
44. Morfeldt E, Taylor D, von Gabain A, Arvidson S. 1995. Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569–4577.
45. Liu Y, Mu C, Ying X, Li W, Wu N, Dong J, Gao Y, Shao N, Fan M, Yang G. 2011. RNAIII activates map expression by forming an RNA-RNA complex in Staphylococcus aureus. FEBS Lett 585:899–905. http://dx.doi.org/10.1016/j.febslet.2011.02.021.
46. Gupta RK, Luong TT, Lee CY. 2015. Correction for Gupta et al., RNAIII of the Staphylococcus aureus agr system activates global regulator MgrA by stabilizing mRNA. Proc Natl Acad Sci U S A 112:E7306. http://dx.doi.org/10.1073/pnas.1509251112.
47. Ingavale S, van Wamel W, Luong TT, Lee CY, Cheung AL. 2005. Rat/MgrA, a regulator of autolysis, is a regulator of virulence genes in Staphylococcus aureus. Infect Immun 73:1423–1431. http://dx.doi.org/10.1128/IAI.73.3.1423-1431.2005.
48. Trotonda MP, Tamber S, Memmi G, Cheung AL. 2008. MgrA represses biofilm formation in Staphylococcus aureus. Infect Immun 76:5645–5654. http://dx.doi.org/10.1128/IAI.00735-08.
49. Crosby HA, Schlievert PM, Merriman JA, King JM, Salgado-Pabón W, Horswill AR. 2016. The Staphylococcus aureus global regulator MgrA modulates clumping and virulence by controlling surface protein expression. PLoS Pathog 12:e1005604. http://dx.doi.org/10.1371/journal.ppat.1005604.
50. Luong TT, Newell SW, Lee CY. 2003. Mgr, a novel global regulator in Staphylococcus aureus. J Bacteriol 185:3703–3710. http://dx.doi.org/10.1128/JB.185.13.3703-3710.2003.
51. Luong TT, Dunman PM, Murphy E, Projan SJ, Lee CY. 2006. Transcription profiling of the mgrA regulon in Staphylococcus aureus. J Bacteriol 188:1899–1910. http://dx.doi.org/10.1128/JB.188.5.1899-1910.2006. [PubMed]
52. Verdon J, Girardin N, Lacombe C, Berjeaud JM, Héchard Y. 2009. δ-Hemolysin, an update on a membrane-interacting peptide. Peptides 30:817–823. http://dx.doi.org/10.1016/j.peptides.2008.12.017. [PubMed]
53. Balaban N, Novick RP. 1995. Translation of RNAIII, the Staphylococcus aureus agr regulatory RNA molecule, can be activated by a 3′-end deletion. FEMS Microbiol Lett 133:155–161.
54. Qin L, McCausland JW, Cheung GY, Otto M. 2016. PSM-mec—a virulence determinant that connects transcriptional regulation, virulence, and antibiotic resistance in staphylococci. Front Microbiol 7:1293. http://dx.doi.org/10.3389/fmicb.2016.01293. [PubMed]
55. Kaito C, Saito Y, Ikuo M, Omae Y, Mao H, Nagano G, Fujiyuki T, Numata S, Han X, Obata K, Hasegawa S, Yamaguchi H, Inokuchi K, Ito T, Hiramatsu K, Sekimizu K. 2013. Mobile genetic element SCCmec-encoded psm-mec RNA suppresses translation of agrA and attenuates MRSA virulence. PLoS Pathog 9:e1003269. http://dx.doi.org/10.1371/journal.ppat.1003269. [PubMed]
56. Chatterjee SS, Chen L, Joo HS, Cheung GY, Kreiswirth BN, Otto M. 2011. Distribution and regulation of the mobile genetic element-encoded phenol-soluble modulin PSM-mec in methicillin-resistant Staphylococcus aureus. PLoS One 6:e28781. http://dx.doi.org/10.1371/journal.pone.0028781. [PubMed]
57. Queck SY, Khan BA, Wang R, Bach TH, Kretschmer D, Chen L, Kreiswirth BN, Peschel A, Deleo FR, Otto M. 2009. Mobile genetic element-encoded cytolysin connects virulence to methicillin resistance in MRSA. PLoS Pathog 5:e1000533. http://dx.doi.org/10.1371/journal.ppat.1000533. [PubMed]
58. Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW, Klebanoff SJ, Peschel A, DeLeo FR, Otto M. 2007. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514. http://dx.doi.org/10.1038/nm1656. [PubMed]
59. Licht A, Golbik R, Brantl S. 2008. Identification of ligands affecting the activity of the transcriptional repressor CcpN from Bacillus subtilis. J Mol Biol 380:17–30. http://dx.doi.org/10.1016/j.jmb.2008.05.002. [PubMed]
60. Licht A, Brantl S. 2006. Transcriptional repressor CcpN from Bacillus subtilis compensates asymmetric contact distribution by cooperative binding. J Mol Biol 364:434–448. http://dx.doi.org/10.1016/j.jmb.2006.09.021. [PubMed]
61. Licht A, Brantl S. 2009. The transcriptional repressor CcpN from Bacillus subtilis uses different repression mechanisms at different promoters. J Biol Chem 284:30032–30038. http://dx.doi.org/10.1074/jbc.M109.033076. [PubMed]
62. Heidrich N, Chinali A, Gerth U, Brantl S. 2006. The small untranslated RNA SR1 from the Bacillus subtilis genome is involved in the regulation of arginine catabolism. Mol Microbiol 62:520–536. http://dx.doi.org/10.1111/j.1365-2958.2006.05384.x. [PubMed]
63. Heidrich N, Moll I, Brantl S. 2007. In vitro analysis of the interaction between the small RNA SR1 and its primary target ahrC mRNA. Nucleic Acids Res 35:4331–4346. http://dx.doi.org/10.1093/nar/gkm439. [PubMed]
64. Gimpel M, Preis H, Barth E, Gramzow L, Brantl S. 2012. SR1—a small RNA with two remarkably conserved functions. Nucleic Acids Res 40:11659–11672. http://dx.doi.org/10.1093/nar/gks895. [PubMed]
65. Gimpel M, Heidrich N, Mäder U, Krügel H, Brantl S. 2010. A dual-function sRNA from B. subtilis: SR1 acts as a peptide encoding mRNA on the gapA operon. Mol Microbiol 76:990–1009. http://dx.doi.org/10.1111/j.1365-2958.2010.07158.x. [PubMed]
66. Gimpel M, Brantl S. 2016. Dual-function sRNA encoded peptide SR1P modulates moonlighting activity of B. subtilis GapA. RNA Biol 13:916–926. http://dx.doi.org/10.1080/15476286.2016.1208894. [PubMed]
67. Betschel SD, Borgia SM, Barg NL, Low DE, De Azavedo JC. 1998. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect Immun 66:1671–1679. [PubMed]
68. Perez N, Treviño J, Liu Z, Ho SC, Babitzke P, Sumby P. 2009. A genome-wide analysis of small regulatory RNAs in the human pathogen group A Streptococcus. PLoS One 4:e7668. http://dx.doi.org/10.1371/journal.pone.0007668. [PubMed]
69. Nizet V, Beall B, Bast DJ, Datta V, Kilburn L, Low DE, De Azavedo JC. 2000. Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254. http://dx.doi.org/10.1128/IAI.68.7.4245-4254.2000. [PubMed]
70. Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V. 2005. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56:681–695. http://dx.doi.org/10.1111/j.1365-2958.2005.04583.x. [PubMed]
71. Sonnleitner E, Gonzalez N, Sorger-Domenigg T, Heeb S, Richter AS, Backofen R, Williams P, Hüttenhofer A, Haas D, Bläsi U. 2011. The small RNA PhrS stimulates synthesis of the Pseudomonas aeruginosa quinolone signal. Mol Microbiol 80:868–885. http://dx.doi.org/10.1111/j.1365-2958.2011.07620.x. [PubMed]
72. Shimizu T, Yaguchi H, Ohtani K, Banu S, Hayashi H. 2002. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol Microbiol 43:257–265. http://dx.doi.org/10.1046/j.1365-2958.2002.02743.x. [PubMed]
73. Roberts SA, Scott JR. 2007. RivR and the small RNA RivX: the missing links between the CovR regulatory cascade and the Mga regulon. Mol Microbiol 66:1506–1522.
74. Vockenhuber MP, Heueis N, Suess B. 2015. Identification of metE as a second target of the sRNA scr5239 in Streptomyces coelicolor. PLoS One 10:e0120147. http://dx.doi.org/10.1371/journal.pone.0120147. [PubMed]
75. Vockenhuber MP, Suess B. 2012. Streptomyces coelicolor sRNA scr5239 inhibits agarase expression by direct base pairing to the dagA coding region. Microbiology 158:424–435. http://dx.doi.org/10.1099/mic.0.054205-0. [PubMed]
76. Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G. 2009. Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol Microbiol 74:1497–1512. http://dx.doi.org/10.1111/j.1365-2958.2009.06949.x. [PubMed]
77. Hess WR, Berghoff BA, Wilde A, Steglich C, Klug G. 2014. Riboregulators and the role of Hfq in photosynthetic bacteria. RNA Biol 11:413–426. http://dx.doi.org/10.4161/rna.28035. [PubMed]
78. Müller KM, Berghoff BA, Eisenhardt BD, Remes B, Klug G. 2016. Characteristics of Pos19—a small coding RNA in the oxidative stress response of Rhodobacter sphaeroides. PLoS One 11:e0163425. http://dx.doi.org/10.1371/journal.pone.0163425. [PubMed]
79. Thomason MK, Fontaine F, De Lay N, Storz G. 2012. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol Microbiol 84:17–35. http://dx.doi.org/10.1111/j.1365-2958.2012.07965.x. [PubMed]
80. Potts AH, Vakulskas CA, Pannuri A, Yakhnin H, Babitzke P, Romeo T. 2017. Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics. Nat Commun 8:1596. http://dx.doi.org/10.1038/s41467-017-01613-1. [PubMed]
81. Hershko-Shalev T, Odenheimer-Bergman A, Elgrably-Weiss M, Ben-Zvi T, Govindarajan S, Seri H, Papenfort K, Vogel J, Altuvia S. 2016. Gifsy-1 prophage IsrK with dual function as small and messenger RNA modulates vital bacterial machineries. PLoS Genet 12:e1005975. http://dx.doi.org/10.1371/journal.pgen.1005975. [PubMed]
82. Kawano M, Reynolds AA, Miranda-Rios J, Storz G. 2005. Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli. Nucleic Acids Res 33:1040–1050. http://dx.doi.org/10.1093/nar/gki256. [PubMed]
83. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jäger JG, Hüttenhofer A, Wagner EG. 2003. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 31:6435–6443. http://dx.doi.org/10.1093/nar/gkg867. [PubMed]
84. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J. 2009. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779. http://dx.doi.org/10.1016/j.cell.2009.08.046. [PubMed]
85. Liu N, Niu G, Xie Z, Chen Z, Itzek A, Kreth J, Gillaspy A, Zeng L, Burne R, Qi F, Merritt J. 2015. The Streptococcus mutans irvA gene encodes a trans-acting riboregulatory mRNA. Mol Cell 57:179–190. http://dx.doi.org/10.1016/j.molcel.2014.11.003. [PubMed]
86. Ellis MJ, Trussler RS, Charles O, Haniford DB. 2017. A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res 45:5470–5486. http://dx.doi.org/10.1093/nar/gkx094. [PubMed]
87. Guo MS, Updegrove TB, Gogol EB, Shabalina SA, Gross CA, Storz G. 2014. MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein. Genes Dev 28:1620–1634. http://dx.doi.org/10.1101/gad.243485.114. [PubMed]
88. Kim HM, Shin JH, Cho YB, Roe JH. 2014. Inverse regulation of Fe- and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3′UTR of the sodF mRNA. Nucleic Acids Res 42:2003–2014. http://dx.doi.org/10.1093/nar/gkt1071. [PubMed]
89. Chao Y, Vogel J. 2016. A 3′ UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol Cell 61:352–363. http://dx.doi.org/10.1016/j.molcel.2015.12.023. [PubMed]
90. Hao Y, Updegrove TB, Livingston NN, Storz G. 2016. Protection against deleterious nitrogen compounds: role of σS-dependent small RNAs encoded adjacent to sdiA. Nucleic Acids Res 44:6935–6948. http://dx.doi.org/10.1093/nar/gkw404. [PubMed]
91. Melamed S, Peer A, Faigenbaum-Romm R, Gatt YE, Reiss N, Bar A, Altuvia Y, Argaman L, Margalit H. 2016. Global mapping of small RNA-target interactions in bacteria. Mol Cell 63:884–897. http://dx.doi.org/10.1016/j.molcel.2016.07.026. [PubMed]
92. Papenfort K, Espinosa E, Casadesús J, Vogel J. 2015. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella. Proc Natl Acad Sci U S A 112:E4772–E4781. http://dx.doi.org/10.1073/pnas.1507825112. [PubMed]
93. Storz G, Wolf YI, Ramamurthi KS. 2014. Small proteins can no longer be ignored. Annu Rev Biochem 83:753–777. http://dx.doi.org/10.1146/annurev-biochem-070611-102400. [PubMed]
Loading

Article metrics loading...

/content/journal/microbiolspec/10.1128/microbiolspec.RWR-0032-2018
2018-09-07
2018-11-19

Abstract:

Bacteria are known to use RNA, either as mRNAs encoding proteins or as noncoding small RNAs (sRNAs), to regulate numerous biological processes. However, a few sRNAs have two functions: they act as base-pairing RNAs and encode a small protein with additional regulatory functions. Thus, these so called “dual-function” sRNAs can serve as both a riboregulator and an mRNA. In some cases, these two functions can act independently within the same pathway, while in other cases, the base-pairing function and protein function act in different pathways. Here, we discuss the five known dual-function sRNAs—SgrS from enteric species, RNAIII and Psm-mec from , Pel RNA from , and SR1 from —and review their mechanisms of action and roles in regulating diverse biological processes. We also discuss the prospect of finding additional dual-function sRNAs and future challenges in studying the overlap and competition between the functions.

Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Sugar-phosphate stress due to intracellular accumulation of phosphosugars triggers expression of the transcription factor SgrR. SgrR, in turn, induces transcription of the 227-nt sRNA SgrS, which also encodes a small, 43-aa protein, SgrT (blue). The other features of this sRNA include the base-pairing region (red) and the Hfq-binding region [poly(U) tail]. To relieve the sugar-phosphate stress, SgrS represses translation of mRNAs coding for sugar transporters (PtsG and ManXYZ) and other mRNAs involved in various metabolic pathways (Asd, AdiY, FolE, and PurR) to help restore metabolic homeostasis during stress conditions. SgrS also activates translation of a phosphatase (YigL) that dephosphorylates the phosphosugars for export out of the cell. SgrT, meanwhile, is expressed from SgrS later and inhibits the activity of the glucose transporter PtsG; thereby, both the sRNA and the encoded small protein act together in the same pathway to combat sugar-phosphate stress.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

RNAIII is part of the global regulatory locus known as the accessory gene regulator () locus, which encodes the components of an autoregulatory quorum-sensing system. The locus consists of two divergent transcripts, RNAII and RNAIII, which initiate from promoters P2 and P3, respectively. Increases in cell density lead to phosphorylation and activation of the DNA-binding response regulator AgrA. Phosphorylated AgrA in turn activates transcription from the P2 and P3 promoters, P3 activation leading to expression of RNAIII, the major effector molecule of the response. The secondary structure of the 514-nt RNAIII consists of 14 stem-loop structures with multiple base-pairing regions (red). RNAIII encodes a 26-aa δ-hemolysin protein (blue, ) but also acts as a posttranscriptional regulator of several mRNAs, most of which impact virulence. The RNA activates expression of Map, α-hemolysin, and MgrA proteins by either promoting a more open secondary structure surrounding the RBS by base-pairing in the case of and mRNAs or by stabilizing the RNA in the case of . RNAIII is also involved in translation inhibition and RNA degradation of various mRNAs involved in the early stages of infection.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Psm-mec is located on staphylococcal cassette chromosome (SCC), next to the // genes, which confer methicillin resistance and its regulation. The 143- to 157-nt sRNA also encodes PSM-mec, a 22-aa cytolytic toxin with the ORF making up most of the transcript (blue). The protein plays a role in infection and immune evasion, while the sRNA represses the translation of mRNA by inhibiting translation and affecting the stability of the mRNA.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The SR1 gene is encoded between and . Its transcription is repressed by CcpA and CcpN under glycolytic conditions. The 205-nt sRNA expressed under gluconeogenic conditions and in the presence of -arginine also encodes a small, 39-aa protein, SR1P (blue). The ORF and the base-pairing region overlap on this sRNA. In the presence of arginine, SR1 represses translation of the mRNA, the transcriptional activator of two arginine catabolic operons, and . The small protein SR1P plays a role in gluconeogenic conditions by binding to GapA and stabilizing the operon mRNA from degradation by an unknown mechanism. It also binds RNase J1 and enhances its activity. Thus, the activities of the small protein and base-pairing RNA affect different pathways.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Pel/SagA sRNA is expressed from the pleiotropic effect locus of , comprising the operon. This 459-nt sRNA also encodes a 53-aa protein called streptolysin S (purple). Pel sRNA activates transcription of various mRNAs coding for different virulence factors, like Sic, Nga, and M protein, by an unknown mechanism. The sRNA also modulates maturation of cysteine protease SpeB.

Source: microbiolspec September 2018 vol. 6 no. 5 doi:10.1128/microbiolspec.RWR-0032-2018
Permissions and Reprints Request Permissions
Download as Powerpoint

Supplemental Material

No supplementary material available for this content.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error